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SUMMARY: The Pfaff—Bilimovi¢ method, applicable to mechanical problems,
is extended to the field theory, by use of the method of functionals.

INTRODUCTION

Linear differential expressions called Pfaffians were first introduced to mechanics by
E. Whittaker [1], who showed that the Hamilton equations represent Pfaff equations cor-
responding to a properly chosen Pfaffian. This correspondance, as well as the invariance of
the Pfaff equations, resulted in the development of a method, which reduced the problem
of the integration of the Hamilton equations and of canonical transformations to the problem
of transformation of corresponding Pfaffians.

A. Bilimovié¢ {2, 3, 4] gave further consideration to the role of Pfaffians and Pfaff
equations in mechanics, developed and generalized this method and formulated a general
principle of mechanics. By giving Pfaff equations a more convenient form, he correlated
them to the so-called Pfaff tensor and to the pure increments of the corresponding Pfaffians.
Furthermore, he showed that by an appropriate transformation of the element of action, a
Pfaffian can be obtained, which yields both Lagrange and Hamilton equations, and estab-
lished thus a general principle of mechanics, named Pfaff principle, and having the character
of a general phenomenological differential principle. This method was subsequently applied to
a series of problems of theoretical mechanics, celestial mechanics, and geometrical optics.
We are, therefore, of the opinion that the method based on the application of Pfaffians and
Pfaff equations to mechanics should be named the Pfaff-Bilimovié¢ method, and the principle
itself the Pfaff-Bilimovié¢ principle.

T. Andjeli¢ [5, 6] completed this method and extended it to the mechanics of conti-
nuous media, showing that the principle can be used to obtain general differential equations
of elastic bodies and viscous fluids, the element of action per unit mass being the starting
point. It is thus established that the principle has the character of a universal differential
principle of mechanics.

A number of works is dedicated to the application of this method to mechanics
of the system of particles. Thus, P. Musen [7] applied it to the perturbation of vector
elements, and V. Vwji¢ié [8] to the problems of motion with variable mass.

In a previous work [9] we showed that the Pfaff—Bilimovi¢ method can be generalized
to the case of more independent variables, so that it is applicable to the theoretical physics
as well, namely to all those branches in which quantities analogous to kinetic and potential
energy can be found. Using the notion of the functional derivative, and introducing the
notion of the functional differential, we generalized the Pfaffians, Pfaf equations, and the
very Pfaff—Bilimovi¢ principle. Thereafter, we applied the method to the theory of elasticity,
thermodynamics, electrodynamics, and quantum mechanics, to obtain the differential equa-
tions of the corresponding phenomena.
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The deeper meaning of this generalization is to be found in the theory of functionals,
created by V. Volterra [10], which is applicable to the theoretical physics [11}. In this theory,
the notion of the functional itself represents a generalization of the notion of the function,
when the number of independent variables tends to infinity, and in the functional calculus
the role of primary notion is played by the functional derivative and functional differential,
which are generalizations of the partial derivative and total differential.

In this work we attempt to generalize the Pfaff-Bilimovi¢ method of mechanics tc
the field theory, on the ground of the theory of functionals. In the first part we purport
to introduce convenient definitions of functional derivative and functional differential,
applicable to the functionals given in the form of integrals, and to give the corresponding
analytical expressions. In the second part we proceed to generalize the Pfaffians on account
of the introduced notions of the theory of functionals, to expose the generalized Pfaff-
Bilimovié¢ method, and the very Pfaff-Bilimovié principle.

1. DERIVATIVES AND DIFFERENTIALS OF A FUNCTIONAL

Notion of a Functional. Let o; be certain functions of coordinates x;
and a parameter v in a k-dimensional Euclidean space:

i=1,2,...,n
1.1 (%, ( )
( ) P cP(} ) J=1, 2,k
and let us define:

09;
1.2 S Lo
(1.2) Pij ()Xj

We shall now consider a compound function of the form

(1.3) § =5 (95 Pij» X))
and its volume integral over the entire region of definition of the functions ¢;:
(1.4) F=[§av; av =11 dx;.

1 4

The value of this integral clearly depends on both form of all functions
9; (x5, 7), and the value of the parameter <.

Let us now introduce the notion of a functional, playing the basic role
in our further considerations. As is well known, a quantity f depending on
the independent variable x in a determined manner, so that one or more values
of f correspond to each value of x; is called a function, and denoted by f(x).
This function determines the mapping of a set x into the set f(x). If, how-
ever, a quantity F depends on a function f(x) as independznt variable, in such
a way that one or more numerical values of F correspond to every form of
the function f(x), then F is a functional of the function f(x). To point out
the difference from the ordinary function, this type of dependence is usually
denoted by square brackets:

(1.5) F=F [f(x)]

and this functional coordinates a number F to the set of all values of f(x),
i. e. determines a mapping of the set f(x) into a number F. It is in this sense
that the functional may be thought of as being dependent on an infinite num-
ber of variables, namely on all values of the functior f(x).

According to this definition of a functional, the integral (1.4) is clearly
seen to represent a functional of all ¢;, being dependent on the forms of all
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these functions, so that one value of this integral corresponds to every set
of these, 1. e.

(1.6) . F=F [9; (x;,7)],

¢; denoting here the aggregate of all corresponding functions.

On the other hand, this integral depends also on the parameter 7, so
that one value of the integral corresponds to each value of +. The integral
is, therefore, at the same time an ordinary function of =:

1.7 F=F().
Functional Derivative. — Each point of the Euclidean space with coordi-
nates x;(j=1,2, ... , k) of the region V where the functions ¢;(x;,7) are

defined, associated with any fixed value of the parameter 7, has a corresponding
set of values of ¢;(x;,t). We shall supposse that these functions have the
property of being v — independent at the boundary of V, i. e.

(1.8) (%’l)s 0.

Let us now consider a point M and a small volume AV surrounding it; let
the i-th function acquire an arbitrary increment A¢; at the points within AV,
and let its form remain unaltered without this volume. We have thus obtained
another function

(1.9) ¢ =i+ Ag;

where:

thin AV
(1.10) Ag; {#0 within

=90 at the boundary and without AV,
A ¢; evidently having the character of the variation of the function considered.

Let Ag; be the mean value of these increments in AV. We shall hence-
forth use the symbol [... , @;, ...] whenever we refer to the i-th member
of the set of functions ¢; only, i. e. ¢; in this case does not represent the
entire set of the functions, but its i-th member only. Then, the functional
derivative of the functional F with respect to the function ¢; at the point M,
sometimes also called the variational derivative of the functional, will be defined
by the following formule:

(1.11) S_F_: lim Fl..., o;+Aq;, ... J—F[.., 9, ]

3P; BenAVo0 A——‘Pi'AV

The expression in the denumerator, according to (1.3) and (1.4) has the
explicite form:

FlL.., o+Ag .. J—FL.., @,..1=

:f FC.., e+Ag;, oy+Aey, --~)dV_f FC.oo s 90 iy --)dV.

4 4

(1.12)
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Expanding the integrand into the Taylor series, bearing in mind the conditions
(1.10) and neglecting the higher order terms, one obtains:

F[ ’ cPi‘l‘A(P,', ]——F[ > Pis ]=
:f {(5C.. pitdos, oy+Deqy, . )=F (.., @, 9, . dV =
NG
O k X
=f(A<Pi—*8—+ Z A‘Pij—L\)dV'
09 i 09;
av
Each integral under the summation sign can be transformed by partial
integration, with the conditions (1.10) still in mind, the order of opera-
. 0 .
tions ™ and A bzing interchangeable. It should be noted that the symbol 9
X; X

represents in fact the operation of total partial derivation with respect to
xj; 1. e. differentiation over all functions depending on x;: we shall henceforth

use the symbol a for this operation. It follows:

dxi

falsAcp,,dV fﬁi 4 Ay
OCPU ()CPU de

f fdxl Ay diyy.. dr | 2D d Ay =
doy

k-1

f fdxl 1 dxk AA
cPlj

(k—1)

fAd‘)} fd‘)i‘A av
()(p,j dx dcp,,

The theorem of the mean value now yields:
_d 9§

oN
FL..., g+l I=F .., o ...]:f(i_ ﬁ—)Acpide
: 09; =1 dx; 09,

(X5)2

(xjh

1.13 % N\
(1.13) W(_l)j__ ii@—)AcpiAV,
09; =1 dx; 09y

Under the assumption that the function ¥ and its first and second order
derivatives are continuous at M, (1.11) becomes:

% &
| (554 sy
ilj: lim 0(91 Jj=1 dX acpu :(‘—’—z a_()
3o Ao, AV-30 AcPiAV @i j=1 dx; 094/ m
or, shorter:

*d k g
(1.14) —=foy
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This is the well-known analytical expression for the functional derivative; it
is easily seen that the functional derivative in a point, as a function of position,
depends on coordinates through functions ¢;(x;, t), being thus dependent both
on their forms and on the coordinates of the point considered. The functional
derivative is, therefore, a functional of all functions ¢;, but not of the form
(1.4), and an ordinary function of the coordinates x;:

3F OF 3F 3F
e, -

1.15 =
( ) 39; 3o; 3o; 39;

(%)

Equation (1.14) shows directly that for the sum of two functionals and for
the product of a functional and a constant the following relations hold:

3 3F, 3F 3 SF
(1.16) (Fi+F)=—2+-—35 —(CF)=C —
S ¢ O 0 P; 9
3 . . . . .
the operator — of functional differentiation being thus shown to be linear.
Pi
There is, however, another type of derivative of the functional (1.4),
based on the fact that it is also an ordinary function of the parameter v. We
can, therefore, introduce the derivative of a functional with respect to a para-

meter, —
T

The derivative of the integral with respect to a parameter being equal
to the integral of the derivative with respect to it, we have:

A4 3ay- [flﬁ dv
dt d~= J dr~
v v
or:
LI, I , nooon % Qo
(1.17) ﬁf:f(y 95 O, 95 ﬁ) av.
dz 1 09 07 =1 S 09y 07

Integral under the double summation sign can be transformed by partial in-

. . . . 0 0 L
tegration, interchanging the order of operations — and —, bearing in mind
X]' T

0 . . . . .
that T represents the total partial differentiation with respect to x;:
Xj

O 0%y gy [OF 4 0% 4y
a(Pu ()T aCPU dxj a’T
4 v
:ff dxy...dx;_ydxjiq...dxy ﬁidjf)ﬁ:
0<Pij o~
k-1
X 0w, | Gik oo,  ON
Af...fdxl...dxj_ldxjﬂ..,dxk{ o5 9% Y —fﬁdj;\]

09; 0T |@p, - ot 09y

(k—1)
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The integrated part cancels out in view of the conditions (1.8), so that we have:

08 O9y dv - _fdd 5(2.5_ g_?i dv
Xjp 0@y 07

0cp” 0'1'
14 14

and the relation (1.17) becomes

n v k Ird R
dF _ S (,‘).li_g* . @) 0% 41
d= O0¢; ;=i dx; 09;/ 07
12

i=1
and, finally, in view of (1.14):

dF " SF do;
(1.18) ﬁ:f S 3F 0% gy
d= i d¢; 07
14

This equation determines the derivative of the functional of the form (1.4)
with respect to the parameter v, and is easily seen to represent a generalization
of the formula for derivatives of compound functions.

Functional Differential. — Let us divide the entire region ¥V of definition
of functions ¢;(x;,7) into a very large number N of very small cells AV, each
containing a point M;, in such a manner that the volume of each cell tends
to zero when the number of cells tends to infinity. Now, let us alter the form
of all functions ¢; in each cell, giving these functions arbitrary increments
satisfying (1.10). Denoting by { }; the value of any quantity in the /-th cell,
the functional differential of the functional F with respect to functions ¢, also
called variation of the functional, will be defined by:

N
(1.19) BF=lim > {F[p;+Aq)—Flel}

N-—oo

As the increments Ag; have the character of variations, the same will hold for
functional differentials, which is, therefore, denoted by the symbol 8.

The expression in brackets can be transformed by addition and subtraction
of suitable expressions:

Flo;+A¢)—Flo)=Floy+ A1, 9o+, ..., ¢, +A¢,]—
—Flo1, 02+ A0y .y 9t AQ]+Flor, 92 +A0y, 05+ AGs, ., 9p+Ag,]—
—F o1, 92> 93T 803, @+ AP )+ + Flor, Pasevs PutA]—
—F[e1, 93,5 @als

in other -words:

Flort Agd—Flod= 3 {FL.... e+ Ao J—FL. ... 0. 1)
=1

1

cach of the summation terms being determined by (1.13), it follows:

(1.20) {F i+ D¢]—Floi]} '{ (l—~ #) A(Pi}A Vi
I gl 0o; /ZI dx; Ogy ! !
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As AV, tends to zero, the mean increment (Ag;); will tend to the increment
of the corresponding function at the point M,, the value of this increment
being dependent on the manner the functions ¢; are given arbitrary increments
Ag; in this cell. Let us designate this limiting value by

(1.21) 80~ (i) ;= lim (Agy),
AVy—>0

emphasising thus that it has the character of variation of a function, too.
This guantity is a function of coordinates of M and of =, and as a rule is a
first order infinitesimal. '

Equation (1.19) combined with (1.20) then yields:

$F— lim %{i(-ﬁ_—ii ﬁ)m}Am

Now S UiSi\0g;  Sidx; 09y

and, when the number of the cells tends to infinity in the manner stated
above, the summation over index / becomes definite integral over volume V,

while the expression in small brackets, in view of (1.14) tends to —S—f:

@;
and (Ag,), to 3¢, according to (1.21), so that it follows:
n 8
(1.22) 8F=f2 E sorav.
b =1 Og;

This is the analytical form of the expression for functional differential. It is
to be noted that functional differential depends on the forms of both ¢; and
Se;; it is, therefore, a functional of all ¢; and their variations 3¢; of the
form (1.4):

(1.23) 3F=3F [g;, 8¢/]

being also linear with respect to d¢;.

As in the case of functional derivatives, we can introduce here another
type of a differential, too, based on the fact that (1.4) is an ordinary function
of a parameter <. It is possible, therefore, to define the differential of a Sfunctional
with respect to a parameter T, dF.

According to (1.18) we have:

(1.24) dF:igde:f LI
dt =139, o7
[ 4
If we now consider:
k Jy, do;
doi=S x4+ “Pds
j=1 0%; T

and make use of the mutual independance of x; and =

do,_ & ondsy 0w 0u
dr J=1 Ox, dt ot o<
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we obtain:
gﬂdr:d@id‘r:d@i

ot d~

where it should be borne in mind that the quantities dg;, as well as S,
are functions of coordinates x; and of the parameter tv; expression (1.24)
yields then:

(1.25) dF:fi 3F yordv.
J i<t 39

This equality determines the differential of the functional (1.4) with respect
to the parameter =, representing thus a generalization of the formula for total
differential of a function.

If k=0, i. e. if ¢;(x;,7) depend only on the parameter =, (1.4) is reduced
to the zero-fold integral, viz. to the integrand { itself, and in this case the
functional considered is reduced to an ordinary function. The functional
derivative (1.14) is then similarly reduced to the ordinary partial derivative,
and the functional differential (1.22) as a zero-fold integral, to the ordinary
total differential. This fact clearly shows how the notion of a functional really
represents a generalization of the notion of a function, and, likewise, notions
of the functional derivative and the functional differential are generalizations
of those of the partial derivative and the total differential.

2. GENERALIZED PFAFF — BILIMOVIC METHOD

Functional Pfaffians. — Consider a set of functions of the form (1.3):
@1 &i=G: (@5 215 X)) (i=1,2, ..., n)

and use them to construct a linear differential form:

2.2) Ao -3 §do,
i=1

where do; denotes differentials of ¢,. The volume integral of this form is:

(2.3) CD:f S §idondV
i=1

and it will be called functional Pfaffian. We shall always tacitly assume that
the integral is to be extended over the whole region of definition of o,.

An expression thus defined represents a functional of all functions ¢
and all differentials do;:

2.4 © - P[p;, doj

and it plays the basic role in what follows.

Functional Pfaff Equations. — According to (1.14), we have for the
functional Pfaffian (2.3):
30 9 s kd o X
50 oo (2 Brda)=3 = (3 i)
39, Og; <IZI ng dx; 09y IZI

3 (g 4 0B,

oo, /= dxj ‘)CPij
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Introducing now the quantities Fj:

2.5 Fi= [ xdV
the above equality yields:
S® 2 3F
(2.6) =S —Ldy.
do; =1 d9

Multiplying both sides by d¢;, summing up with respect to the index i, and
then integrating over ¥, we obtain:

@7 fz ——«-d:p,dV"f SZ’ doydo; dV.
=1 I=1 i

On the other hand, in view of (1.25) we have:

dF;— f}: 'dcp,dV

furthermore, since the operations of differentiting with respect to a parameter
and integrating over ¥ are interchangeable, we have:

dF,=d [ §dV= [dFdV

so that the last two equalities yield:

(2.8) fg\,dV fz ‘dcp:dV

Multiplying next both sides by the mean value “do; of the differential dg; in
the region ¥, and summing up with respect to i, one obtains:

qu),fdls,dV qu),fz «-—dcp,dV

or, applying the theorem of the mean value:
(2.9) de;g-idtp,-dV: s z —»-»dcp,dqa,dV
i=1 =1 =1 3
Subtracting (2.7) from (2.9), it results:
z . 3D n 3F, 3F,
(2.10) f (a'%,——————)dfpidV: f ( ~~._)d@;d<p,.dv.
Z, 3 2:1 lgl So; S

If in the second double sum on the right first the indices i and /, and then
the order of summation are interchanged the following will result:

n n SF
> Z : d@z -3 Z d@,d%m E Z*d@zd%
i=1l=1 {=1i= l i=11= <P1
which shows clearly the right-hand side of (2.10) to be equal to zero; thus:

@.11) fz (dg,u-g-g)dcp,dv 0.
i=1 8<Pl
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For this equality to hold, it is sufficient that
3
3o

It is to be noted that (2.12) is not necessary for (2.11), i. e. if (2.12) is
valid, (2.11) will hold, but this is not the unique possibility. Conditions
(2.12) are, therefore, not to be regarded as consequences of our former
considerations; they merely represent a system of n equations in functional
form, attached to the functional Pfaffian (2.3). The equations (2.12) will be
called functional Pfaff equations; they are easily derivable for any function ¢;, if
only the functional Pfaffian is given in the form (2.3).

If k=0, i. e. if functions ¢;(x;,7) depend on v only, functionals Fi
become ordinary functions %;, functional derivatives and differentials reduce
to ordinary partial derivatives and total differentials, so that functional Pfaf-
fians (2.3) and equations (2.12) yield ordinary Pfaffians and Pfaff equations.

Properties of functional Pfaff Equations, — Functional Pfaff equations
have properties similar to those possessed by ordinary Pfaff equations. Their
principal properties refer to the equivalence; two functional Pfaffians are
considered to be equivalent if they give rise to equivalent systems of functional
Pfaff equations; this will be denoted by the usual equivalence symbol~.

Let us first consider two functional Pfaffians, ® and k®, k being a
constant. According to (2.3) we have:

(2.12) A% (i=1,2.....n).

(2.13) k@zfz kS deodV
i=1

so that the corresponding functional Pfaff equations are:

S(k®
(2.19) d(k%,)=—(———l.

@i

Upon division by k, these equations coincide with those for ®, so that
(2.15) kd~D

i.e. functional Pfaffians differing in a multiplicative constant are equivalent.

Next, consider functional Pfaffian ® +dG, where G is an arbitrary
functional of the variables considered:

(2.16) G=[GdV=Gla);

in view of (1.25) we have:

fI>+dG=fZ%,~d<p,-dV+f§n:§—Gd<p,-dV
i=1 i=109;"

i e.
n 3G
) i=1 @i

so that the corresponding functional Pfaff equations are:

(2.18) d(%ﬁg—):%—).
i i
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Since the operations of functional derivation with respect to a function, and
differentiation of the functional with respect to a parameter are independent
and thus interchangeable, we have:

(2.19) g 26 _3d9)

so that the second terms on both sides of (2.18) cancel out, and it remains:
. 30

dii=———

dp;

which shows that two functional Pfaffians differing by the differential of an
arbitrary functional with respect to a parameier are equivalent:

(2.20) ®+dG ~ ®.

Finally, if a substitution of funciions ¢, is performed in ®, a transformed
Pfaffian ®* is obtained, but the very way of forming functional Pfaff equa-
tions makes it evident that the systems corresponding to ®* and ® are equi-
valent. This property makes it possible to perform substitutions in the equa-
tions by the mere transformation of the corresponding Pfaffian.

Element of Action as a Functional Pfaffian. — Consider now a physical
field, and assume that it can be described by a Lagrangian L. The action is
then defined by:

(2.21) w=[ L,

i

where the Lagrangian can be given an integral representation:
(2.22) L=[vdv, av-dx,dx,dx,

Let the field considered be determined by certain functions of field.

' i~1,2,...n
2.23 = (s =S
(2.23) b=t (050"

(In the case of electromagnetic field, for instance, the functions of field are
scalar potential, and the three components of vector potential.). Then, ¥ is a
certain function of the functions of field and their derivatives as well as of
the independent variables:

(2.24) 8=8 (s byps Yirs x5 1)

the index r here denots the time derivatives.

The Lagrangian (2.22) is now seen to be of the form (1.4), i.e. it
represents a functional. Equations (1.3) and (1.6) show that for a functional
depending on certain functions ¢;, the corresponding integrand is a function
of both ¢; and their coordinate derivatives ¢;, as well as of the coordinates
x; themselves. In (2.24). however. the time derivatives ¢, are also present,



16 Djordje Musicki

along with the time ¢, and all have the form (1.1). In this case, therefore,
not only ¢, are to be regarded as ¢;, but also ¢, and ¢, i.e.:

4/,' fOI‘ ]:l
(2.25) CPJ‘{\L,-, for j=n+i

t for j=2n+1
and the Lagrangian is a functional of the following variables:
(2.26) L=L [{;, i, 1].

It is clearly seen that the arguments of Lagrangian, conceived as a functional
in the field theory, are the same as those of Lagrangian in the mechanics of
the particle-system. This coincidence brings about a characteristic analogy
between the equations in the mechanics of the system, and those in the field
theory.

Consider now an element of action (2.21), which is a functional
Pfaffian:

(2.27) @ = Ldt

In view of (2.22) and of the fact that dr is independent of the coordinates,
this expression can be written in the form:

(2.28) O=[RQdtdV

and it is this form of the element of action, that will serve us as a starting
point in our proceeding to obtain the field differential equations.

Lagrange Equations. — Let us now transform (2.28) by adding and
3L

n
subtracting Z

i=1 Oy
it in the form:

dy; under the integration sign; it is thus possible to have

(2.29) ®- {é 8841L,~, dd),-+§10-d¢,-,—<§l %nb,,—ﬁ)dt}dV.

A comparison with (2.3) will show that in the Pfaffian considered, the role
of functions ¢ is played by ¢;, ¢; and ¢, in accordance with (2.26).

Functional Pfaff equations (2.12) corresponding to the variables ¢; are then:

3 BY)
(2.30) d—L:— (i=1,2,..., n).
OS¢y 3Y;
Since:
0_3 3L,
3Y; Y 3¢,
we have
3L 3L
— =t
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or > flllall) s

@30 dt S, 8¢

These are the Lagrange equations of the field theory, i. e. the differential
equations of the field. Other functional Pfaff equations, those for variables ¢,
and ¢, yield identities only, as is easily seen on the ground of Lagrange
equations.

Hamilton Equations. — We shall proceed now by introducing momentum
densities, according to the formula:
3L
(2.32) T = (i=1, 2,..., n)
8 i

Since the Lagrangian density ¥ is independent of second order derivatives, it
follows, according to (1.14):

L oy 2 d 9¥ oY (¢_0¢,)
S Oy idx; 0l Oy Y otox;)

so that we have:

0¥
0 s

Let us now introduce the Hamiltonian density

(2.33) 7

(i=1, 2,..., n.

(2.34) D=3 my—¥
and the total Hamiltonian:
(2.35) H-[9av.

We shall also suppose that the condition of the Jacobian of the system (2.32)
being different from zero holds, i. e.

(2.36)

. 2 (2
l()ﬁ, :l 2y 40

0se| | 0bir 0y

so that the time derivatives ¢; can be determined and substituted by =;.
Thus § becomes of the form:

(2.37) D=9 W, byj» 71, x5, 1)

and H becomes a functional:

(2.38) H=H [y;, m;, 1].

It should be noted here, too, that the arguments of the functionals in the
field theory coincide with the arguments of the corresponding functions in
the mechanics of the particle system.

2 Publications de ’Institut Mathématique
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The transformed element of action (2.29), in view of (2.32) and
(2.34), can now be written in the form:

(2.39) @:f(.”l S mdd + Z 0,dn ~—§;a’t)

In accordance with (2.38), the role of ¢; is here played by ¢, =; and 1.
With (2.35), the last equality becomes:

(2.40) rb:ff w dy dV—Hdt
‘ i=1

since dt is independent of the coordinates.
Functional Pfaff equations (2.12) corresponding to ¢; are now:

(2.41) dm="—  (i=1,2,..., 1)

and, since, in view of (2.40)

E?_—.___ (__ dt) »_—__§._Ii di

3¢, 3y 3¢;
we obtain

dﬂim "_—8—*{{- dt
3,
and finally:
(2.42) dm _ _3H 40, n)
dt 3¢,

Similarly, the functional Pfaff equations corresponding to the variables
T are:

(2.43) a0-2

81?;

and, since according to (1.14) we have:

o9
sw‘fzﬂld%dV-‘-—“(z mdd)=3 STdu=dy

=1
it follows:

3 _ gy, 2 g,
37 3,

and the considered equations become:

or, finally,

(2.44)
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The obtained equaiions (2.42) and (2.44) are Hamilton equations, and
they determine the state of the field. The functional Pfaff equation for ¢
yields an iden.ity only.

Poisson Brackets. — Let us consider any functional in the form of a
volume integral, depending on the arguments of the Hamiltonian, i. e.:

(2.45) F= [&dV=FY;,m, 1]

Its differential with respect to time as a parameter, in view of (1.25) is:

2.46 dF= (3 2E a4+ 3 3 4 3F al\av
( ) f(lzl 84’1 qJ i= 1871"1 Tc 8 )

Furthermore, according to (1.14) we have:

f— V= f%‘?dV:%f@*ng

3F ,y_oF
51 ot

i. e.

(2.47)

so that it follows:

(2.48) ar f S (S—F 49 OF @)dw”

dt Sy, di | 5w, di ot

In view of the Hamilton equations (2.42) and (2.44) we can further write:

SF3H JdF 3H oF
fz or oM oF ———)dV+—,
84}, 875 871, 84), 0t

or, if the symbol:

» 3F 3G SF3G
(2.49) (F, G] - f S (E gg—g: 514

is introduced:

dF oF
(2.50) F, G]+ —.
dt = ] ot

The expression (2.49) presents the Poisson brackets of the two functio-
nals F and G, and (2.50), written by means of it, expresses the total time
dependance of any functional of the type (2.45).

Consider now the volume integrals of the quantities ¢, and =;, and
denote them by ¢; and p; respectively, i. e.:

@2.51) a=[wdv;  p=[madv (i=1,2, ..., n).

2¢
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They are functionals of the form (2.45). Applying (2.50) to their total time
derivatives, and bearing in mind that they are not explicitly dependent on
time, we easily obtain:

(2.52) LY (i=1,2,...,n)
dr

(2.53) %: 2 Hl,  (=1,2,..., n).
1

These relations represent the Hamilton equations in the Poisson brackets form.

Generalized Pfaff—Bilimovi¢ principle. — Having thus established that the
differential equations of a field can be obtained as functional Pfaff equations
for the transformed element of action as the functional Pfaffian, we are in
position now to formulate the following general principle of theoretical physics:

Physical phenomena, describeable by a Lagrangian, evovile dccording to
Sfunctional Pfaff equations, if the element of action transformed to the canonical
form is taken as the functional Pfaffian.

We shall call this general principle of theoretical physics the generalized
Pfaff— Bilimovi¢é principle; quite similarly to the Hamilton principle, it wunites
various branches of theoretical physics into a unique entity.

At the end, we should like to acknowledge our gratitude to the colle-
agues Dr. Zvonko Marié, Bofidar Mili¢é and Ljiljana Dobrosavljevié, for very
useful discussions and suggestions on this problem.
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