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1. Introduction

There are many questions in connexion with the cartesian multiplications
of sets, structures etc. In particular, the question is to find how some property
of the cartesian product is induced by the analogous property of the factors.
Some classical facts show that big differences may occur between the factors
and ths product. E. g. the problem of measure on the line R and in the
square (plane) R? are of a different kind then the problem of the measure in
the space R3® or in spaces R” for n>2. The problem whether the cardinality
k E? of infinite sets E equals k E is equivalent to the choice axiom.

In this article we shall examine a particular number — the cellularity number
¢ X (=cel X) where X is any family of sets, any topological space or structure
in order to see how the cellularity of product depends on the cellularity of
the factors. At the same time, we shall become aware how the complete answer
to the problem is connected with the tree hypothesis, and with the general
continuum hypothesis. At this opportunity it is interesting to observe that the
chain x antichain hypothesis holds for every square or hypersquare of every
tree or ramified set.

In the present first part of the paper main results are contained in theorems
3.4; 3.7; 4.10; 5.4; 5.6; 5.8 and 6.4.

2. Cellularity of a system of sets

2.1. For any system S of sets we define the cellularity c=cS=celS
of § by the relation

@) ¢S =sup k ®,
@

® consisting of pairwise disjoint sets belonging to S; k ® means the cardi-
nality of ®.

2.2. For any space E the cellularity ¢ E of E is defined as the cellular
number of the family of all open sets of the space E.
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2.3, For any totally ordered set O the cellularity ¢ O of O is defined
as the cellular number of the system of sets of the form

Olx,.)={y; x<y; {x,y} CO}
O (., x]={y; y<x; {x,y} CO}
O (x,y)={z; x<z<y or x<z<y; {x,y, z} C O}.

3. Cartesian multiplication of sets and of families of sets, respectively

3.1 Definition. Let 7 be any set of > 1 elements (the members of
I shall serve as indices) ; for any i< I let X; be a nonvoid set; the cartesian

product of the sets X; is the set Y= H X; consisting of all the single-valued

functlons fon I such that for every lEI one has f(i) € X;;
i e.

Y=I] Xi={f; f: I U X, f() € Xi};
icl iel

for f,g €Y one defines f=g<f(i)=g@) ().
In particular, for any ordinal number « one defines the hypercube X«
as the set of all the «-sequences of members in X; X° means the empty set.
3.2. Let I be a non void set and F a mapping on I such that, for
every i€ I, F; be a nonempty family of non void sets; the cartesian product
of the families F; is the family F* of the products || X; where X, F; (i< D).
ier
In particular, for any ordinal o and any family F of sets one defines
F"=F"°‘:{H Xi; Xi€F, i<<a; I, means the set of all the ordinal num-

bers <<a}.

F2 consists of all the products X,x X; where X,, X; run independently
through F. One proves readily the followmg lemma.

3. Lemma. For every disjoint (antidisjoint) family F of sets one
has (c F)¥1a= ¢ (F'T),

3.3, Definition. A famlly of sets is called disjoint (antidisjoint),
provided its members are pairwise disjoint (nondisjoint).

3.4. Main theorem. (I) For any family F of sets and any natural
number n the relation ¢ F> N, implies
¢} (c FY' < c(F )< 29,
(11) For any ordinal number o there exists a system F of sets such that

2) ¢Fu=¥a, (F7)=2%
Therefore the evaluation in (1) is a best one.

3.5. Proof of the theorem 3.4. (I). 1. The first relation (1) is
obvious because for every disjoint system & of sets in F we have the system
d’” in F- that is disjoint and of a cardinality > kd. Therefore, we have still
to prove the second relation in (1). The proof will be carried out by induction
relative to n.
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First of all the relation (1) holds for n=2. The proof of this fact is
quite characteristic. We have to prove that every disjoint system D of sets in
F-12 is of a cardinality < 2°F.

2. Now, let D be any disjoint system of the family F-72; this means that
X,YeED=>XNY=g or X=Y.

Now, X=X,x X,, Y=Y, xY,, X, X, Y,, ¥, being elements of F.
The relation

XX X)NFoxY)=¢g
is equivalent to the disjunction
X,NY,= 2 VX, NY, = 2.
Let (D; ¢) be the binary graph supported by D and where the relation Xp Y
means that X,NY,= @ holds. Thus if C is a p-chain in (D;p), then C,=
~{X,; X€C} is a disjointed system of F and therefore kC, <cF. If C is an
antichain in (D, ), then {X, Y} € C implies the negation X¢'Y of XpY 1. e.
that X,NY,# @ and consequently X;NY;= &; this means that again C;=

={X;; X& C} is a disjointed system in F. Consequently, every chain as well
as every antichain of (D, p) is < c¢F. In virtue of our graph theorem we have

kD < 2¢F (cf. [4]. 3 Theorem 0.1 p. 82 and [4]. 4 Theorem 6.2.2).
This holding for every disjointed system D in F-2 one has

sup kD <2 i.e. cF2<g2F,
D

Consequently, the theorem holds for n=2.

3. Now, suppose that r be any natural number > 2 and the relation (1) holds
for any natural number n<r; let us prove that (1) holds for n=r too. Now,
let D be any disjoint system in F**; then for X=(X,xX;X.. XX,-))EF
and Y=(Y,x Y, X .. xY,_y) € F the disjonction X N Y= g means

3) Ko X X1 X o XX NV X Y1 X X Y,p)= O

or X, NY,_,=@.

With respect to the relation (3) the subset D of F is a binary graph; by an
argument like in 2 one proves that the induction hypothesis implies that
every chain of this graph is < 2°F and that every antichain of the graph is
< cF; in virtue of the graph theorem we infer that

sz(ZCD)°D=2”’; this holding for every D, the operator sup yields (1).
And this was to be shown.

3.6. Proof of the theorem 3.3. (II). Let « be any ordinal
number and let

M= Q (0q)

be the system of all the o, — sequences of rational numbers ordered by the
principle of the first differences: for any 2 different such sequences a, b let
i=i(a, b) be the ordinal such ay =b; for every ordinal i'<<i and a;#b;;
we put a<<b if and only if a;<b;.
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3.6.1. Lemma. kQ(wq)=8,"(=2%),
3.6.2. M is a chain with respect to the relation < and every interval
of M has 2%« points.

In fact let a=(ay)y, b=(by), be 2 distinct elements of M; hence i=
i(a, b) <wy and either a; < b; or a; > b;; if then ¢ is any element of M such
that ¢; < Q (ai, b)), i(a, c)=i(b,c), one has ¢& M (a, b); in particular, the
©«-SEqUENCe City, ..., Cirwas Might be any ,-sequence of rational numbers.

3.6.3. Lemma. Any increasing (decreasing) sequence in M is of a
cardinality < N..

First of all the set M contains a w,-sequence as well as an ©*,-sequ-
ence; such are e. g. the sequences:

8% = {1} {0} tiw, (C<owy)
b= {0} i{l} o, (E<wa)

Further let us suppose that (M,<) contains a well-ordered subset W of cardi-
nality>N,. In particular we might suppose that the type of W be w,.;. Now,
every member x of W is a w,-sequence (x¢) with x. & Q; for any pair x, y
of distinct members of M let i(x,y) be the first ordinal v such that
xy7#yy. The ordinal i (x, y) is like a proximity degree (or dual distance) bet-
ween x, y and one proves readily that

e)) x<y<z=i(x,z)=inf {i (x,»), i (y, 2)}.

This relation is like triangular relation.

Consequently, for every member x < W we have the non decreasing
monotone sequence

(2) i(x,9), yEW(x,))
of ordinal numbers < w,; let g (x) be the first y>x in W such that

i(x, g x) equals the infimum of the numbers (2).
In other words

3) i(x,g (x)=inf i(x,»), (yE€W(x,.)).
The relations (1) and (3) yield the following relation
4) i(x, y)=i(x, g (x), (y €W (g (x),.))

Geometrically, the relation (4) means that the terminating interval W (g x,.)
of W is located on the ,sphere S(x,r*), the center and the dual radius
r* of which are x and r*=1i(x, gx) respectively; at the same time, gx is the
first point of W(x,.) located on this sphere.

Now by induction procedure we shall prove that the space (W; i) (or
ordered set (W, <)) would contain a subset K= (k,< k;<C ...) of cardinality
N1 of points with a constant mutual proximity § or there would be a
decreasing sequence of cardinality N,,: of ,,spheres® (or terminating intervals
of (W, <)) having no point in commun. None of these possibilities might
occur in the present case. For the last eventuality the thing is obvious; as
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to the first eventuality, the set K would be a well-ordered subset of (W, <)
and for every 2-point-set {x, y} CK one would have i(x, y)=3; the set K
of all the 3" coordinates x; of members x of K would be a Subset of (W, <)
isomorphic with (K, <)—absurdity.

To start with, let k,= W,; put ky= W;,, gk, (cf. (3)), suppose that v be
an ordinal < w,,, and that the decreasing ,,spheres” S (k¢; re) = W (g ke, Y E<Y)
with rzzi(kg, gky) are defined; we put k= Wik, ;. gky_py OF ky=supr<, kz,
according as v—1 is limit or non limit ordinal. The construction of k, is
well determined for every v<w.y; and one sees by induction argument
that really

(%) S (ky, r:)z W gk, .) for every v < wyyy; in other words
(6) i (ke, Y)=rs =i (ky, ghky) for every ye W(gk,,.).

The function v— r, is a monotone non decreasing function of [ we,y into
> *
I wy. Let r* be the supremum of the ordinals r,. One has

Q) < oy

Now, the relat on r* =0, would imply that some w,-sequence of segments
W (gk®, .); would have a void intersection (take e. g. k% as the first k, satis-

fying i(k,, gkv):rZ); in other words the w,sequence gk® would be cofinal
with the o, -sequence W--absurdity.

The relation
(8) ¥ < g

does not hold neither. Namely, if the number r* is isolated, there would be
o=y =i{ky, gky) for a p<<wy,.r; if #* is non isolated, then for some
strictly incrzasing sequence Fap=1 (K%, g (k%) of cardinality < %N, there would
be r*=sup ri, ; in cither case onc concludes that r*=ry for every v of the

final section S=K(z,.), where z=k, or z=sup k% According to (6) this means
that i(ky, y)=r*=1i(ky, gky) for every ycW|z,.). Therefore by (3) we infer
that all distinct points in W{z,.) have a same mutual proximity — the number
r¥*, This fact implies that the set W(z,.) we defined above is a subset of Q
isomorphic to W{z,.) and W — absurdity.}?
- 3.6.4. A partial order associated to the linear order (M;<).

Let x—ux(x& M) be a normal well-ordering uM of M i. e. such that
uM be nonequivalent to any of its proper initial portions; in other words
let u=wux be a one-to-one mapping of M onto the segment of ordinal numbers

corresponding to an initial ordinal wg. Let then the partial order < in M
be defined as superposition of the orders < and w:

a=<b means a<b and wa<ub.

1. Every chain C in (M<) is of a cardinality <N,.
In fact C is a well-ordered subset in (M; <} and in virtue of 3.6.3
C is <N,

L The forcgoing proof of Lemma 3.6.1 represents a space- -theoretical wording (using
abstract distance or abstract proximity) of the thcorem XIV in Havsdorff [1].
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2. Every antichain A in (M; <) is of a cardinality <¥..
As a matter of fact, 4 is a decreasing sequence in (M; <) and in virtue
of 3.6.3 4 is <N.,.

3.6.5. Let x & M and (cf. Sierpifiski [5])
E.={{x,x'}; X EM, x¥<x or x=<x'}.

The mapping x — E, is biunique.
For if y©€ M and e.g. x <y let then z € M(x,y) and uz > sup {ux, up;} one
has x <z and thus {x,z} € E,; on the contrary {x,z} non < E,, because
y non € {xz}.

3.6.6. Let F={E,; x € M}.

Then kF=kM=2Rx

3.6.7. We consider the graph (F; D), D being the disjunction relation.
Every antichain as well as every chain of the graph (F; D) is <Ny .

In fact, let 4 be an antichain in (F; D); let E,, E, be two distinct ele-
ments of A; then {x,y}.CM and E,NE,+ @; let {x,x'}={y,»'} be an
clement of E, and E,; then x' =y, y'=x; consequently, the points x, y are
< —comparable in M; and vice versa, if x, y are 2 distinct < —comparable
points of (M; <), then E,NE,+ g.If E.NE,= g, then x, y are not < —com-
parable:

x#Ey (<)o E,NE,=@
x=y (- <D)SENE, # 2.

Consequently, to every < —chain C in (M; <) corresponds the /— chain
consisting of the elements E, (x € C); to every < — antichain 4 corresponds
the disjointed system E, (x € A).

As a consequence of 3.6.3. one has therefore 3.6.7.
368. The system G of sets.

For any x& M let G,={{x,y}+; y is<— incomparable to x} i.e.
(<IN (@ux>up)V (x >y A(ux <uy). Let G={G,; x € M}.

1. Every chain and every antichain in (G; D) is <N,. Again,
x#£y (<) G6,NnG#* @ i. e. x comp. y<> G, AGy= 2.

369. F-n-G=2 1. e. xEFAYyEG=>xNy=g.

3.6.10. Family H. Let H=FUG; the family (H;D) is the required
SJamily: every D-chain and every D-antichain is <¥,.

Now H'T2 contains a disjointed system of kM clements because the sets

Hi=EXxGi (i€ M)

are pairwise disjoint. As a matter of fact, let x#y and x,y € M; then either
X,y are comparable or incomparable in M; if x,y are comparable, then
G, G, are disjoint and so are the sets H,, H,; if x,y are incomparable, the
sets E,, E, are disjoint and so are also the sets H,, H,. The theorem 3. 3. (1)
is proved.

3.7. Theorem For every family F of sets and every ordinal number
« we have: (1) cF=cF'2 provided cF=1
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(2) (cFYrr< cF1*<kF¥* if cF>1, then for some ordinal o, of cardinality
<kF we have

(B) (cFYce=cF 1= for every ordinal o> «,.

The relation (1) is obvious; the first relation in (2) is a consequence
of the fact that the cartesian product of a disjoint system of sets is again a
disjoint system of sets. The second relation in (2) is obvious because the
cellularity of any family of sets is less than or equals to the cardinality of
the same family; on the other hand, the cardinality of F/* equals (kF)**.
Therefore, the relations (2) hold. Finally, if kF<ka, then kFk* =2ke  and
therefore according to (2) we have cF/*<2%v; this relation joint with the
relation 25 < (c F)** and the first relation in (2) yields the requested equality (3).

3.8. Theorem. For any ordered pair (a,b) of cardinal numbers a, b
there exists a family F of sets and some ordinal number o such that a=cF
and cF®>b.

As a matter of fact, we can consider any disjoint family F of cardinality a;
then for some o we have a**>b and consequently (cF)k*>b.

39. Theorem. For any F and any sets A, B we have
kA=kB=>cF4=c(F?) and
kA<kB=>cF4<c(FP).

As a matter of fact let r be a one-to-one mapping of 4 into B; and let D
be a disjoint system in F'4; for f&€ D we define t=t¢(f) in this way

fiA"—f A, where f A € F;

the antidomain ¢4 of ¢ is a part of B; to every mapping f: 4 F we define
the mapping v;: B—F as the one which equals ft~' in t4 and which, in
B\tA, equals a constant b€ B\t A. Then v, € F2.

To every disjoint set D in F'4 corresponds an equivalent system vp=
= {v:fE D) in F'B If t4=B, then the mapping f— v, is an isomorphism
from F4 onto F'B. .

3.10. Theorem. Let A,B be any sets and F a family of sets; then
cF4uB) <, where s=sup {a, b}, i=inf {a,b}, a=cF4, b=cF®& If the
product ab is infinite, then ¢ F4U B <2 sup {a.b},

We shall consider the case that A, B are non empty disjoint sets. Then
every member x & F-“UB s the set of the functions g|(4U B) where for
i€ AUB one has g;& x;, x; being a member of F. Let g4 be the correspond-
ing subfunction in 4 and let x4 be the set of all these subfunctions gu;
analogously one has gz and xp. For any set S C F-(4U® one has the ,,projections®

Sy={x4; x & FAUBY}, Sp—{xp; xc F4UB},

In particular, for every disjoint set D in F-(4UB we have D4, Dg. For any
members X, ¥ of F(4uB the relation XNY= g means

(1) XAmYA=@ or xBﬂyB=Q. (2)

Let XpY mean (1) i. e. that X,NY, = . Then D is a graph relative to
the relation p. Let L be a p-chain in Dj; this means that

(3) {X, Y};egLD{XA, YA}QLA and XAnYA=Q
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and that L, is a disjoint system in D4. Now, the family D, is isomorphic
to a subsystem of the family F-4, therefore :

(4) kLA<a(=cF‘A).

Because of the relations (3) the correspondence X &L —X,& L, is onto
and one-to-one:

kL =kL, what jointly with (4) yields
kL<cA for every p-chain L in the graph (4; p).

Analogously, one proves that every antichain M of (D, ¢) yields disjointed
system Mjy of cardinality kM; since k Mp<c F'5 this means that every anti-
chain in (D, p) is of a cardinality <b=cF-B. Consequently, by the graph
-chain-antichain-theorem we have the requested relation.

3.11. Theorem. If r is a natural number and F a set family then
) CFW=0¢F = cFIG+n — cF-I* (2)

for every integer n.

Proof. The proof is carried out by induction relative to n. Let D be a
disjointed system in F-7¢+D; then

{X9 Y}#QDQ
3 Mo x Xy X . x X )N(Xpx Yix . . xYy)=a V
vV X,nY,. = o. 4

Let X p Y mean that (3) occurs; then to every p-chain L C D corresponds the
disjointed chain L,-projection of L into the product F-I"; consequently
kLi,<cFI" and according to the assumption (1) we have k Li, <2°; again
kL=kL; and thus kL <2%. Consequently, every chain of the graph (D, ¢)
is < 2°F. Analogously, one proves that every antichain of (D, p) is < cF.
Hence kD < (2°F)F = 2°F,

The implication (1)=(2) is thus proved for every r and n=1; writing
in particular r+1,r+2, ... instead of r, the implication (1)=(2) is proved
for n=1,2,3, ... i. e. for every n.

3.12. Problem. Let F be a system of sets and n a natural number
satisfying ¥, < cF*™" = ¢ F-"+D; is there one-to one mapping of F'1"+V into F-I" which
conserves both disjointness and jointness of sets? In other words, is then the
disjonction graph (F-1+V; D) isomorph to a subgraph of (F'1(; D)?

§ 4. Disjoint systems in F;- x - F,.

4.1. F,, F, being set families let A be a disjoint system (or D-chain)
in the product

4] Fio X - Fy=={x;XX3; ;€ F; A x,E€ F,}.

Let pryA=p;A and p,A be the first and the second projection of A respectiv-
ely. For any a, €pr,A we have the following antiprojection of @, into A:
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pTlA(a,.):{(a, ¥); YEF, (a,y) €EA}; for any subset 4 C F;, we have the
corresponding first antiprojection of 4 into A defined by

Pt A, )=U{p; A, )}

ac A

Analogously, one defines the second antiprojection of any BC F, in this way:

py A, By=u{p;'A(., b)}, where
b<EB

{p;'A(., B} ={(x, b); xE Fy, (x, b) € A}.

By an argument we used in section 3 one proves readily the following items.

42. Lemma. For every a,€F; the first antiprojection p;!A(q,, .)
in A yields the disjoint second projection p, p; ' A (a4, .); therefore the cardinality of
this set as well as that of p;'ae; is <cF,. The first antiprojection in A of
any jointed system C in F, is a disjoint system in F,; the p, — projection
of pr!C is a one-to-one mapping yielding a disjoint system of cardinality
<cF, in F,.

43. Lemma. Let T=T(A,) be any tree or ramified table of the

family (F, D); then every D-chain in T is <cF; and every J-chain of T is
< cF,. If the number s=sup {cF;, cF,} is infinite, then one knows that

(1) kT < s%; where s°€ {s, st}; in particular the tree hypothesis yields
§¢ =s=cF,-cF, and therefore

2) kT<cF;-cF,.

4.4. For every x; €A, let
(3) A;(., x1]»4 denote the system of all the members of A;, each joint
with x; and none contained as a proper part of x;; then one has the star
number SA, (., x;] as the minimal number of chains in (3) exhausting (3).
Each J-chain in (3) being <cF, (Lemma 4.2), we infer that
(3) kAL(., xp)y<cFy-SA (.. X9y, (x;€Ay) and hence
@) kA (., xjl,<cF,-5,F;, where
(5) s, F;=supS(., x],; the number s, F, is called the left local star num-

xCF,

ber of the family (Fy;D).

4.5. Now as consequence of the choice axiom it is easy to prove the
existence of a subtree T=T(A,) in A; that is quasi-cofinal with A, in the
sense that!

(6) Ay =UA (., Dxg

t&T
this means that to every x€ A, corresponds some < T such that x meets ¢
but is not a proper part of fL. By induction the rows Ty, T;,... of sucha T

are defined in this way; T, is any maximal disjoined system in A;; for every
t,€ T, let ft, be any maximal disjoint system in A;, each member of fi, being
a proper subset of #,; one puts

T1=Uft,, (t, € T,) ete.
Putting for every ordinal « ‘
T*= Uy Ty (E<a)

1 This fact was found also by S. Marde§id.

9 Publications de I'Institut Mathématique
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one sees that 7= is a tree; if T is quasi-cofinal with A, we put 7%= T;
if T= is not quasi-cofinal to A,, we construct T, as Ufix—1{ta1C Touy) if
the ordinal « is of the first kind; if « is a limit ordinal >0, we consider
every jointed decreasing x— sequence C* of members of 7* and consider
any maximal disjoint system fC* of A;N\UA(., t)=,, each being a proper part
of every member of C*. One puts then
T=yfC*

Ca
{one sees that the construction for non limit « is reducible to this construction
using C%, because for every #q.1< Ty—1 the a—sequence of oversets of 7,
in 7% is such that f¢, | serves as fC%.

4.6, This being done let T'(A,) be any quasi-cofinal subtree of A,.

The decomposition (6) yields jointly with (4)

(7) kA1<kT~CF2-S1F1.
The relation (7) by (1) yields
(8) kA1<Cs'cF2'S1F1.

Going back from A, to A the relation (8) in virtue of Lemma 4.2, gives
9 KA<cF,-5°-cFy-5, Fy.
This holding for every D—chain A of F=F,- x - F, one concludes that
(10y) cF(=sup kA)<cF,-s°-cFy 5, Fy.

ACF

4.7. Analogously, considering the second projection A, of A one proves that
(10,) c{F;- X - Fy<cFy-5%-cFy-5, F,.

4.8. The relations (10y), (10y)yvield by multiplication:
(1 (cFR<(cFy-cF)?-(s5)2 -z, Fy-5,F,.

4.9. If s is infinite, then cF is infinite also and (¢F)2=cF and the
exponents 2 in (11) could be dropped; we obtain

cF<s-s%.5;, where s, =sup {s, Fy, s, Fo}.
Since s<s° we have §-5 =5° and consequently
<S8y
Since obviously ¢;, ¢y <<c¢ thus s<c¢ and we have proved the following relation
(12) s<cF<s -5

4.10. Theorem. () Let I be a finite index set (e.g. the interval In
of ordinals < n, where n is a given finite ordinal); let F;, (i < 1) be a finite
sequence of non void set systems such that at least one of the cellular numbers
cF; be infinite; then )

s< ¢ HF" <8¢ -5y, where s=sup ¢F, s;=sup s, Fy, and s* € {s, sT}.
1 i 1

i
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In particular for any set system G and any natural number n one has
cG=<c(GN<(cG)E -3
(II) One has s® = s if and only if the tree hypothesis

keT<s and k., T<s>kT<k, T kT
is true or false.

Since the theorem (II) was proved else (G. Kurepa, [1] p. 106 theor. 1),
let us prove the theorem (1).

We just proved that the theorem (I) holds if the index set I has 2
members; by induction argument one sees that the same conclusion holds
for any finite set I.

Let us prove the theorem (I) if /7 has 3 membres 1,2,3. Let A be any
D-chainin F(=F; X F;x F;) and A, and Ay its projections into F; - x - Fyand F,
respectively. For any tree T in A}, that is quasi—cofinal with A,, we have
(like in (7)):

(13) kD <kT-cFy-50 (Fy- X - Fy).
We have to evaluate the factors k7, s, in (13). First of all,
(14) 51 (Fy- x - Fy) <8y Fy-5, F,.

As a matter of fact, for any x; € F; let 4, be a system of J-chains of sets
€ F, exhausting F; (., x;)2, analogously, for x, € F, one has a family 4,
of jointed systems of sets-members in F, (., @,)o, exhausting this family.
Then we have the element x; X x, € F;- x - F, and the system A, X - 4,; all ele-
ments of this system are J-chains, each quasi-containing x; X x, and the system
exhausts Fy=F (., X; X Xy) 2,; because if M;x M, is any member of F, g-con-
taining x; X x,, then M; g-contains x; and for some J; < 4; we have M; € J,
and hence M; X M, S JixJ, € A, X - 4,. In this way we proved that

SFIXF) (5 X1 XX9) 2, S8 F; (, X)24-SF (0, Xp)24

from here allowing x;, x, to vary in F;, F, respectively and taking sup we
have the requested relation (14).

The relations (13), (14) vield
(15) kA <kT-cFy-5,F; -5, F,.

4.11. Lemma. Let 555 =sup {cF;, cF,}; every chain and every antichain of
every tree TC Fy- X - F, is < s0s; also kT<s},.

In opposite case there would be a tree T, in F of cardinality>si; ;
now obviously, wy(F,- x - Fy) <wy F,-w,F,, where w; 4 for any family A4 of
sets denotes the supremum of cardinalities of strictly decreasing sequences of
sets in 4. Since kT, is greater than the cardinality of any tree in F, or in F,,
and since this fact is not due to J-subchains of trees, it should be due to

D-subchains, and the tree should contain an antichain > {3, in contradiction
with 4.3.

The relation (15) and the Lemma 4.11. imply
kA<siy-cFy-5,F, -5, F,.

9%
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From here, going back to A:
(16) kA< (s5, cFy-5,Fy- 5, Fy)- cF;.
Now, let §=sup cF; and sy =sup s; Fy; then sy, <s, cF3<s and therefore
st2(cFy2=5%; again1 s1 Fy s Fy<sy 1and the relation (16) yields
kA<s®s,.

This proves the theorem for 7=1,2,3. By induction argument one
proves the theorem for every finite index set 1. Q. E. D.

The foregoing theorem, by particularization implyes the following.

4.12. Theorem. Let I be a finite index set and F;(i€I) a sequence
of non void set systems with sup cFi=s=o0; if s, F;<s, then

s<c]| F<s .
i

Such a case holds particularly if F; is a system of intervals of a totally
ordered set O;(i € 1), in this case ore has s, F;<?2.

As a matter of fact any system S of intervals overlapping a given
interval x of a given totally ordered set equals S;US,, where §; denotes
all the members of S containing the left extremity of x and where S, denotes
all the members of S each containing the right extremity of x; obviously,
S; is jointed.

§ 5. Cartesian multiplication of topological spaces

5.1. Definition of cartesian multiplication of spaces'. For every ic [
let X; be a topological space; the cartesian product X of sets X; of points
of X; will be called the topological product of spaces X; provided for every
point x € X the neighbourhoods are defined in the following way; let I, be
a finite part of I; for every i, € I, let O (i) be a neighbourhood of the point
x;,in the space X,; for every i€ [ let X+ be O (i) or X;, according as
i € I, or i € I'\ I,; the cartesian product of all the sets X T is called neighbourhood
of the point x. This neighbourhood depends on finite set [, C7 and on the
neigbourhoods O (iy) in X;, for i, € I,. The stress in the foregoing definition

is the finiteness of subsets I, of I

5.2. The neighbourhoods could be defined in this way also. For a point
x; on the i coordinate axis let p7!(x;) be the i’ antiprojection of x; into
the space i.e. the set of all the points x of the space, the i coordinate of
which is just the point x; of the space X;. For a subset S; of the space X;
we define the i antiprojection p;!S; as the union of all the sets p;!x;(x; € 5)).
In other words, the set p;'S; is the anti-projection of S; in the direction of

the X;-axis. Then the foregoing neighbourhood is the intersection of the open
sets like this

) N p;7 1 (0x4) (i € 1o)-

1 We shall consider topological T,-spaces i. e. Fréchet’s V-spaces satisfying the
Hausdorff’s T,-condition of separation. The T,-separation condition means that for any
2-point set {a, b} there is a neighbourhood ¥ (a) of a and a neighbourhood V (b) of b such
that V(@ V (b)—2.
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Marczewski-Szpilrajn [1] proved that if the topological spaces X; are of a
countable weight each, then the weight of the cartesian product X is countable
too. The phenomenon is a general one and we have the following.

53. Theorem. For every topological Tyspase S and every non yoid
index set I the cellularity of the cartesian hyper-cube ST equals (cS)*! for
w. kI < 8y; if kI-w > %y, then sup{¥,, ¢S} <cST<w, where the weight w (=wS)
of the space S is defined as the infimum of cardinal numbers of neighbourhood
bases of the space S.

The theorem 5.3. is a special case of the following theorem (in the
wording of the theorem put X;=fixed space S for every i< ).

54. Theorem. Let I be a non void set and X;, for every i<l a
topological space. Let wX; denote the weight number of the space X; and

w=sup wX;; then for the cellularity number c X of the cartesian product X = HX i

one has:

(2) kI-w<< 8= HcXi:cX

(2" kI-w> 8, > sup {§,,sup cX;} <cX<w.
i

5.5. Proof of the theorem 5.4.

1. First case: The number of factors X; is finite and every X; is
finite. In this case, obviously cX;=kX;=wX; and cX=kX=wX; since kX =
=[] kX;, the preceding relations yield the requested implication (2).

Second case: kI-w>¥, Now, it is obvious that if k7 is infinite
and every factor has at least 2 points, then the number ¢(=cX) can not be
finite. Therefore we have still to consider the case that the weight of every
factor is infinite, irrespective what happens with k[

Let ¢ denote the number ¢ X. First of all, c=c¢ X; for every i€ I and
hence ¢=c¢, (=sup c X;). As a matter of fact, let D; be any disjoint system
of open sets of the space X;; putting {i}=1I, and taking 0;€ Dy, 0;=X; for
jE IN{i}, one gets a system of cardinality k D; of open sets |[ O, of the

I

Xc
space X; therefore ¢k D; and c=cX; (= sup kD) for every i< I. The
DiC Xi

relations ¢=> ¢ X; imply c¢>sup ¢; i. e. ¢ = ¢, Therefore the requested relation
(2) will result of the impossibility of the relation c¢>w. Obviously we can
suppose also that w=>§,.

5.5.2. Now, suppose on the contrary that ¢>w and that there exists a
disjoint system D of open sets of the space X such that

) kD>w> ¥,

One might suppose that the members of D are of the form (1), where I, is
a (variable) finite subset of I (it is sufficient to choose an element of the
form (1) in each member of D and consider the system of the selected ele-
ments). For every i €I let B; be a basis of neighbourhoods of the space X;
such that

3 kB;=wX; (:=w).

This being done, let n be any natural number and D, the system of all the
members (1) in D such that kI,=n. Obviously D=U,D, (n<) and since,
by (2), the system D is non countable there exists an integer m such that also

4 k D,>w.
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553. Letx=][XF GeD) be a particular member of D,,; then the set
I, of the points ;& I such that X7+ X, is a well determined finite subset
of m points of I. The members of D, being pairwise disjoint one has in
particular xNy= & for every y € D,\{x}; this means that for every such y
one has x;Ny;= @ for some i=i(y)&1,, because x;Ny; g for every
i€ I\1,, This mapping

(5) fiDpy—1,,
is a single-valued mapping of the set D,, of cardinality >N, into a finite
m-point set I,n={i, i, ... , im}. Therefore for some j; €1, there exists a

subset D, of D, in which the mapping (4) equals j, and so that kD% = kD,,.
Now, let us consider the p; — projection of the set D,, into the space X, ;
this mapping is a single-valued mapping of the set Dj, of cardinality>w into
the basis B;; of w;; members of the space X;,. Since kDj,>w > w;,, one in-
fers that for some member Oy,  B;, and for some subset D, of D, one would have

pri, Dy, =0y, kD, > w.

5.5.4. Substituing D, for D, and I,,\{j} for I,, the argument of
4.4.3. shows that for: some point j, & I\ {ji}, some subset D,,, of D, and
some neighbourhood Oy, < B;, one has:

f[Dm2:j2, Prszmzzoj'z’ kDm2>W.

The induction procedure would go on: there woud be a subset D, of D,
a point j3 € I,u\{Jj1, o} and a Oy, c B, such that

f|Dm3:j39 prjst3=0j’a’ k.Dm3>W; etc.

The m™ step of induction procedure would yield: a disjoint subset D,,, of
Dpm—1, @ point ju & I \{j1, Jo-- , jm—1} and a member O,',, < Bj,, such that

(6) f\\Dmm =jms prjm Dmm: Oj'm; kDmmf.> w.

Now, for every index i€ I'\/,, we have pr;D,,=X;; therefore x € D,,=>
:X,~J[L=0j/M for u=1,2,.., m and XT=X; for i€ I\I,,; consequently
kDpm=1, in contradiction with the last relation in (6). This contradiction
proves the theorem.

5.5.5. Remark. Let us consider the cellularity numbers ¢ F/*(F and «
being any system of sets, and any ordinal number) and the numbers ¢S
(S being any topological space); in the first case, as « is increasing so is
also the corresponding cellularity; on the contrary, in the case of hyper-cubes
of any topological space S the cellularity numbers are always less or equal
to the weight wS of S.

55.6. Corollary. For any topological T,-space S satisfying ¢cS=wS
one has ¢S'=c¢S for every non void set I In particular, ¢S*=cS for any
positive ordinal o, irrespective whether « is finite or transfinite. In particular
this holds provided S is a metrical space or if S is a totally ordered space in
which the cellularity equals the separability number of the space.

A consequence of the corollary 5.5.6. for metrical spaces is this one:

5.5.7. The hypercube M' of any metrical space M with kI>¥N, is a non
metrical space; in particular the real cube [0, 1] or {0,119 are non
metrical spaces.
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5.58. Corollary. For every topological space S the set consisting of
the cellularity numbers c S* running through ordinal numbers is well determined
and has at most wS numbers (cf. theorems 3.7; 3.8; 5.8 (ii)).

5.6. Comparison between ¢S and ¢S" for any space S.

Theorem. (1). For any topological space S one has
cS<cS?<inf{2°, (cS)=-58}; for every ordinal n<o.

(IT) For any ordered pair of topological spaces S, S; we have s <c¢ (81X S;) < 2%,
Tr(Sy) ;81 Tr(Ss)-5,Ss where s=sup{cS;, ¢Sy}: TrS;=infk7, T being
quasi-cofinal subset of the family of open sets of S; (cf. § 4.4 and §4.5).

(II1) For any ordered pair of totally ordered spaces S,, Sy one has
s<c(S; X Sp) <s%, where 5° € {s, st}; the relation s°=s is equivalent to the tree
hypothesis.

The proof is like the one of theorem 3.4. (1) in § 3.5.2; cf also § 3.10 and
§ 4.9; § 4.10.

5.7 In connexion with the results 3.4. (1), 4.4 and 4.6 let us indicate
that there are spaces Sy, satisfying c¢S<wsS; such a space is the cartesian
product [0,1]®: of ¥, real segments [0,1]; the cellularity and the weight of this
product are %, N; respectivaly. ;

57.1. Theorem. For any ordered pair (a,b) of cardinal infinite
numbers there is a topological space S such that ¢S<a<b<wS. Such a
space is the cartesian product of ko real segments [0,1] where « is any
ordinal of cardinality > b.

5.7.2. Here is also a space S satisfying ¢S < wS and which was given
by Inagaki as the solution of a problem in my doctoral thesis. Let R* be the
set of members of a one-to-one w,— sequence X, (x<<w,) of real numbers x,;
the set R* is topologized by considering for any «<w; as neighbourhoods
of x, the sets of the form V* (x,)={xs x8E V(xy); a<B < o}, V(x,) being
any ordinary neighbourhood of x,. The space (R*, V*) so obtained has the
cellularity ¥, and the weight N;.

5.8. Main theorem (I). For any topological space S satisfying ¢S > ¥,
and every index set I the cellularity of the cube ST is <2° i. e.

cel S<cel ST < (cel S)=!'

(ii) The general continum hypothesis implies
cel ST {cel S, (cel S)*}.

5.8.1. Proof. First of all we proved that the theorem (1) holds
provided k=2, e. g. I={1, 2} and even for kJ< o (cf theorem 3.11).

Now we shall prove the theorem (1) for every 1.

5.8.2. Lemma. Let m be any positive integer 1 <m<kl and A any
disjoint system of open sets of S! satisfying ksx=m for every x&A; then
kA <2°; here sx denotes the greatest subset I, of the index set I satisfying
x()#S@Gel).

We shall prove the lemma by induction argument on m. Suppose that
the lemma holds for every natural number < m; let us prove that it holds
also for m. Assume on the contrary that there exists a disjoint system A of
cardinality > 2° and such that ksx=m for every x < A. Since the set A is
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disjoint, the set of sx(x€A) is jointed; namely, if x, ye A, x#y, then
xMNy=  what means that for some /& one has x;Ny,= @; this means that

x;ZSF yi i e. i€sxNsy, hence sxNsy+# 9.

Now, let e € A; for every a €se let A(a) be the system of all the members
x of A satisfying a € sx. Then

A=UA(@ (acse).

Since the set se has just m members, one of the sets A(a) has kA points;
let a, be such an element of se:

kA(a)=kA>2° and gq,Cse.

Let us consider the disjoint set system A(a))=A. Let us structurize 4 by
defining that for x, y€ A the relation xry means x;Ny,= @ for some
i€sxnsy\ {a,}.

Let L be a r-chain in (4; r); then L is a disjoint set in S7; moreover, let L;
be the system of sets x;, where for every x € L one denotes by X, the set
obtained from x by substituing the a,-factor of x by the space S. The mapping
x € L—rx, is one-to-one; let L,={x,; x € L}. Then L, is disjointed system
of sets of ST such that

M ksxg=m—1 (x, € Ly). Namely, sx,=sx\{q,).

Now, by induction hypothesis the relations (1) imply that k Ly<<2°, what
jointly with k Ly=k L implies the requested relation k L << 2°5. In other words
every r-chain L in (4, r) is <2°; therefore also the k.-number of (4, r) is
<2°% On the other hand every antichain L’ in (4, r) is <c¢ S because if
x, yE€ L and x £y, then

xiNyi7# @ for i€ sxNsy \{a,} and therefore x, Ny, = o.

In other words to every antichain L’ in (A4, r) corresponds a well determined
disjoint system in S, of cardinality kL’

In virtue of the chain-antichain theorem for graphs one concludes that
KA (2°5)°S=2% i. e. KA<C2°S, Q. E. D.

5.8.3. Proof of the theorem (I). For any natural number n let
A,={x; xE€A, ksx=n}.

Then the sets A, exhaust A; since by hypothesis kA2, then for some inte-
ger n one would have necessarily kA,,>2°, in contradiction with the fore-
going lemma, because every member x of A,, satisfies ks x—=m.

5.8.4. The theorem 5.8. (ii) is an obvious consequence of the theorem
5.8. (i) and of the general continuum hypothesis.

6. On the cartesian multiplication of ordered sets and graphs

6.1. Definition. Let (1) (05 <;) (i€I) be a family of ordered
sets; the cartesian product or the cardinal product of the sets (1) is the set

(0, <) where O:H O; (i€I) and where for x, y € O one has
X<y in Oox<;yin O; (i€]).
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Analogously one defines the cartesian product of any non empty family of
graphs (G;, r;) on substituing in the preceding definition G; for O; and r; for
<;; r; means any binary relation that is either symetrical (for symetrical
graphs) or antisymetrical (for oriented graphs).

One proves readily the following.

6.2. Theorem. The cartesian product of any system of ordered sets
is an ordered set; if every factor is ramified (a tree, a chain), the product
need not be so.

We are especially interested to know the connexions between the cellularity
number of the product and the cellularity numbers of the factors. In this
respect the notion of ramified sets and particularly of ramified tables or
trees is of special importance.

6.3. Definition of a node. Every maximal subset S of a rami-
fied set R such that
(H) X, yeES=>8(, x)=S(,)
is called a node of S.

6.4. Theorem. Let R be any ramified set i.e. any ordered set (R; <)
in which R (., R) is a chain; let I be any non empty index set; let
f, 8 € RI; then f<g in R means fi<g;in R for every i€ I; if f#g and if the
set fI={fy; i€} lays in a node of R as well as does g I and if

kfI>1, kglI=>1

then f | g i. e.. neither f<g nor f>g. The conclusion holds also provided R
contains a subset M such that fI lays in a node of M and that gl lays in a
node of M.

Proof. Since by hypothesis the set f1 is located in a node of R, the
chain Ry=R(. , f}) is well determined and does not depend on an particular
choice of i in I. Analogously, one has R,=R (. , g) for ic [ Let

(2 C=R/NR,.
The set C is a chain in R and is an initial section of the chains Ry, R,.

Case (i). C is a proper subset of both R, and R,. Then there is an
a< R and a, b € R such that

allb,C.<a<f; and C.<b<g;.

Hence f;||gi, for one has not e. g. fi<<g:, because the antichain {a, b} would
be <g; contrary to the ramification condition on R. Thus f;|/g;, and
consequently

flle-

Case (1i). C=R;.
(ii). 1. Subcase: C#R,. Then Ry<g; for some i< I and there exists one
(and only one) point &' € R satisfying

(3) d~f;, d <g;(x~y means to be in a same node).
Namely, f; is in the node following C and the chain R, intersects this node.
Hence we have (3). Since kfI>1 we have fj=a' for some j& I; thus f|l@
and f;|g; (i € I); in particular f;||g; i. e. f]lg
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(ii) 2. Subcase; C=R, i. e. Ry=R,. Since f#g, fi7#g: for some icI;
thus f;l|g:,because f;, g; are 2 members of the same node of R; the relation
fi||g: implies f||g by definition. The theorem is proved.

6.4.1. Remark. By counterexamples one might prove that both condi-
tions: (i) R is ramified, (ii) f, g are not constant in / are necessary: dropping
either of them, one could have f<g or f>g.

6.42. Remark. If R is any ramified subset of a ramified set (R, <),
then again any two elements f,g of R’/ such that f, g satisfy, with respect
to R, the conditions of the preceding theorem:

fI is a part of a node of R and kf7>1
gI 3 I ) s 9 R 39 kg1>1

then f, g are incomparable both in R/ and in R’/

6.5. The applications of the preceding considerations concern particularly
ramified collections of sets i. e. collections of sets containing no pair of
interlaced sets (two sets A, B are interlaced, if both sets AN B and B\ A4 are
nonempty).

6.6. We have in particular the following theorem as a particular case
of the preceding general theorem (consider I to have just 2 points):

Theorem. Let F be any family of sets; let F-12 be the set of the
cartesian products x,X x, where x,, x; € F. If R is any ramified subfamily of
Fli. e. X, YER=>XCYVXDYV(XNY=g)] such that to everv X<R
corresponds an X' & R satisfying XNX' = ¢ and that X, X' have the same
predecessors i. e. supersets in R, then the sets

XxX' (XER)
are mutually disjoint.
Direct proof. Suppose (3) (XNX')YN(YNY') # » for some
X, X’€R and some Y, Y'ER.
Then X, Y are comparable; X', ¥’ as well.

Suppose the case XC ¥, hence X' C Y because X, X’ have in R same pre-
decessors. Since Y'NY= @ then Y’ is disjoint from X and X', contrary to
the hypothetical comparability of X', Y’'. The impossibility of other cases is
proved in an analogous way.

Corollary. Let R be a ramified set and N,R the set of nodes of R
each containig at least 2 points. Then the system
UIXX X\ diag(XxX)] (XEN,R)

is an antichain in the cartesian square R® of R.

6.7. Theorem. For any square or hypersquare of any tree or ramified
set R the chain x antichain relation holds:

kIi>1=> kR <k R -ksR.

First of all if R itself satisfies the chain x antichain relation, then so also
R If R does not satisfy this relation then it contains a tree 7 of the same
cardinality (every T which is cofinal with R is such one); T contains (cf.
Kurepa) [1] p. 109) a subtree ¢ of the cardinality kT (=kR) and such that every
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isolated node of ¢ contains at least 2 points (cf. the ambiguous tables in
Kurepa (1)); according to theorems 6.4 and 6.6 some subtree 7, of cardinality
k' of f is ,normal“ i.e. sarisfies the chain x antichain relation; since
t, C R kt=kR!, R is normal too.

6.7.1. Remark of course, if for some index set 7 such that k7 > 1,
every subiree of RT satisfied the chain X antichain relation (R being any
ramified set), the tree hypothesis would hold; and vice versa.

6.8. For symmetrical graphs we have theorems that read like the ones
we formulated and proved for set systems (we define the cellularity ¢G of a
graph as the supremum of cardinalities of its antichains). E. g. it is legitimate
to substitute ,,symmetrical graph G instead of ,,family F of sets* in the
wording of statements: 3.4, 3.8, 3.9, 3.10, 3.11, 4.10 etc.
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