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ON A THEOREM OF TITCHMARSH
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1. E. C. Titchmarch [5] proved the following

Theorem A. Let 0<a<l, 1<p<2 and A>0. If f(x) is even and
belongs to Lip (x, p). i. e

f;f(x+ By—f (x)|? dx=0 (h*).
0

then the Fourier cosine transform of f(x) belongs to L®, for
p/(p+ap—1)<B<p/(p—1).
The theorem analogous to this on Fourier series is the following

Theorem B. Let f(x) be L-integrable in (0, 27) and periodic outside
with period 2= and let

1) f(x)~% a,+ i (a,cosnx+ b,sinnx).

n=1
If f(x)e Lip («, p), i. e.
2m
flf(x+h)——f(x)|”dx=0(h°‘!’),
0

where 0<a<l1, 1<p<2, h>0, then
@ S (anft + By <o,
n=1

for >p/(p+ap—1). For B=p/(p+ap—1), (2) need not hold; sec O. Szasz [4].
The case for p=2 was proved by S. Berstein [1] and O. Szasz [3].

If we take ap>1, then p/(p+ap—1)<1 and hence Theorem B implies
the absolute convergence of the Fourier series of f(x) in this case. However,
Min-Teh Cheng [2] has proved the following

Theorem C. If e>0, 1<p<2, h>0 and

27
f |f Ge+ By —f ()" dx =0 (h(log h=)7r~2),
0
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then the Fourier series of f (x) converges absolutely. For ¢ =0, this is no longer
true. In fact, this theorem has been proved by Min-Teh Cheng in the following
more general form:

Theorem D. If 0<a<l, 1<p<2, A>0 and

2w

(3) f If(x+ h)—f(x) ‘p dx: 0 (h (].Og h-—l)—l—o;p),
0

then

@ i(lan|+|bn|)long<°°’
n=2

for T<a+p—'—1. Moreover, (4) may not hold for T=a—p~'—1.

In order to prove Theorem D, Min-Teh Cheng has first established an
inequality for Lip («, p) classes corresponding to Hausdorff — Young inequality
[7; Vol. II, p. 101] and with the help of the inequality he has also given an
alternative proof of Theorem B. But, as suggested by A. Zygmund [7; Vol. 1,
p. 251), Theorem B can be proved directly with the help of Hausdorff — Young
inequality. One of the objects of this paper is to provide an alternative proof
for Theorem D, based merely on Hausdorff — Young inequality, by suitably
amending the classical method of S. Bernstein and without appealing to the
inequality for Lip («, p) classes obtained by Min-Teh Cheng. Thus the proof
which we shall have is comparatively short and more direct. We shall also
generalize Theorem D to the following

Theorem 1. If O0<a<l, 1<p<2, h>0 and

2w
) f |f Gt hy—F () |? dx= O (® (log h=1)=1==7),
0

where 8=1+p(1—B)/8, then
(6 S (laa PP+ by [P) loghn < oo,
n=2

for 8>p(T+ 1)/(1+ep). For p=p (T+ 1)/(1+ap), (6) does not hold. We also
state that Theorem C is contained in the following more general result already
proved by the author in [6]:

Theorem 2. If for A>0,
Iy (h)=log(e+h™Y),

I, (h) =log log (ef + h~Y), etc.,
and if for certain ¢>0,

27 lp
ha
h - I’d ::0 4
[of f G 0= () xJ ((ll(h) L) ... I <h>)">

where O0<a<1 and y=(p+ap—1)/p, then (2) holds for B=p/(p+ap—1).
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2. In Theorem D, we may naturally ask: what condition must f(x) satisfy
in order that (4) may hold for T=oa-+p~*—1? In this connection, we shall
prove the following

Theorem 3. If O0<a<1, 1<p<2, h>0 and
2r

@) f |f(x+h)—f(x)|Pdx=0 (h (log h=1)—0+22 (log log h—H)—(1-+a)p),
0
then (4) holds for T=a+p~—1—1.

3. Alternative proof of Theorem D

From (1), it follows that

fx+B—f(x—h)~2 % (—a,sinnx+b,cosnx)sinn h.
n=

i

Therefore, by Hausdorff — Young inequality, we get

) 2n Lip
(3 @ealsinnb])7) " < [2i [ !f(x+h)—f(x—h)l”dx] ,
n=1 T

0

where o) = |a,|” +|b,|” and p’ is given by i+i,=1,

P p
T
Putting n=-—, we get from (3)
s 2N

Bl )<,
4 [af ez i

0 N-Up
B (aog (N/n><l+°=m>'

Taking N=2" and taking into account only the terms with indices exceeding

. hnT
sin ——

2N

—;N, we obtain

. nhw
sin ——
2v+l

5 |

n=2"—111

k3

P’ 2-v'lp

) =0 2 \U+appip |
(log )

. . nm 1 .

Since sin > —, for 2-' < n<2, it follows that

2+17 )2

2Y , 2~vp'lp
v =
Z ©n 0 v \(d+ep)pip |
n=2v=ty1 (log )

T
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Now, by Hoélder’s inequality,

22\' < 22‘J » 1/p § 1 1—1/p’
(20 (L2

n=2v=1,1 n=2"111 n=2—111
2-vip 1
— v/ — .
=0 2y \(+ap)ip 2 0 v \(+ap)p |°
(log —) <log —)
] T
and hence
2v v
> ealogTn<logh2 % o,
ne=2V-1 4 n=2"144
logT 2¥
=0 g

2v \(I+ap)/p
e

Finally,

% 2V
on long:z Z p, logT n=0
2 v=1 n=2v—l+1 v=1 (log

iMs

) logT 2y A
2y )(l+ap)/p J

T
_ 0( < VT—(1+ap)/p) ~o),

for T<o+4p—t—1.
This completes the proof of the theorem.
Proof of Theorem 1. As in the proof of Theorem D, we obtain from (5)

¥ 2-v8p'lp
Z Pf, =0 v \(I+ap)F [p
n=2"lip <10g 7)

Now, by Holder’s inequality, we get

pAd 2v \BIP 2v 1-B/p’
§ae( 5 Al (50

n=2v—141 n=2v—111 n=2""141
2-v8B/p 1
-0 Lva=8) | = 0 ;
| 2v\B (+ap)ip 1 2v \B(+ap)p
og — og ——
(102 ()
and hence
2V 2V
> eh logTn<logl2 > o
n=2v"111 n=2v—111
logT 2v
-0 g

1 2v\ B(l+ap)ip
(1oe )
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Therefore

o 2v

i pPlogTn= % > o2 logTn
n=2

v=1 p_ov—lyy

® log T2y
=0 [21( 2y )ﬁ(1+ap)/p ]=0 ),

log -
for B>p (T + 1)/(1 +ap).
This proves the first part of the theorem.

Proof of theorem 3. We shall sketch the proof. Proceeding as in the
proof of Theorem D, we can obtain by using (7),
14 Lp
dx)

2
N LAV A | ' T

n <—|z= x+—) —flx——

(nz=1(p ) ) 2 (an f( 2N) f( 2N)

N-—-Up
=0 N \(+ad)ip N 1+e ;
(log —-) (log log—)
i3 T
and hence

0
2v B 2—Vp'/p
S eh= v \(A+on)7 P v+ | -
n=2—141 (log 7) (log IOg ?)

Now, applying Holder’s inequality,

2v ¥ , 1/p’ v 1—-1/p’
S pn<( S pﬁ)( S 1)

. nw
sin —
2N

n=2v"141 n=2""1 41 n=2"141
2-vip
=0 2 \d+ep/? 2v T 27|
(log ) (1og log )
T r1
Therefore
2 v
z enlogTn<log??2 2 Pn
a=2—14+1 n=2"141
_0 logT2¥
- ) v (1+ap)ip log 1 v\ 1+e
(og — ) (og og ﬂ)
1 . 1
=0 ('“‘ﬂ?)’ putting T=a+p~'—1.
. vlog'y
Hence

w0 2v ) 1

> p,,long=z > p,,long=0(Z ———1+—:>=0(1).
n=2

v=1 p_v—14 v=1 VlOg v

The proof is complete.
We omit the proof of the second part of Theorem I.
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In fact, the method of proofs which we have developed above can be
used to prove each and every one of the results proved above in their more
general forms. Thus we have
Theorem 4. Let 0<a<1, 1<p<2 and h>0.

@iy If :

2
f]f(x+h)-—f(x)|”dx=
0

=0 (h(log, h=) =" (loge =17 . . . (logg—; A=Y~ (log h=1)=0tan),
where log, x=1logx and log,x=1loglog,_,x, then
Z ('an|+!bni)10ng<OO, for T<a+P—1__1,
n=

2
but not for T=a-+p~t'—1 [2; Theorem 3).

(i) If
27
flf(x+h)—f(x)1"dx:
0
=0 (B (log; h=1)=? (log, A=Y~ . . . (logg—, h=1)~7 (logy A1)~ U+o2)),
then d=1+4p(1—B)/B,
S (1@ [f+]5a#) logTn< oo, for B>p(T+ /(1 +ap),
n=2
but not necessarily for B=p (7 /(1 + «p).
(i) If
27
f[f(x+h)——f(x) P dx =
0
=0 (h(logy h=Y)=" (logy %=1 =7 ... (loge— h=Y)~? (logy A=Y~ U+ap)
then (loggsy A=Y= +)p),
> (Jau|+{ba[)logTn < o,
for n=2

T=a+p1—1.
I wish to thank Dr. U. N. Singh for his valuable suggestions and
guidance which I received from him during the preparation of this paper.
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