ON THE FUNCTIONAL EQUATION:

$$T_1(t+s) T_2(t-s) = T_3(t) T_4(s)$$

Svetozar Kurepa

(Received 21. I 1963)

Throughout this paper $R = \{t, s, u, \ldots\}$ denotes the set of all real numbers, $A = \{T, U, \ldots\}$ a Banach algebra with an identity $I, X = \{x, y, \ldots\}$ a real or complex vector space. In the case of unitary space X, (x, y) will denote the scalar product of vectors x and y. A function $T: R \rightarrow A$ is said to be regular if T(t) is a regular element of A for any $t \in R$.

The object of this paper is to study the functional equation

$$T_1(t+s)$$
 $T_2(t-s) = T_3(t)$ $T_4(s)$

where $T_i: R \rightarrow A$ are regular functions and all elements $T_i(t)$, $T_j(s)$ commute one with another. This functional equation is generalisation of the well known Cauchy functional equation T(t+s) = T(t) T(s), i. e. of the functional equation for one parameter groups (semigroups [1]). Assuming that T_i are sufficiently smooth we prove in Theorem 3 that then T_i are exponential functions of a quadratic polinomial in t. Some generalisations are also made in the case when t and s are replaced by vectors from X. In a special case $T_1 = T_2$ weaker assumptions lead to the same results. Assuming that A is algebra of matrices of finite order and that T_i are measurable in Theorem 5 we prove that then T_i are also continuous. Probably these results can be extended so that measurability implies that T_i are analytical even in the case when T_i are bounded operators on a separable Hilbert space and T_i are weakly measurable.

We follow the terminology of Hille-Philips ([1]). We start with some special cases.

Theorem 1. Let $T: R \rightarrow A$ be a regular and measurable function such that

(1)
$$T(t+s) T(t-s) = T^{2}(t) T^{2}(s)$$

or all $t, s \in R$.

Then, there is one and only one element $T \in A$ such that

$$T(t) = T(0) \exp t^2 T$$

holds for all $t \in R$.

Proof. If we set t=s=0 in (1) we get $T^2(0)=T^4(0)$. Since T(0) is regular we find:

$$(2) T^2(0) = I.$$

Now, for t = 0, (1) and (2) imply

$$T(s) T(-s) = T^2(s)$$

which together with the regularity of T(s) imply

$$(3) T(-s) = T(s),$$

i. e. $s \rightarrow T(s)$ is an even function. If we replace t+s by t, t-s by s in (1) and if we use (3) we get:

$$(4) T(t) T(s) = T(s) T(t).$$

Thus the family

$$\{T(t) \mid t \in R\}$$

is a family of commuting elements of A. Now set:

(5)
$$V(t, s) = T(0) T(t+s) T^{-1}(t) T^{-1}(s).$$

Using (1), (2), (4) and (5) one finds:

$$V(t+u, s) V(t-u, s) = V^{2}(t, s)$$

which leads to:

(6)
$$V(t+s, u) = V(t, u) V(s, u).$$

The measurability of $t \to T(t)$ implies the measurability of $t \to T^{-1}(t)$ and therefore $t \to V(t, s)$ is measurable for any s. Thus

$$(7) V(t, s) = \exp t U(s)$$

with $U(s) \in A$ [1]. Obviously $\{U(s) | s \in R\}$ is a family of commuting elements of A. Now, V(t, s) = V(s, t) and (6) imply

$$V(u, t+s) = V(u, t) V(u, s)$$

which together with (7) leads to

exp
$$u[U(t+s)-U(t)-U(s)] = I$$

for all $u \in R$ which is possible if and only if

(8)
$$U(t+s)=U(t)+U(s)$$

holds for all $t, s \in R$. Since V(t, s) is measurable and

$$U(s) = \lim_{t \to 0} \frac{V(t, s) - I}{t}$$

we conclude that $t \rightarrow U(t)$ is measurable. Thus

$$U(t) = 2 t T$$

with $T \in A$. Hence

$$V(t, s) = \exp 2 t s T$$

and therefore by (5)

$$T(t+s) = T(t) T(s) T(0) \exp 2 t s T$$
.

For t = s we get:

$$T(2 t) = T^2(t) T(0) \exp 2 t^2 T$$
.

On the other hand (1) for t = s implies:

$$T(2 t) T(0) = T^4(t).$$

Hence

$$T^{4}(t) = T^{2}(t) \exp 2t^{2}T$$
, i. e.
 $T^{2}(t) = \exp 2t^{2}T$.

Thus

$$T(t) = T(0) T^4\left(\frac{t}{2}\right) = T(0) \exp t^2 T.$$

Since the uniqueness of T is obvious Theorem 1 proved.

Theorem 2. Suppose that $T, U, V: R \rightarrow A$ are regular and measurable functions such that:

(9)
$$T(t+s) T(t-s) = U(t) V(s), T(0) = V(0) = I$$

holds for all $t, s \in R$.

Then

$$T(t) = \exp\left(\frac{1}{2}t^2 T + t U\right)$$

$$U(t) = \exp\left(t^2 T + 2 t U\right)$$

$$V(t) = \exp t^2 T$$

for all $t \in R$ where T and U are two elements of A which commute one with another.

Proof: For
$$s=0$$
 (9) implies $U(t)=T^2(t)$, i. e.

(10)
$$T(t+s) T(t-s) = T^2(t) V(s)$$

holds for all $t, s \in R$. Setting s = t and s = -t in (9) we get:

$$(11) V(-t) = V(t).$$

Replacing t+s by t and t-s by s in (9) and using (11) we have:

$$T(t)$$
 $T(s) = T^2\left(\frac{t+s}{2}\right)V\left(\frac{t-s}{2}\right) = T^2\left(\frac{s+t}{2}\right)V\left(\frac{s-t}{2}\right) = T(s)$ $T(t)$, i. e.

T(t) and T(s) commute for all $t, s \in R$. From (10) we have

$$V(s) = T^{-2}(t) T(t+s) T(t-s)$$

from which follows that T(t) and V(v) commute and

$$V(s+u) V(s-u) = [T^{-2}(t) T(t+s+u) T(t-s-u)] [T^{-2}(t) T(t+s-u) T(t-s+u)] =$$

$$= T^{-4}(t) [T(t+s+u) T(t+s-u)] [T(t-s-u) T(t-s+u)] =$$

$$= T^{-4}(t) [T^{2}(t+s) V(u)] [T^{2}(t-s) V(u)] =$$

$$= [T^{-2}(t) T(t+s) T(t-s)]^{2} V^{2}(u).$$

Thus

$$V(s+u) \ V(s-u) = V^2(s) \ V^2(u).$$

Since the function $s \to V(s)$ satisfies all conditions of Theorem 1 and V(0) = I we have:

$$V(s) = \exp s^2 T$$

for all $s \in R$ with a unique element $T \in R$. Set

(12)
$$W(t) = T(t) \exp\left(-\frac{1}{2}t^2T\right).$$

Since T and T(t) commute (9) and (12) imply

$$W(t+s)$$
 $W(t-s)=W^2(t)$

which together with the measurability of $t \rightarrow W(t)$ implies:

$$W(t) = \exp t U$$

for all $t \in R$ with $U \subseteq A$. Since T(t) and W(s) commute for all t, $s \in R$ we conclude that T and U commute and that:

$$T(t) = \exp \frac{1}{2} t^2 T \exp t U = \exp \left(\frac{1}{2} t^2 T + t U \right)$$

from which Theorem 2 follows.

Theorem 3. Suppose that $T_i: R \rightarrow A$ (i=1, 2, 3, 4) are functions such that:

- 1. $T_i(t)$ is regular for $t \in R$ and j = 1, 2, 3, 4
- 2. $T_i(t)$ and $T_k(s)$ commute for all $t, s \in R$ and j, k = 1, 2, 3, 4 and
- 3. $T_i(t)$ possesses continuous (strong) second derivative. If

(13)
$$T_1(t+s) T_2(t-s) = T_3(t) T_4(s)$$

holds for all $t, s \in R$, then

$$T_1(t) = T_1(0) \exp(t^2 T + tU_1), \ T_2(t) = T_2(0) \exp(t^2 T + tU_2)$$
 $T_3(t) = T_3(0) \exp(2 t^2 T + tU_3), \ T_4(t) = T_4(0) \exp(2 t^2 T + tU_4)$
 $U_2 = U_1 + U_2$
 $U_4 = U_1 - U_2$

where T, U_1 and U_2 are elements of A. They commute one with another as well as with $T_i(t)$ for $t \in R$ and i = 1, 2, 3, 4.

Proof: Without loss of generality we assume $T_i(0) = I$ (i = 1, 2, 3, 4). If we take the derivative of (13) with respect to t we get:

(14)
$$T_1'(t+s) T_2(t-s) + T_1(t+s) T_2'(t-s) = T_3'(t) T_4(s)$$
. Set

(15)
$$V_i(t) = T_i^{-1}(t) T_i'(t) \qquad (i = 1, 2, 3, 4).$$

From (15), (14) and (13) we get:

(16)
$$V_1(t+s) + V_2(t-s) = V_3(t),$$

which implies $V_1'(t) = V_2'(t)$. Thus

$$V_1(t) = 2 t T + U_1$$

 $V_2(t) = 2 t T + U_2$
 $V_2(t) = 4 t T + U_2$, $U_2 = U_1 + U_2$

with T, U_1 , U_2 , $U_3 \in A$. Since $V_i(t)$ commutes with $V_j(s)$ for all t, $s \in R$ we conclude that U_1 , U_2 and T commute one with another.

Now by (15), $T_1(t)$ satisfies a differential equation:

$$T_1'(t) = (2 t T + U_1) T_1(t)$$

which is also satisfied by the function exp $(t^2 T + tU_1)$.

Hence the function

$$W_1(t) = T_1(t) \exp(-t^2 T - t U_1)$$

has the property that $W_1'(t) = 0$, i. e. $W_1(t) = W_1(0) = I$ for any $t \in \mathbb{R}$. Thus $T_1(t) = \exp(t^2 T + t U_1)$.

In the same way we find

$$T_2(t) = \exp(t^2 T + t U_2)$$
 and $T_3(t) = \exp(2t^2 T + t U_3)$.

From (13) we get $T_4(t) = \exp(2t^2T + tU_4)$ with $U_4 = U_1 - U_2$.

O. E. D.

Theorem 4. Let X be a vector space, A a Banach algebra with an identity I, $T_i: X \to A$ (i=1, 2, 3, 4) regular functions such that:

(17)
$$T_1(x+y) T_2(x-y) = T_3(x) T_4(y), T_1(0) = I$$

holds for all $x, y \in X$.

If $T_i(x)$ $T_j(y) = T_j(y)$ $T_i(x)$ (i, j = 1, 2, 3, 4) for all $x, y \in X$ and T_i are twice continuously differentiable on R in any direction, i. e. $t \to T_i(t'x)$ is twice continuously differentiable on R for every $x \in X$ then

$$T_1(x) = \exp (T(x) + U_1(x)), T_2(x) = \exp (T(x) + U_2(x))$$

 $T_3(x) = \exp (2T(x) + U_3(x)), T_4(x) = \exp (2T(x) + U_4(x))$
 $U_2(x) = U_1(x) + U_2(x), U_4(x) = U_1(x) - U_2(x)$

where T, U_1 , U_2 , U_3 , $U_4: X \rightarrow A$ are such functions that

$$T(x+y)+T(x-y)=2T(x)+2T(y), T(tx)=t^2T(x),$$

 U_i are additive functions and $U_i(tx) = tU_i(x)$.

Proof: Set $T_i(t, x) = T_i(tx)$ for $t \in R$ and $x \in X$. If we replace x by tx and y by sx in (17) we get:

$$T_1(t+s, x) T_2(t-s, x) = T_3(t, x) T_4(s, x)$$

for all $t, s \in R$. Theorem 3 implies:

$$T_1(t, x) = \exp [t^2 T(x) + t U_1(x)]$$

$$T_2(t, x) = \exp [t^2 T(x) + t U_2(x)]$$

$$T_3(t, x) = \exp [2 t^2 T(x) + t U_3(x)]$$

$$T_4(t, x) = \exp [2 t^2 T(x) + t U_4(x)]$$

with $U_3(x) = U_1(x) + U_2(x)$, $U_4(x) = U_1(x) - U_2(x)$ and $U_1(x)$, $U_2(x)$ and T(x) commute one with another. Now

$$T_1(tx) = \exp[t^2 T(x) + t U_1(x)]$$

implies $T(tx) = t^2 T(x)$ and $U_1(tx) = t U_1(x)$. In the same way we get $U_i(tx) = t U_i(x)$ for i = 1, 2, 3, 4. Replacing x by tx and y by ty in (17) we get:

$$T_1(t, x+y) T_2(t, x-y) = T_3(t, x) T_4(t, y)$$

which implies:

$$\exp \left\{ t^2 \left[T(x+y) + T(x-y) - 2 T(x) - 2 T(y) \right] + t \left[U_1(x+y) + U_2(x-y) - U_3(x) - U_4(y) \right] \right\} = I$$

for all $t \in R$. Thus:

$$T(x+y) + T(x-y) = 2 T(x) + 2 T(y)$$

and

(18)
$$U_1(x+y) + U_2(x-y) = U_3(x) + U_4(y).$$

If we replace y by -y in (18) we get:

(19)
$$U_1(x-y) + U_2(x+y) = U_3(x) - U_4(y).$$

Adding (18) and (19) we get:

$$U_3(x+y)+U_3(x-y)=2U_3(x)$$

which implies:

$$U_3(x) + U_3(y) = 2 U_3\left(\frac{x+y}{2}\right) = U_3(x+y),$$

i. e. U_3 is additive. If we subtract (19) from (18) we find:

$$U_4(x+y)-U_4(x-y)=2\ U_4(y)$$

from which follows that U_4 is additive. But then U_1 and U_2 are also additive.

Q. E. D.

Theorem 5. Let X be an n-dimensional unitary space, A the algebra of all linear operators defined on X with ranges in X and $T_i: R \to A \ (i=1,2,3,4)$ functions such that

(20)
$$T_1(t+s) T_2(t-s) = T_3(t) T_4(s), \text{ det } T_i(t) \neq 0$$

holds for all $t, s \in R$ and i = 1, 2, 3.

If the restrictions of T_1 , T_2 and T_3 on an interval $\Delta = [a, b]$, a < b, are measurable then T_i (i = 1, 2, 3, 4) are continuous on R.

For the proof we need two lemmas.

Lemma 1. T_i are measurable on R.

For $s = \frac{b-a}{2}$ (20) gives:

(21)
$$T_{2}\left(t-\frac{b-a}{2}\right) = T_{1}^{-1}\left(t+\frac{b-a}{2}\right) T_{3}(t) T_{4}\left(\frac{b-a}{2}\right)$$

when t runs through $\left[a, \frac{1}{2}(a+b)\right] \subseteq \Delta$, then $t + \frac{b-a}{2}$ runs over the interval

 $\left[\frac{1}{2}(a+b), b\right] \subseteq \Delta$. Since T_1 and T_3 are measurable on Δ from (21) we find that T_2 is measurable on the interval $\left[a-\frac{1}{2}(b-a), a\right]$.

For
$$s = -\frac{b-a}{2}$$
 (20) gives:

(22)
$$T_{2}\left(t+\frac{b-a}{2}\right) = T_{1}^{-1}\left(t-\frac{b-a}{2}\right)T_{3}(t) T_{4}\left(\frac{a-b}{2}\right)$$

from which we conclude that T_2 is measurable on the interval $\left[b, b + \frac{b-a}{2}\right]$. Thus T_2 is measurable on the interval

$$\left[a-\frac{b-a}{2}, b+\frac{b-a}{2}\right].$$

Now, (20) implies

(23)
$$T_1(t) T_2(t-2s) = T_3(t-s) T_4(s)$$

which for $s = \pm \frac{b-a}{4}$ leads to:

(24)
$$T_1(t) = T_3\left(t - \frac{b-a}{4}\right) T_4\left(\frac{b-a}{4}\right) T_2^{-1}\left(t - \frac{b-a}{2}\right),$$

(25)
$$T_1(t) = T_3\left(t + \frac{b-a}{4}\right) T_4\left(-\frac{b-a}{2}\right) T_2^{-1}\left(t + \frac{b-a}{2}\right).$$

From (24) we find that T_1 is measurable on $\left[a, b + \frac{b-a}{4}\right]$ and from (25) that T_1 is measurable on $\left[a - \frac{b-a}{4}, b\right]$. Thus T_1 and T_2 are measurable on the interval

(26)
$$\Delta' = \left[a - \frac{b-a}{4}, b + \frac{b-a}{4} \right].$$

For s = 0 (20) implies

$$T_3(t) = T_1(t) T_2(t) T_4^{-1}(0)$$

which implies that T_3 is measurable on Δ' . Thus the measurability of functions T_1 , T_2 , T_3 on Δ implies the measurability of these functions on Δ' . The way by which Δ' is obtained from Δ enables us to conclude that functions T_1 , T_2 and T_3 are measurable on R. But then

$$T_4(s) = T_3^{-1}(0) \ T_1(s) \ T_2(-s)$$

implies the measurability of T_4 on R.

Lemma 2. T_i and T_i^{-1} are bounded on every finite interval.

Since T_i are measurable on [-1, 1], for any $\varepsilon > 0$ the well known Luzin's theorem (Cf. [3]) implies the existence of a perfect set $P \subseteq [-1, 1]$ such that a) $mP > 2 - \varepsilon$ and b) T_i are continuous on P. Here mP denotes the Lebesgue measure of P. But then T_i are also continuous on the set

$$(27) Q = P \cap \{-p \mid p \in P\}.$$

Now T_i^{-1} exists and since T_i is continuous on Q so is T_i^{-1} . Thus

$$M = \max_{i=1, 2, 3, 4} \sup_{t \in Q} \{ ||T_i(t)||, ||T_i^{-1}(t)|| \} < + \infty.$$

Since mQ > 0, there is a number c > 0 with the property that for any $s \in (-c, c)$ there are $t_1(s)$, $t_2(s)$, $t_3(s) \in Q$ such that

$$t_1(s) = t_2(s) + 2s = t_3(s) + s$$

([2], Lemma 1). If in (20) we replace t by t+s we get

$$T_1(t+2s) T_2(t) = T_3(t+s) T_4(s)$$

from which we find

(28)
$$T_4(s) = T_3^{-1}(t+s) T_1(t+2s) T_2(t).$$

If in (28) we take $s \in (-c, c)$ and $t = t_2(s)$ we get

$$T_4(s) = T_3^{-1} [t_3(s)] T_1[t_1(s)] T_2[t_2(s)]$$

which implies

$$||T_4(s)|| \leq M^3, \ s \in (-c, c).$$

Thus T_4 is bounded on the interval (-c, c). If in (20) we replace s by s-t we get:

$$T_1(2t+s)$$
 $T_2(-s) = T_3(t)$ $T_4(s+t)$

which implies:

(29)
$$T_3(t) = T_1(2t+s) \ T_2(-s) \ T_4^{-1}(s+t).$$

Now, for $t \in (-c, c)$ there are $s_1(t)$, $s_2(t)$, $s_3(t) \in Q$ such that: $s_1(t) = s_2(t) + 2t = s_3(t) + t$. This and (29) for $s = s_2$ imply

$$T_3(t) = T_1[s_1(t)] \ T_2[-s_2(t)] \ T_4^{-1}[s_3(t)]$$

from which follows

$$||T_3(t)|| \leq M^3, \qquad t \in (-c, c).$$

Thus T_3 and T_4 are bounded on the interval (-c, c). This,

$$T_1(2t) = T_2(t) T_1(t) T_2^{-1}(0)$$

and

$$T_2(2t) = T_1^{-1}(0) T_3(t) T_4(-t)$$

imply that all functions T_1 , T_2 , T_3 , T_4 are bounded on the interval (-c, c). In the same way

$$T_2^{-1}(t-s) T_1^{-1}(t+s) = T_4^{-1}(s) T_3^{-1}(t)$$

implies that T_i^{-1} (i=1, 2, 3, 4) are bounded on (-c, c). The boundedness of T_i and T_i^{-1} on (-c, c) in the same way as in the case of measurability implies that these functions are bounded on every finite interval.

Proof of theorem 5. From Lemma 1 and Lemma 2 it follows that $t \to (T_i(t)x, y), x, y \in X$, is summable on every finite interval. The integral

$$\int_{a}^{b} (T_3(t) x, y) dt$$

defines a linear functional on X for given $y \in X$ and $a, b \in R$. There is therefore a single element $y_{ab} \in X$ such that

(30)
$$\int_{a}^{b} (T_3(t) x, y) dt = (x, y_{ab})$$

holds for all $x \in X$. We assert that the set $Y = \{y_{ab} | y \in X, a, b \in R\}$ is dense in X. Indeed let $x_0 \in X$ be orthogonal on Y, i. e.

$$\int_{a}^{b} (T_3(t) x_0, y) dt = 0$$

for all $y \in X$ and $a, b \in R$. This implies $(T_3(t) x_0, y) = 0$ for all $t \in S(y)$, where $S(y) \subseteq R$ has the measure zero. If e_1, e_2, \ldots, e_n is a basic set in X, then $(T_3(t)x_0, e_k) = 0$ (k = 1, 2, ..., n) for all $t \in S = \bigcup_{i=1}^n S(e_k)$. Thus $T_3(t)x_0 = 0$

for almost all $t \in R$. Since T_3 is regular we find $x_0 = 0$, i. e. Y is dense in X. Thus for the continuity of T_4 it is sufficient to prove that $(T_4(s)x, y_{ab})$ is continuous for all $x \in X$ and $y_{ab} \in Y$. Using (30) and (20) we have:

$$(T_4(s) x, y_{ab}) = \int_a^b (T_3(t) T_4(s) x, y) dt = \int_a^b (T_1(t+s) T_2(t-s) x, y) dt$$

$$= \int_{a+s}^{b+s} (T_1(t) T_2(t-2s) x, y) dt.$$

Suppose that $s_k \rightarrow s_0$. Then:

$$\begin{vmatrix} \int_{a+s_{k}}^{b+s_{k}} (T_{1}(t) T_{2}(t-2s_{k}) x, y) dt - \int_{a+s_{0}}^{b+s_{0}} (T_{1}(t) T_{2}(t-2s_{0}) x, y) dt \end{vmatrix}$$

$$\leq \begin{vmatrix} \int_{a+s_{k}}^{b+s_{k}} (T_{1}(t) T_{2}(t-2s_{k}) x, y) dt - \int_{a+s_{0}}^{b+s_{0}} (T_{1}(t) T_{2}(t-2s_{k}) x, y) dt \end{vmatrix} +$$

$$+ \begin{vmatrix} \int_{a+s_{0}}^{b+s_{0}} (T_{1}(t) [T_{2}(t-2s_{k}) - T_{2}(t-2s_{0})] x, y) dt \end{vmatrix}$$

$$\leq 2 M_{ab}^{2} ||x|| \cdot ||y|| ||s_{k} - s_{0}| +$$

$$+ \begin{vmatrix} \int_{a+s_{0}}^{b+s_{0}} (T_{1}(t) [T_{2}(t-2s_{k}) - T_{2}(t-2s_{0})] x, y) dt \end{vmatrix}$$

where M_{ab} is a suitable constant such that $||T_1(t)|| \le M_{ab}$, $||T_2(t)|| \le M_{ab}$ for all $t \in (-c, c)$ with c > 0 sufficiently large so that all intervals $(a + s_0, a + s_k)$, $(b + s_0, b + s_k)$ belong to (-c, c).

In order to prove that the last integral tends to zero as $s_k \to s_0$ we take an orthonormal basic set e_1, \ldots, e_n in X and we replace x by e_j and y by e_p . We have:

$$\begin{vmatrix} \int_{a+s_0}^{b+s_0} (T_1(t) [T_2(t-2s_k)-T_2(t-2s_0)] e_j, e_p) dt \end{vmatrix} =$$

$$= \left| \sum_{q=1}^n \int_{a+s_0}^{b+s_0} (T_1(t) e_q, e_p) ([T_2(t-2s_k)-T_2(t-2s_0)] e_j, e_q) dt \right|$$

$$\leq M'_{ab} \sum_{q=1}^n \int_{a+s_0}^{b+s_0} |(T_2(t-2s_k) e_j, e_q)-(T_2(t-2s_0) e_j, e_q)| dt$$

with a suitable constant M'_{ab} . Since every integral in this sum tends to zero as $s_k \rightarrow s_0$ ([4], pp. 163—164) we find

$$\int_{a+s_0}^{b+s_0} (T_1(t) [T_2(t-2s_k)-T_2(t-2s_0)] e_j, e_p) \to 0.$$

Thus $s_k \to s_0$ implies $(T_4(s_k) x, y_{ab}) \to (T_4(s_0) x, y_{ab})$ which proves the continuity of T_4 on R.

From $T_2^{-1}(t-s)$ $T_1^{-1}(t+s) = T_4^{-1}(s)$ $T_3^{-1}(t)$ in the similar way we find that T_3^{-1} is continuous on R. Thus T_3 is also continuous on R. If we replace t+s by t and t-s by s in (20) we get:

$$T_1(t)$$
 $T_2(s) = T_3\left(\frac{t+s}{2}\right)$ $T_4\left(\frac{t-s}{4}\right)$.

Hence

$$T_1(t) = T_3\left(\frac{t}{2}\right) T_4\left(\frac{t}{2}\right) T_2^{-1}(0)$$
 and $T_2(s) = T_1^{-1}(0) T_3\left(\frac{s}{2}\right) T_4\left(-\frac{s}{2}\right)$

from which we conclude that T_1 and T_2 are also continuous on R.

Q. E. D.

REFERENCES

- [1] E. Hille and R. S. Phillips: Functional analysis and semigroups. Amer. Math. Soc. Coll. Publ. 31, Providence (1957).
- [2] S. Kurepa: A cosine functional equation in Hilbert space. Can. J. Math. Vol. 12 (1960), 45-50.
- [3] S. Kurepa: On the (C)-property of functions. Glasnik mat. fiz. astr., T. 13 (1958), 33-38.
 - [4] Ch. de la Vallée Poussin: Cours d'Analyse infinitésimale. Paris 1912.