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Throughout this paper R={t, s, u, ...} denotes the set of all real num-
bers, A={T, U,...} a Banach algebra ‘with an identity I, X={x,y,...} a
real or complex vector space. In the case of unitary space X, (x, ») will de-
note the scalar product of vectors x and y. A function T :R—4 is said to
be regular if T (¢) is a regular element of A for any zER.

The object of this paper is to study the functional equation
T,(t+s) T,(—s)=T5(t) Ty(s)

where T;:R—A are regular functions and all elements T;(f), T(s) commute
one with another. This functional equation is generalisation of the well known
Cauchy functional equation T (¢+5)=T(¥) T (s), i. e. of the functional equa-
tion for one parameter groups (semigroups [1]). Assuming that T; are suffi-
ciently smooth we prove in Theorem 3 that then T; are exponential functions
of a quadratic polinomial in f. Some generalisations are also made in the
case when ¢ and s are replaced by vectors from X. In a special case T,=T,
weaker assumptions lead to the same results. Assuming that A4 is algebra of
matrices of finite order and that T; are measurable in Theorem. 5 we prove
that then 7; are also continuous. Probably these results can be extended so
that measurability implies that T; are analytical even in the case when T; are
bounded operators on a separable Hilbert space and T; are weakly measurable.

We follow the terminology of Hille-Philips ([1]). We start with some
special cases.

Theorem 1. Let T:R— A be a regular and measurable function
such that

) T(@+s)T—s)=T2(@{) T%(s)
or all t, s € R.
Then, there is one and only one element T & A such that

T =T(0)exp? T
holds for all t < R.

Proof. If we set t=s=0 in (1) we get T2(0)=T*(0). Since T(O) is
regular we find:

03 T2(0)=1.
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Now, for t=0, (1) and (2) imply

T T(—s)=T2(s)
which together with the regularity of T(s) imply
3) T(—s)=T(s),

i.e. s~ T(s) is an even function. If we replace t+s by ¢, t—s by s in 1)
and if we use (3) we get:

“) T@AT(s)=T(s) T(y).
Thus the family
{T®)]1€R)
is a family of commuting elements of 4. Now set:
(5) V(t, )=T(0) T (t+5) T~ (1) T~ (s).
Using (1), (2), (4) and (5) one finds:

Vit+u ) V(iE—u 5)=V2(,s)
which leads to:

(6) V(t—!-S, u)= V(t’ u) V(S, u)-

The measurability of ¢— 7T'(r) implies the measurability of z— 71 () and
therefore t— V (¢, 5) is measurable for any s. Thus

7 Vit s)=-exp tU(s)

with U (s) € 4 [1]. Obviously {U (s)|s € R} is a family of commuting elements
of 4. Now, V (z, 8)=V (s, r) and (6) imply

Vi, t+s5y=V @, ) V(u,s)
which together with (7) leads to
exp u[U(@t+5)—UO—U(s)]=1
for all » € R which is possible if and only if

®) U@+s)=U@®O+ U
holds for all ¢,s & R. Since V (z,5) is measurable and
U ()= lim 7 &9=1
>0 14

we conclude that #— U (¢) is measurable. Thus

U{t)y=2:T
with T&€ 4. Hence
V(t,s)=exp2tsT
and therefore by (5)
T({+s)=TOTE)TO)exp2tsT.

For t=s5 we get:
TRH=T*@) T (O)exp222T.
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On the other hand (1) for ¢=s implies:

T(21) T(0)=T*().
Hence
T (@) =T*(t)exp 217, i. e
T2(t)=exp 212 T.
Thus

T ()= T (0) T* (%) —T©) exp 2 T.

Since the uniqueness of 7 is obvious Theorem 1 proved.

Theorem 2. Suppose that T, U, V: R— A are regular and measurable
Sfunctions such that:

) T+ TE—s)y=U@0)V(s), TO)=V(0)=1I
holds for all t,s € R.
Then

T(t)=exp (»;w BT+t U)

U(t)=exp (2T+2tU)
V()=exp 2T

for all t = R where T and U are two elements of A which commute one with
another.

Proof: For s=0 (9) implies U(t)=T2(1), i. e.

(10) T(t+s) T(t—s)=T2() V(s)
holds for all ¢, s R. Setting s=¢ and s=—¢ in (9) we get:
(11) V(—=V().

Replacing t+s by ¢ and t—s by s in (9) and using (11) we have:
T() T(s)=T? (“2”) V(’;s>:T2 (t’) V(s;t>=T(s) T(@), i. e
T(¢) and T (s) commute for all ¢, s&€ R. From (10) we have
V)=T-2@) T(t+s) T(—s)
from which follows that 7'(¢f) and V (v) commute and
Vis+uw)V(i—w)=[T2OTt+s+w)T(t—s—w)[T2()T(t+s—u)T(t—s+ u)]=
=T [T(t+s+u) Tt+s—uw)] [T(¢—s—u) T(t—s+u)]=
=T4@) [T?(t+5) V()] [T (1—s) V(u)]=
=[T-2() T(t+5) T(t—s) V2(u).

Thus
Vis+u) Vis—u)=V2(s) Vi(u).
Since the function s — V (s) satisfies all conditions of Theorem 1 and V' (0)=1
we have:
V(s)y=exps*T
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for all s € R with a unique element T &€ R. Set
(12) W@)=T(@) exp(——;—tzT).

Since T and T(¢f) commute (9) and (12) imply
W(t+s) W(t—s)=W=2()
which together with the measurability of r— W (f) implies:
W(t)=exptU
for all 1 € R with UZ A. Since T(t) and W(s) commute for all ¢, s€ R we
conclude that T and U commute and that:

T(t)=exp—;—t2 Texpt U=exp (-;— 2 T+tU)

from which Theorem 2 follows.

Theorem 3. Suppose that T;: R—A (i=1, 2, 3, 4) are functions
such that:

1. T;(v) is regular for t € R and j=1,2,3,4

2. T;(¢) and Ty (s) commute for all t, s € R and j, k=1, 2,3,4 and

3. Tj(f) possesses continuous (strong) second derivative. If
(13) Ty(t+5) To(t—s)=T3(2) Ty(s)
holds for all t, s € R, then

Ty ()= Ty (0) exp (22 T+ tUy), To()=T,(0) exp (# T+ tU,)
Ty (t)=T5(0) exp (22 T+ tUs), T, (t)=T,(0) exp (22 T+ 1Uy)
U,=U,+ U, U,=U—U,

where T, U, and U, are elements of A. They commute one with another as
well as with T;(¢) for t€R and i=1,2,3,4.

Proof: Without loss of generality we assume 7;(0)=7 (i=1,2.3, 4).
If we take the derivative of (13) with respect to ¢ we get:

(14) Ty (t+8) To(t—s)+ Ty (t+5) Ty (t—s)=T3 (¢) T4 (s).
Set '
(15) Vio=T:' 0 T/(  (i=1,2,3,4).

From (15), (14) and (13) we get:

(16) Vi+8)+ Vo (t—s)=V3 (),

which implies V3’ (£)=V,' (f). Thus
Vi()=2tT+U,
Vo()=2t T+ U,
Vo()=4tT+ U, Ug=U,+ U,
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with T, U,, U,, U;< A. Since V;(r) commutes with V;(s) for all t,sER we
conclude that U, U2 and T commute one with another.

Now by (15), T, (#) satisfies a differential equation:
TYO)=Q:tT+U) T, ()
which is also satisfied by the function exp (#* T+tU,).
Hence the function
Wi(t)=T,(t) exp (—#T-t Uy
has the property that Wy (£)=0, i. e. Wy(t)=W,(0)=1 for any t& R. Thus
' T, () =exp (12 T+1 Uy
In the same way we find
To()=cxp (BT+tU,) and T5(t)=exp (202 T+t Uy).
From (13) we get Ty (t)=exp (22T +1t Uy with Uy=U;—U,.
Q. E. D.

Theorem 4. Let X be a vector space, A a Banach algebra with an
identity I, T;: X— A (i=1, 2, 3, 4) regular functions such that:

(17 Ti(x+y) To(x—y)=T5(x) T,(»), T;(0)=1
holds for all x,yc X.

If T;(x) T;(0N=T;(») T;(x) (i,j=1, 2,3, 4) for all x, y& Xand T are
twice continuously differentiable on R in any direction, i. e. t —T;(t'x) is twice
continuously differentiable on R for every x € X then

Ty (x)=exp (T(X)+ Uy (x)), Tz (x)=exp (T (x)+ U:(x))
Ty (x)=exp QT (x)+Us(x)), Ta(x)=exp 2T (x)+ Us(x))
Uy (x) = Uy (x) + Up (%), Uy (%)= U, (x)—Uz (%)

where T, U,, Uy, U,, Us: X — A are such functions that
T(x+»+Tx—y)=2TX)+2T(y), T(tx)=22T(x),
U, are additive functions and U;(tx)=tU;(x).

Proof: Set T;(t, x)=T;(tx) for t& R and x & X. If we replace x by tx
and y by sx in (17) we get:

T, (t+5,x) Ty (t—s, x)= T4 (t, x) Ty (s, X)
for all t,5 € R. Theorem 3 implies:
T (t, x)=exp[ T(x)+t Uy (x)]
T, (t, x)=exp[® T (x)+ t U, (x)]
Ty(t,x)=exp[22 T (x)+t Uz (x)]
Ty (t, x)=expl22 T (x)+t Uy (0)]

with Uy (x) = Uy () + Uy (x), Up(x)= Uy (x)—Us(x) and Uy (x), Up(x) and T (x)
commute one with another. Now
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Ti(x)=exp[2T(x)+tU,(x)]

implies T (1 x) = 2T (x) and U; (¢ x) = t U; (x). In the same way we get U; (1 x) =t U;(x)
for i=1,2,3,4. Replacing x by ¢tx and y by ¢y in (17) we get:

Tyt x+y) To(t, x—y) =T (8, x) Ty (¢, )
which implies:
exp{[T(x+»)+ T(x—p)—2Tx)—2TM]+t[U(x+»)+
+ Uy (x—p)—=Us (x)=U, ()]} =1

for all ¢t € R. Thus:
Tx+p)+Tx—y)=2T(x)+2T()

and

(18) Uy (x+ )+ U (x—p) = Uz (x)+ U, ().
If we replace y by —y in (18) we get:

(19) Uy(x—y)+ U (x+ )= Uy (x) = Uy ().

Adding (18) and (19) we get:
U (x+3)+ U (x—p) =2 U (x)
which implies:
X+
U, (x)+ Uy () =2 U, (_2_y),_ Uy (x+ ),

i.e. U, is additive. If we subtract (19) from (18) we find:

Us(x+0)—Uy(x—p)=2 Uy (»)
from which follows that U, is additive. But then U; and U, are also additive.

Q. E. D.

Theorem 5. Let X be an n-dimensional unitary space, A the algebra
of all linear operators defined on X with ranges in X and T;: R — A (i=1,2,3,4)
Sfunctions such that

(20) Ty(t+5) Ty (t—s) = T3 (1) Ty (5), det T;(2)0

holds for all t,s & R and i=1, 2, 3.

If the restrictions of Ty, T, and T, on an interval A=]a, b], a <<b, are
measurable then T; (i=1, 2, 3, 4) are continuous on R.

For the proof we need two lemmas.

Lemma 1. 7; are measurable on R.

—a

For s :b (20) gives:

(21) Tz(t—b;a)=T]—1<t+b;a)‘T3(t) .n(b;“)

when ¢ runs through [a, % (a+ b)] C A, then t+»l~7;2—f runs over the interval
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[% (a+b), b]_QA. Since T; and T, are measurable on A from (21) we find

that T, is measurable on the interval [a—% (b—a), a].

—da
For s=—

(20) gives:

(22) e R T (= EAOY (a;b)

from which we conclude that T, is measurable on the interval [b, b+ b—a].

Thus T, is measurable on the interval

a—b—a, b+b;q .
2 2
Now, (20) implies

@3) T, () Ty (1—25) = Ty (t—s) T4 (s)

which for s= j;ézﬁ leads to:

(24) Tl(t):T3(t——b:a) T4<b:a) T2_1<t__b;_a>’

: b— b— _ bh—
(25) Tl(t):T3<t+~zg) T4(—”_2i’> 75! (:TT")

From (24) we find that 7, is measurable on [a, b—|—$] and from (25)

b—a

that 7, is measurable on [a— s b]. Thus 7T, and T, are measurable

on the interval

(26) A’_[a—~b:a, b+b_"].

For s=0 (20) implies

Ts)=Ty(t) Ty(t) T3 (0)

which implies that T, is measurable on A’. Thus the measurability of functi-
ons Ty, T, Ty on A implies the measurabil'ty of these functions on A’. The
way by which A’ is obtained from A enables us to conclude that functions
T,, T, and T, are measurable on R. But then

Ty (s)="T5'(0) Ty (5) Tp(—s5)

implies the measurability of 7, on R.
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Lemma 2. T; and T; ' are bounded on every finite interval.

Since T; are measurable on [—1, 1}, for any €> 0 the well known
Luzin’s theorem (Cf. [3]) implies the existence of a perfect set PC[—1, 1]
such that a) mP>2—e and b) 7; are continuous on P. Here mP denotes
the Lebesgue measure of P. But then 7; are also continuous on the set

(27) Q=PN{—plpE P}
Now 7' exists and since T; is continuous on Q so is T,~_1. Thus

M- max  sup ([T [T O < + e
i=1,2,3,4 1< Q0

Since mQ >0, there is a number ¢>0 with the property that for any s €
(—c¢, c) there are t;(s), 7,(s), t;(s) € Q such that

() =ty (8)+ 25 =t5(s)+ s
((2], Lemma 1). If in (20) we replace # by t+s5 we get
Ty (t+25) To () =T5 (@t +5) Ty(s)
from which we find
(28) Ty(s)=T5" (t+9) Ty(t+2s) Ty (.
If in (28) we take s € (—c¢, ¢) and 1=1,(s) we get
Ti®=T5" )] Tila )] a6 E)

which implies
Ty ()| < M3, s € (—c, ).

Thus T, is bounded on the interval (—c, ¢). If in (20) we replace s by s—t
we g.t:

T,2t+5) T, (—8)=T3(t) Ty(s+1)
which implies:
(29) Ty ()= Ty (2t+5) Ty(—s) Ti' (s+1).
Now, for t € (—c, c) there are s, (2), 5, (f), 53 (t) € Q such that: s, (£) = s, (1) + 2f =
=83 () +¢. This and (29) for s=s, imply

Ty () =Tilsy O] Tal—s: (0] T4 [s5 ()]
from which follows
| Ts (1) |) < M3, tE€ (—c¢, 0).

Thus T; and T, are bounded on the interval (—c, ¢). This,

Ty (20 =Ty (1) T, (1) T3 (0)
and

T,(20)=T7'(0) T3() Ty(—1)

imply that all functions Ty, T,, T,, T, are bounded on the interval (—c, o).
In the samc way

T )T (t+85)=Ti ()T ')
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implies that T'; (z—-l 2, 3, 4) are bounded on (—c,c).

The boundedness of 7;and 77 on (—c,c) in the same way as in the
case of measurability implies that these functions are bounded on every finite
interval.

Proof of theorem 5. From Lemma | and Lemma 2 it follows that
t—(Ti () x,), x,y €X, is summable on every finite interval. The integral

[Ty 50 d?

[

defines a linear functional on X for given y € X and a,b & R. There is there-
fore a single element y,, € X such that

b
(30) f(T3(t)xay)dt:(x~yab)

a

holds for all x € X. We assert that the set Y ={yq|y € X, a,b € R} is dense
in X. Indeed let x, € X be orthogonal on Y,i.e.

b
[(Ta(t)x0,9)d 1 =0

a

for all ye X and a,bc R. This implies (Ts(t)xo,y)-~0 for allt@S(y)
where S(») C R has the measure zero. If e;,e,,..., ¢, is a basic set in X,

then (T3 (f) Xy, ex)=0 (k=1,2,..., n) for all ¢ S=US(ek). Thus T3(t) xo=0

for almost all & R. Since T, is regular we find x,=0,i. e. Y is dense in X.
Thus for the continuity of 7, it is sufficient to prove that (T;(s)x, ya) 18
continuous for all x € X and y,, € Y. Using (30) and (20) we have:
b b
(Ta(s) X, yap) = [ (T5(t) Tu(s) x. ) di= [(Ty(t+5) To (=) x, ) dt
bts
= f (T, () To(t—25) x,y) dt.
a4y

Suppose that si — 5,. Then:

Ib+s b+50
f (Ty () T, (t—2 s1) x, y) dit— f (T (0) To (t—25) x, y) dt
la-{-sk a+sp
bl~s b5
1 f (IO T, (t—2s)x, y)dt— f (T (O) Ty (t—258) x, y) dt |+
|a a4 S$q
b+ 5s
f (T () [Ty (t—251)— T (1—259)] X, y)dt\
a-+se
<2Moix|l - [yl se—sol+
b5

f (T () [Ty (t—2 s)— Ty (t—2 55)) x. ) dt E

a-+ts,
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where M,, is a suitable constant such that || Ty ()| < Mg, | T, () || < M,
for all 1€ (—¢, ¢) with ¢>0 sufficiently large so that all intervals (a+ s,,
a+sg), (b+se b+si) belong to (—¢, o).

In order to prove that the last intcgral tends to zero as s; — s, we take

an orthonormal basic set e;,..., e, in X and we replace x by e; and y by e,.
We have:
b+ 50 i
[ (M@= 2s)—Ta (1 =250)] ¢, e,) dt |~
atso \
n  btse
=12 [ i e e) (T2 (t—250)—To (1—255)] 5, €,) dt
lg=1 a+ 5,
n b+s
SMy 3 [ [(Ta(t—=251) ), e)—(To (t—250) €5, €,) | dt
q=la+%

with a suitable constant M’,,. Since every integral in this sum tends to zero
as s — sy ([4], pp. 163—164) we find -

b5

[ (O [T2(t—250)— T, (1—250)] ¢;, €,) — 0.

a-tsy
Thus s — s, implies (T (sz) X, Yap) —> (T, (So) X, ¥a5) Which proves the continuity
of T, on R.
From T3'(t—s) T7'(t+5)=Ts'(s) T5'(f) in the similar way we find that
T5'is continuous on R. Thus T, is also continuous on R. If we replace
t+s by tand t—s by s in (20) we get:

T (@) Ty(5)=T, (_tgi) T, (l:s) .

Hence

Tl(’):Ts(%) T4(%) 77'0) and  T,(s)-Tr'(0) Ts(%) T4<—%)

from which we conclude that T; and T, are also continuous on R.

Q. E. D.
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