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§ 1. Introduction. Let Zu, be a series of complex terms, with partial sum
n
== Zuk .
0
Let us consider the Cesdro, continuous and discontinuous Riesz trans-

forms of order r>o, i. e.,
E (n— k+r)
zo: ( n—-k |~ Sr

]
n R
Rifs,)=x=" 2 (x~K)"u,

k<x

RE"] {Sn] .

We say that two of these transforms are equiconvergent (see R. G. Cooke
[1, p. 97]) for a sequence {s,}, whenever

Cnlsa) =

and

M Jmler(s) — R (5] =0,
or

@ Jim (s~ R (52} =0,

or

3 Jim {5, — R {52} =0.

' The equiconvergence of Cesdro and continuous Riesz mean was already
discussed by Riesz (see E. W. Hobson [2, p. 96]), who proved that St~ 0w,
where k is the integer satisfying r—1 < k<r, is a sufficient condition for (2).
Later, R. F. Cooke ([1, p. 108] and [3]) showed that 5,=0(1) is a

sufficient condition that (1) be satisfied for every r>o, and that (see [1, p. 112]
and [4])

s,=o(@), 0<r<l,

5, =0 (n), 1<r,

is the ,,best“ sufficient condition to (3).

6*
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Finally, R. P. Agnew [5] has shown that a sufficient condition that (1)
and (2) be satisfied for every r>0, is given by
limu,=0

=00

or by
Z ku,=0{®m), n—o.
0

The purpose of this paper is to chow that the necessary and sufficient
condition for the equiconvergence of Cesdro, discontinuous and continuous
Riesz transforms, is that the sequence {u,} be summable Cesdro of order r
to zero 1. e.,

(@) lim €7 {u,}=0;

in other terms,
Deo@eoBe@).

It is obvious that this result contains all the above results. We shall
give here only the proof of (1)< (4) (theorem 2). This proof is based on a
Mercerian theorem (theorem 1). The proof of (3)< (4) is analoque and is
based on a Mercerian theorem® of R. Rado [6]. This of (2)<>(4) is obvious,
because (4) = (1) and (3) shows that (4) = (2), and from (2) = (1) and (1) > (4)
it follows that (2) = (4).

§ 2. A Mercerian theorem. In this paragraph we prove the following
theorem.

Theorein 1. Let {p,} be a sequence of complex numbers, p, # 0, and
let {p.} be defined by

"
PoDo= 1, k%pnakpk:(), n=1, 2,
Suppose that

) S el<os
4]

®) S lpil< .
0

and that the triangular matrix

{mna k}a a}:;kmos k> i,
satisfies the conditions

(7) lim 2 I%nk%«l""amk{”‘

F ] =0

Af {8,, k} is a permanent triangular matiix, and if

e
lim inf |8, ,|> lim sup 2 130, &
H=00 s 00
then the transform
n
e Z 8,,, k s
k=0

is a Mercerian transform.
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and

Z Dk
k=0

Then, the matrix {p,—i+ &, s} defines a Mercerian transform; in other
words, if we write

(8) lim sup 2 o, x| <
n=oo k=0

G, =

M

0{pn-—k+“n,k}ska n=0, 1, 2, ee

we have
5,+0<=06,-0, n—oo.

Proof. From (5), (8) and (7) follows that

$,—~0 =>0,-0, n—ooo
because

9) | s | < 2 |t 41— 1|0 @S 1> 00, VO <k < 1.
i=k

To prove the converse, put
n—k
"
Ynsk= Zoan, k+jpj 3
=

and show at first that (6), (7) and (8) implies

(10) lim sup 2, |Yux|= Zp; lim sup 2 |an, i
n=oo k=0 j=0 n=co k=0
Indeed
ZIYnsklzz Ocnskzp;‘—*’ Z(anak'f-j—arnk)p; >
k=0 k=0 j=0 j=1
hence
Z Yn,kl: z Ianak‘ z P; < Z Z (0(,,, ki T %y k)p;
k=0 k=0 j=0 k=o0| =1
aan
< Z ipj*l Z ’a'nykJrj_an:kl'
j=1 k=0
By (7) and (9) we sce that
Z[an,k_;,j—oc,,,k|—+0 as n— oo, for j:1,2, Cea s

Z O‘nak+j'_°(nak|<2 z Iarwkls

k=0 K=o
it follows from (8) and (6) that the right side of (11) tends to zero, as rn—oo;
hence (10) is true.

Now, by (5) and (6) it follows that the transform defined by

(12) W
k=0
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is a Mercerian transform. Therefore, it is sufficient to show that the trans
form obtained by expressing o, as the transform of ¢, is Mercerian.

By (12)
Sp= z p:,_k %,
k=0
which gives
(13) cn:tn+ZYn,ktk’
k=0

where

n—k

Yns k= Z %y s k+jp;, n=0,1, ... and 0 <k <n.
j=0

From a theorem of R. Rado [6]2, it will follow that (13) is a Mercerian
transform, if we show that

n=ow n==00

lim v,,,=0 and limsup z [Yar <1
k=0
But from (9) follows that lim v,,,=0, and from (10) and (8),

5 Su et
j=0 j=0 j=0

lim sup Z PYno | =
n=oo k=0

n
y
im sup gola,.,k|<

which proves the theorem.

§ 3. The necessary and sufficient condition for the equiconvergence of
Cesaro and discontinuous Riesz transforms.
Theorem 2. Let r>0 be a fixed number. Then Cr {s,} and R’ {s,}

are equiconvergent, in the sense of (1), if and only if the sequence {u,} is
summable Cesdro of order r to zero; in other terms, setting

Ar (n):C:l{sn}_R:t{sn} s
we have

(14) A,(n)—»O@Cf,{u,,}—»O, n-oo .
For the proof of theorem 2, we use two lemmas, which we shall esta-

blish at first.
Lemma 1. For every r>0, the function ¥,(z) defined by

(15) (A-2)¥,@=T@F+1)—1-2)"+ > n" 2",
n=1
where we choose the principal branch of (1-—2z)", is
(i) regular in the whole plan cut along the real axis from z=1, to

= -} 0O .
(16) (i) Y.@=P(@+0(1-2z|") as |z—1|-0,
where P,(z) iz a polynomial of order k, and k is the integer satisfying
r—1<k<r.
Proof. Setting
fO=(0—2)*te'e? ¢, |z|<]1,

2 See L. c. 1).
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where we choose for lgz and for (1-—z)" the principal branch, and establi-
shing Poisson’s formula (see [7], [8, p. 39—45] and [9, p. 68])

o

Srm=S [ ree=a,
n=1

p=—o

we obtain

(17) (1 ) 41 o 1"( 1) + o Z—-l r4+1
—z)7 nz"=T(r+ —————
ngl ur.z—oc(ng‘i‘zp.Ttl‘)

for |z| <1, where we take the principal branch of Igz and of

z—1 T+
(1gz+2p.7:i ) .
From (17), by analytic continuation, it follows the first affirmation of
lemma 1.

We see also that if the constants vy, are defined by

z—1\+t1 =
(18) I‘(r—l—l)( ) ~S @ 2y, |z-1]<1,
ng v=0
then .
(-1 S ST S LI
_Z r nl’ Zn= Yv _Z V+ r+ s ( ______.) ,
,21 \Zo uzz_ - lgz+2pmwi

where the dash’ indicates that the term p=0 is omitted from the summation.
As the last series in the right side is absolutely and uniformely convergent
for every z, z=|z|e®, |0] <=, we have

(19) (A—2)"* S "=y + v (1=2)+ - - - + vl =2 +O(|l —z|™*Y),
n=1

when |z—1|-0 and r—1<k<r
From (18) we see that

(20) Yo=T(+1) and v,=—2T(@+2).
Now, we see immediately that (16) follows from (15), (19) and (20), and that
1) ‘I",(z)—»%I‘ (r+2) as |z—1|—8.
Lemma 2. Setting
(22) ¥ ()= 3 p"
and "
1 S o eon
¥,@) »Zopnz ’

the two series Z p, and Z p; are absolutely convergent.
n=0 n=0
Proof. By Cauchy’s formula, we hawe, for n>2k+1,

1 \Fr(C)dc_ 1 fwr(c)ﬁwdc

g

2ri e+l 2 i
c C

n 2
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and choosing for C a circle of radius R>1, avoiding the point 1 by a loop,
we obtain, taking (16) into consideration, that

¢ nt

R
@3 B R = L G I
1

Thus the series > p, Is absolutely convergent for every r>0, and by (21)
o
and (22) we get

o 1
24 : = — L (r+2)
(24) éf S Le+2)
To prove the absolute convergence of i p., we show first that for every r>0,
n=0
25 ¥, (2)#0 for |z|<1 and z#1.

Indeed, when O0<r <1, the coefficients
_TensD)
B nl

E‘_.(_r_j:}..)»... “j nt oM == “z {wmn’}zn

=2+ 5 =0 n!

decrease and tend to zero as n—co and the affirmation follows from Kakeya's
theorem [10]3

From the Stirling formula it follows that

#

of the series

T{r+n+1)

(26) o

=n'+ 01 as n-oo,

which shows that ¢,—0 as n—o0, for 0<r<1.
To prove that ¢,y > ¢,, which is equivalent to

3

nrm(n;l)’>r~£§f—§ﬁ, n=1,2, ..
i

we use the following fact: it {a,} and {b,} are two sequences satisfying

dpy by
(27 Tt Tl op=1,2, .,
a, b,
and
.. 4a
Iim 2 =1,
amw b,
then
a,>b,, n=1,2,
S H epy > Cy>0 forn=12,..., and if ¢4y > ¢y >0 holds for at least one integer
n, then

|3 o

| n=0

>0, for |zj<Ll
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Setting

a,=(n+1)"—n" and b,,=£———F (rn+l)
(n+1)!

we see by (26) that a,/b,—~1 as n—oc.

To prove (27), which is
n—(m—1)y - n+1
(m+1y—n" " n+r’

(28)

we divide every expresion in the right side of (28) by n, and every expres-

1
sion in the left side by »", and setting x=, (28) is reduced to

L+r){1=1=x 7} > 1+ x){(1+x)—1},

which is verified for 0 <r<1 and 0<<x<1. Hence (27) is proved. When r=1,
we see by (15) that ¥, (z)=1. When r>1, we have also

Pr+)>{1-2) S nz"
n=1

for |z| <1, z#1.

Indeed, by Cauchy’s maximum modulus theorem it is enougt to show that
this inequality holds for z=e2%"/ 0 <0< 1, and as by (17) we have

in’z' _T@+1) ] L2 1
W Q@m)"H | (0
the inequality is reduced to

T T+l Riiog 1
( - ) > > . r>1, 0<0<l,
sin 0w pTw 0]

, z=e207m 0<f<1,

2 + o 1

sin?fn S (n+ 0)2

the last inequality is reduced to
1

( +z°° 1 )1/2>< J§° 1 )Tﬂ
ps" e (14 0) bt [ H 0]
which is verified for r>1, since for g, >0, (3 a,’)"" decreases when ¢t in-

creases (see [11, p. 28]).

Hence (25) is verified, which proves that 1/%¥,(z) is regular for [z|<1,
z=#1, and according to (16),

1 1
¥,(z) Pe(2)+0(|1—z[)

=Q(2)+0(j1—z|"), as|z—1|-0,

where Q is a polynomial of order k; it follows for the same reasons as
before, that

(29) p;=0( : )-

n+1

which proves the assertion.
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Proof of theorem 2. As
C;{u,,}=—r— Cr={s,}
n+r
and as
r
n+r
(14) is reduced to
A,(m)-0=n"8S"1-50, noew, Vr>0.

Cr-1{s,}»0c>n="85-1-0, Vr>0,

Multiplying (15) by (1—z)~"1 Z u,z", we get by (22)
n=0

C(r+1)S'—n"R" {s,} = > Pn-k S,
k=0

and so
res < _ 1 r(r+1)\ .,
A, (my=n""> Zp”“ksk 1+( (n+r)-— w )Sn'
n
Since
Sr= Z S,
k=0
by setting
po=Sy! and g,=n"" St for n>1,
we get
(30) A )=S Prst s ) i
k=0
where
1 re+1) .
otmo:((,H_r)_ nr )_(l_n )pns
n
and
“n,k‘—‘((T_lr,;—n—'P(H- 1))k'—(l—n”"k’)p,,_k, 1<k<n
n

and it is sufficient to show that the transform defined by (30) satisfies the
conditions of theorem 1.

But, from (23) and (29) it follows that conditions (5) and (6) are satisfied.

Besides,
n 1 n
oc T(r+1)(nr —— L+ Sk )+1—n"|p,

kZo! n’k\< ("+ )(" I‘(r+n+1))< +‘ST: )+( g )|Pl
+ S A= k) [P -
k=1
<1"(r+1)(n—'—- n! )En:k'+o(l)=~r—l"(r+l)+o(1)

F'n+r+1)/9 2

and so by (24),

0o

Zpk

0
which shows that the condition (8) is satisfied.

lim sup > [a,, x| <

n=qe k=0

b
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Finally,
< n+r
Z | %ps k+1— %ns k l =(l - n_r) |pn '—pn—ll +(r (r+ 1)___nr /( n ))
k=0 /

n—1
+ 2
k=1

+(=n7"k") pns

(1 /(n+r)—n"r(r+1))((k+1)'—k’)—(1—n"(k+1)’)p,,_k_1

n

< 2(F(r+1)—n’/ ("+’))+ 220(1—;1—'1{') | Pui| =0 (1),

n

which shows that the condition (7) is satisfied.. Thus, theorem 2 is a special
case of theorem 1.
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