PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 1 (15), p. 31—65.

BASIC THEOREMS ON TURING ALGORITHMS

Viadeta Vuckovié
(Received 25. XII 1961)

1. Introduction. In [1] we exposed briefly an approach to the theory of
algorithms by the use of Turing machines. We left most theorems there withuot
proof and we exhibited there only one example of concrete Turing algorithm.
In this paper we shall give complete proofs of all theorems which were only
mentioned in [1] and we shall exhibit effectively some more algorithms for
computation of particular word-functions. In the same time we shall expose
the principles of the theory of Turing algorithms with all needed details; so,
omst parts of this paper can be read without previous knowledge of [1].

2. Background. The origin of this paper and the paper [1] was a study
of the excellent monograph [2] of Martin Davis. The set-up of M. Davis
suggested the idea to apply his version of Turing machines not only for the
somputation of arithmetical functions but of word-functions in general. The
ly problem was the question of arithmetization, and for this sake our
heory of recursive word-functions, as exposed in [3], seemed the best suited.
in [1] we exhibited this arithmetization with sufficient details; therefore we
shall not reproduce it here anew.

Our ajm here is twofold: to exhibit effectively all necessary algorithms
and to do this with a minimum of changes in the original treatment of M. Davis.
Naturally, we could not adopt any of concrete machines of [2]; but in some
proofs we had only to change the machines in question. This was impossible
only in proof that all A-primitive rceursive word-functions are A-algorithmic
(i. e. Y-computable). Also, the. equivalence with Markov’s normal algorithms
has not its countepart in [2]. :

As to the originality of our exposition we mention, that, after all, the
idea to apply Turing machines for the computation of word-functions goes
back to Turing himself. Many other versions are known (f.i. [6], [4]), but no
one was effectively developed in all details. We believe this to be a reason why
the theory of algorithms is developed only in terms of normal algorithms, and
we believed to do justice to Turing’s original achievement by developing it in
all details. So we believe to have given ground enough for further achievements
in this direction.

3. Relations to normal algorithms. The theory of Turing algorithms, as
developed here, is not meant to be a concurrence to the theory of Markov’s
normal algorithms. We elaborate only an approach which was neglected, as
we believe, because of some disadvantages in the first beginnings. Namely, some
of the first Turing algorithms are very long, and generally every Turing algo-
rithm is longer than the corresponding normal algorithm. But once this first

32 Viadeta Vukovié

tedious work being done, the further development presents no greater difficulties -
and the normal form theorem, enumeration theorem etc, are obtained in a
straightforward manner which has not its counterpart in the theory of normal
algorithms.

After all, Turing algorithms have the advantage to be much more in
the spirit of the contemporary technical trends than any other algorithms,
these last being all more graphical than mechanical.

4. First definitions. We employ a fixed alphabet
4.1 S ={Sy, S, Sg, ... Su_1} s n>1,
and we study the word functions with arguments and values in the set
Q (&), where
4.2) Q (&) =the set of all words written with letters of &.
By convention, we shall sometimes denote S, by 1. (Ifn=1 Q(&) will

be reduced to the set of all numerals, and we shall have the classical case of
computable arithmetical functions).

The mos. of definitions here are taken directly from Davis [2], with
some minor changes. Therefore we list them without many comments.

Definition 4.1. An expression is a finite sequence (possibly empty)
of symbols chosen from the list:
ql) P ‘I:;s NP
Sos St - Sne1s
Sn& Sn+1 P
R, L.
We call {S,, Sy, ... , S..1} the printing alphabet and {Sy, Snats -1 s}
the auxiliary alphabet. In this one the letier S, will be in most cases denoted

by O, representing an open square, or a blank. S,.; will be often denoted
by . This symbol will serve as auxiliary to write m-tuples of words.

Definition 4. 2. A quadruple is one expression having one of the
Jfollowing forms:

(1 4:8; Sk qu
2 9:5;Rq
(3) 9: 5 Lq,
4 9:5, 9k 4

Definition 4. 3. A Turing algorithm over © (or a Turing machine
over &) is a finite, nonempty set of quadruples that contains no two quadruples
whose first two symbols are the same.

Algorithms are denoted by La.in or German capitals: Z, U, X.

The ¢,'s and S, s occuring in the quadruples of a Turing algorithm Z
are called the internal configurations and the alphabet of Z respectively. In the
alphabet we d'stinguish the printing alphabet {S,, Sy, ... , Sy—1}=& and the
auxiliary alphabet which consists of all S;s that are not in & but occur in the
alphabet of Z, ‘

If none of the quadruples of Z is of the type (4), we call Z a simple
Turing algorithm.

Basic theorems on Turing algorithms 33

Definition 4. 4. An instantaneous description is an expression contai-
ning exactly one q;, neither R or L, and is such that q; is not the rightmost
symbol.

If Z is a Turing algorithm and « is an instantaneous description, then a
is an instantaneous description of Z if the g; occuring in « is an internal confi-
guration of Z and if the S s that occur in o are part of the alphabet of Z.

An expression that consists entirely of the letters S; is called a tape
expression.

Definition 4.5. Let Z be a Turing algorithm and o one instantaneous
description of Z. If q; is the internal configuration occuring in o and S; is the
symbol immediately to the right of gq;, then we call gq; the internal configuration
of Z at «, and we call S; the symbol scanned by Z at a. Removing g; from «
we get the expression on the tape of Z at «.

Definition 4.6. Let Z be a Turing algorithm, and let «, B be instan-
taneous descriptions. We write Z: o\~ P, or (when no ambiguity can result) o«
to mean that one of the following alternatives holds:

(1) There exist expressions P and Q (possibly empty) such that o is
Pq;S; Q, B is Pq,S, Q and Z contains q;S; Sy 41,

(2) There exist expressions P and Q (possibly empty) such that « is
Pq;S; S, Q, B is PS;q; S, Q, where Z contains q;5; Rqy;

(3) There exists an expression P (possibly empty) such that « is Pq;S;, B is
PS;q,0, where Z contains q;S; Rqy;

(4) There exist expressions P and Q (possibly empty) such that o is
PS.q:S;Q, B is Pq; S, S; Q, where Z contains q;S; Lq;;

(5) There exists an expression Q (possibly empty) such that « is q:5; 0,
B is q;08; Q where z contains q;S;Lq.

Comparing with the definiton 1.7 of Ch. I of [2] we see that Turing
algoritms ,,work‘‘ exactly in the same manner as Turing machines of M. Davis.

We mention the trivial

Theorem 4. 1. If Z;a P and Z:.o— Y then B=r.

If Z:oB and ZC Z' then Z' .o+ B. :

Definition 4. 7. An instantaneous description « iz called terminal with
respect to Z if for no B we have Z a1 B.

Definition 4. 8. By a computation of a Turing algorithm Z is meant
a finite sequence «;, dg, ... , %, Of instantaneous descriptions such that Z . a; ;41
for 1 <i< p and such that «, is terminal with respect to Z. In such a case
we write

YA T - P e . Il e 0
or Zioy | =0, 10, or Z:ioy|=-0, or x,=Resz () and we call «, the
resultant of «, with respect to Z.
By convention, the internal configuration at «; will be taken as g¢;.

Z:a|—B denotes that there is a sequence «;, %5, ... » % of instantaneous
descriptions, such that Z:e; o, for 1 <i<k and a=o and B o, but
is not terminal with respect to Z.

5. Algorithmic and partially algorithmic word-functions. To adopt the
notion of Turing algorithm for the computation of word-functions we need
to change slightly the corresponding definitions of Davis.

3 Publications de I'Institut Mathématia»

34 Viadeta Vuckovié

Definition 5. 1. Let 4;, 4s, ..., A, be words (of Q (&), as
always in the sequel — if not explicitely declared otherwise). With the m-tuple

(4;, 4,5, ..., A,) we associate the tape expression (Ay, 45, .., An), where

(AI’AZ’ vy AM)ZAI*AZ* PR *Am_

{Remember that * is the letter S,.; of the auxiliary alphabet).
If f.i. A; is empty, then

(Al,Ag, ey Ai’ e Am)zAl*Az*"'*Ai—l*O*Ai*f‘l*' . '*Am,
i.e. for the empty word we write the letier O=S, of the auxiliary alphabet.

We point that in [1] we defined (44, ... , 4,) to be 4,04,0- - -04,,.
Here we adopt the above definition as more suitable. It is obvious that with
it nothing is changed in principle in the exposition of the paper [1].

Definition 5.1 serves for inputs. For ouiputs we give

Definition 5.2, Let M be any expression. Then < M > is the word
in Q(S) obtained from M so that all symbols in M which do not belong to
the printing alphabet S are deleted, and the remaining letters of © are put
together, in the same order as they appear in M.

F.i. if n> 8§,
(83 * 055911 8551 57) =538, 555, S;
and
(45 Sn+5Snt2 %% 0) =0,

i. e. if M does not contain any letter of © then (M) is the empty word.
Definition 5. 3. Let Z be a Turing algorithm over S. Then, for each

m, we associate with Z an m-ary word-function Yz (X1, Xs, ..., Xu), Wwith
domain and range in Q(S) as follows:
For each m-tuple (Ay, Az, ... , Ay) we sef ;=g (44, Ass ..., Ay
and we distinguish between two cases: .
(1) There exists a computation or Z, &y, %, ... , 0. In this case we set
Wz (Ay, Aay oo s Am)= o) = (Resz (1)).

(2) There exists no computation beginning with «, i. e. Resz () is unde-
fined. In this case we leave Wz (4, Ay, ... , Ay) undefined.

Definition 5. 4. An m-ary word-function f(Xy, ... , Xm) with domain
and range in Q(&) is partially (Turing) algorithmic it there exists a Turing
algorithm Z over & such that

FXyy ooy X2 W2 (Xy, ..., X

(Here ~ means: if the right side is defined so is the left and both are equal,
and if the right side is not defined also the left one is not defined). In this
case we say that Z computes f. If, in addition, [is a total word-function, then
it is called (Turing) algorithmic.

We shall always use short expressions ,,partially algorithmic*‘ and ,,algo-
rithmice* for ,,partially Turing algorithmic® and ,,Turing algorithmic* respectively.

6. Some elementary algorithms. We exhibit here some algorithms which
will be needed in the later parts.

Basic theorems on Turing algorithms 35

Example 6. 1 Addition of a fixed word. We construct the Turing algo-
rithm 4Z such that ¥,z (X)=X+ 4 =AX. (For the definition of X +7Y see [3],
formula (4. 2)). Let the word 4 be S, S, ..., Sy, where all S;, are €&

for v=1, 2, ..., k. 4Z w1l consist of the following quadruples:
41004,
qISvqu29 VZO, 1, PPN ,n—l.

qS,Lg,, v=0,1, ..., n—L

S
9OSu_ w1 \y_2 34 ..., k+l (print)
qv+1 Sik_ (VAZ)qu-I"l

Gk+20 Rqias.
Let first a; =¢; O. Then
4Z2:4,01-4,0

'_q3Sik

g3 08y,

I'—qélsik_lsik

I:qk+10SizSi:' e Sik

- Qktz S0 Siy e oo o Sy

F k208, S, . o Sy

-0 qeysSi S oo o Sy =0 qryg 4.
So

ReSAZ(qIO):qu+3A
1. €.
(ResAZ(q10)>=A:0+A.
Let now o =41 5, S,. ... - S, where
S Si, . oo SJPEQ(@)—O.
Then
AZ:qlsj‘sz. e e Sjpl—qzsj'lSjg. eee . Sjp
}—qzosleh. e Sjp
|:-0qk+3S,-l. . S,‘ijl. Cee . Sjp
and
<RCSAz(q1Sj,Sj2. . Sjp)>:Sj‘Sjg. ee . Sjp—’rA.

Example 6.2. Identity. The function f(X)=X can be regarded as
the function ¢ (X)=X+ 0. So the algorithm z:

4,004,
qISvquz, V:(), l, “ee s n——l,

computes this function.

kid

36 ‘ Vladeta Vuckovié

Example 6. 3. Unrestricted addition. Let A be the same word as in
example 6. 1. Let .42 be the algorithm

AZU{qk+3Svqul|v:05 1, ce e s n—'l, l’l}
(Take into account that S, =0). Obviously the algorithm ..,z repeats w.thout

end the work of the algorithm ,Z, i. e. it adds the word A without comming
ever to a halt. So Res.,z (g, X) does not exist for any word X € Q(&): the

function ¥, 4z (X) is never defined.

Example 6. 4. Inversed addition of a fixed word. The algorithm Z,4
will compute the function f(X)=4+X=X4, i.e. it writes the word 4 at the
end of every word. Let A4 be as in example 6. 1. Z, consists of quadruples:

q: S, Rqy, v=0,1, ..., n—1
910 Si. ¢
q,S,_,;Raq,, v=2,3, ..., k
q\,OSivq\,Jrl, v=2,3, ... , k.
Let a,=¢15,S),- Sj- Then
Z4:q:8,8, - o Sict=8,q185- -+ - Sie
=SS, -+ - Seq1 O
S, Sh. o Seq2S,

8,8, .. . SeSi,q20
=838, oe. . SeSigs S,
=85S - o S S Sie oo - Sy Gkt S
So <ReszA(q1X)>=XA:AY+X.
Remark that by adding to Z, the quadruples
e+1Sy L1 v=01, ..., n—1

i +10 Rqi+2

we had then an algorithm Z,' such that
Res z4' (g1 X) = 0qy + 2 XA.

Example 6.5 Anihilator. The algorithm Z,; computes the zero-
function Z(X)= 0, i. e. it transforms every word into the empty word. Z.y is

4.5,0q,, v=01, ..., n-1
q:0 Rgq,.
We have
Z,,,-,,:qlSjl. cee Sjk }——q20S,-2. e Sjk
}—0q1Sj2. e . Sjk
|=—000..... 04,0,

and < Resz , (g, X) > =0.

Basic theorems on Turing algorithms 37

Example 6.6. Constant. The algorithm Z,;, 4 computes the function

f(X)=4, i.e. it transforms every word inio the word A.

Let A=S;Si,. Sy . Then Z,pi4q is
q:5,0q,, v=0,1, ..., n-1L

q,0 Rq, (erase the word on the tape)
410 S, g3 (begin to print the word 4)
4ySi,_,

Rgq, v=34, ..., k+1.
4,08, 4,4 (finish to print the word 4)

Obviously < Re3zum +4(qy X) > =4 for every word X & Q(€).
Example 6.7. Predecessor. Z is the algorithm which erases the

first letter of every word (and transforms the empty word into itself):

q,.5,0qg, v=0,1,...,n—1

Example 6.8. First coordinate. We construct now the algorithm Z;

which will give ihe first word X, of every m-iuple (X1, ... s Xn).

So

0RO,
g.S,Rq,, v=0,1, ... n—-1L

7:1*0¢»
4: 0 Ryq;
q;5.0q;, w=0,1, ..., n—1 i=2,3 ..., m—1
q:+0 qiyy
dm O Rqmiq
G180 O0Gmes =01, ..., n—1
gm+2 O Rmia
Let X;,=S5,S:,. Si. We have
Zi g1 Xix Xpx - - -2 X,
S, g1 S oo . SixXex - o2 Xy,
=D ST 7D CLTEEE D, ¢
. S NP CE TIIED ¢

—X,000.0¢,0Xy,
- X,000.00 Xn
I=.X,000. 000 gy 0.

Wz (X1, oo s Xm)=(Resz, (¢ (X1, ..., Xu))) =41

38 Vladeta Vutkovié

Example 6. 9. Other, intermediate coordinates. For i=2,3, ... , m—1
Z; will give the i-th coordinate of every m-tuple (X3, ... , Xj, ... , Xn). Z;is:
4,0 Rgq,
q,5.0¢q,, p=0,1,...,n—=1pv=1,2, ... ,i=1,i+1, ..., m+1
7,*04q,11
;O Ry,
;5. Rq; p=01, ..., n—1
g:i*0Giv1
Im O Rqm 1
Qe +150 0 quys, w=01, ..., n—1
In+2ORqmir
It is easy to show that
< Resz;[q, (X3, ..., Xiy oo s X)) > =X,
Example 6.10. Last coordinate. The algorithm Z, computes the last
coordinate X,, of every m-tuple (X1, X,, ... Xp). Z, Is
4,0 Rgq,
4,5:.0q,, p=01,...,8-1)v=12, ..., m—-1L
4,4 0q,+1

We shall not exhibit more simple Turing algorithms because we shall
need only. the quoted ones.

7. Relativization. In this section we introduce also the quadruples of
the type (4) in the definition 4.2. As always we take &={S,, S},...,S,—1} as
the printing alphabet. Here we introduce a set % of words which are & Q(©),
and we show how to relate the quadruples of the type (4) to such a set.
{(Compare [2], sect. 4 of Ch. 1).

Definition 7. 1. Let a, B, bz instantaneous descriptions. Then we write
Z:a-B if there exist expressions P and Q (possibly empty) such that o is

A

Pq;S; Q, where Z contains q;S;q.q;, and either
n (@) U and B is Pq.S;Q, or
(2) () &N and Bis Pg S Q.

Definition 7. 2. Let a be an instantaneous description of the form
Pg;S; Q. Then, « is final with respect to Z if Z is a Turing algorithm which
contains no gquadruple whose initial pair of symbols is ¢; §;.

Theorem 7. 1. « is final with respect to Z if and only if (1) «is

terminal with respect to Z, and (2) no matter which set U is chosen, there is
no B such that Z: o8,
A

Basic theorems on Turing algorithms 39

Definition 7. 3. By an U-computation of a Turing algorithm (or
machine) Z is meant a finite sequence &;, &y, o, of instantaneous descrip-
tions such that, for each i, 1 <i<p, either Z o\ oy or Z:oyl—o .y, and

A

such that «, is final. In this case we write a,=Resz y (), and we call o, the
W-resultant o, with respect to Z.

Obviously, if Z is a simple Turing algorithm then an 2-computation is
simply a computation, because Z does not contain any quadruple of the form
9iS;qrge-

Definition 7. 4. Let Z be a Turing algorithm. Then, for each m, we

associate with Z an m-ary word-function (whiczh, in general, depends on the set
A) ‘FZ-WL (X1, X3, ... , Xm) as follows:

For each m-tuple (Ay, Ay, ... , Ay,) of words of Q(3) we set
wy=q; (A1, 43, ... , An) and we distinguish between two cases:
(1) There exists an A-computation of Z, oy, %y, ..., o,. In this case we set
\FZ:QI (Als A2, L Am): <°‘r>:<ReSZ:QI (al)>'
(2) There exists no N-computation of Z, beginning with «,, i.e. ResZ_ 9% (o)
is undefined. In this case we leave IFZ-%[(4, A5, ... , A,) undefined also.
Obviously, if Z is simple then, for any set 2,
‘FZ:QI X1, ooy XYz (X, ..., X))
Definition 7.5. An m-ary word-function f(Xy, ... , Xm) is partially
U-algorithmic if there exists a Turing algorithm Z such that
f(Xy, oo, X,,,):‘Ifz:% X5 oo s Xp)-

In this case we say that Z W-computes (or U-generates) f.
If, in addition, f is total, then it is called N-algorithmic.
Theorem 7. 2.To every Turing algorithm Z, there corresponds a simple
Turing algorithm Z' such that
Yo (Xys oo s X)2Waig (X, ooy X

Proof. The same as in [2] Th. 4. 4 of Ch. 1.
We quote also

Theorem 7. 3. If f(Xy, ... , Xw) is (partially) algorithmic, then it is
(partially) N-algorithmic for any set A.

If f(Xy, ..., Xn) is (partially) @-algorithmic, then tt is (partially)
algorithmic.

(o is the symbol for the empty set of words).

On the ground of this theorem, every theorem about -algorithmicity is
in the same t'me a theorem about algorithmicity (with %= @). So it suffices
to give only theorems about Y-algorithmicity, where ¥ is some set of words
of Q(&).

Definition 7. 6. A set ¥ of words which are & Q(&) is (U—) algo-
rithmic if its characteristic function Cy(X) is (A—) algorithmic.!

! Ca(X)=0for X< & and CQ(X)=S0 for X & €.

40 Vladeta Vuékovié

Theorem 7. 4. Every set N of words of Q(B) is U-algorithmic.
Proof. Let Z consist of the quadruples

115,993, v=0,1, ..., n—1
4.5,0q,, ~v=0,1, ..., n—1
440 Rg,
q3SvS0q5’ V:O’ls LTI n'_'l
g5 So R .
Let now S, S, ..., S & I Then
Z:qlS;‘S,-z. ce . S,-ki»—-qu,-lSiz. Sik
A
f—-q40S,'2. PN Sik
}—~0qu,~2. Sik
—000. 0g,5;,
—000.....0q,0
—-000. 00¢q,0,
and (Resz:u(q.S;. Sip))=0.
Let now S, Si,. S & . Then
Z:qIS,'lS,‘Q. e Sik|_q3Si|Siz- e Sik
A
g5 S oo - Sy
Sq2Si,. .. . Sy,
|=-5,00. 0¢q,0,
and (Resz:%(q,S;, . - S)0 =S,

So le")I(X)= Cﬂ[(X).

8. Regularization. With this section we begin to prove general theorems
about Turing algorithms, which where only quoted in [1]. As we mentioned
before, the most of them are simple (but technically more involved) genera-
lisations of the corresponding theorems of [2].

In following we suppose that the printing alphabet is always
6:{80, Sl’ T ee g Sn—l} .

With Davis we shall adopt in the future the convention of systematical
omitting of the final occurences of open square O in an instantaneous
description. So, f.i. we shall write S;¢;S5:S, for S;q35.5,00000. (Bui,
S19, O f. i. is not to be written as S;q;). On the other hand, we shall not
omit initial occurences of O. The reasons for this last convention are in the
role which will be played by these initial occurences of O.

We give first some more definitions, which are slightly different from
similar definitions of Davis ([2)].

Basic theorems on Turing algorithms 41

Definition 8.1. If Z is a Turing algorithm we write © (Z) for the
largest number i such that q; is an internal configuration of Z.

Definition 8.2. A Turing algorithm Z is called m-regular (m > 0) if
(1) There is an s >0 such that, whenever

Resz o [q1 (41, ... , Am)]
is defined, it has the form

qd02) (Bl, cee Bs)9
or at most the form

O0qez) (By, ..., By,

Jor suitable words B,, By, ... , By, and (2) No quadruple of Z begins with
qdo=)-
We point that our allowance of O at the beginning of the
qoz(By, ..., B)

is not essential; we allowed it only to shorten some algorithms, but we shall
prove that it can always be deleted by a new algorithm.

Definition 8. 3. Let Z be a Turing algorithm. Then Z”) is the Turing
algorithm obtained from Z by replacing each internal configuration gq;, at all
its occurrences in quadruples of Z by q,.,.

We prove now the first theorem about regularization.
Theorem 8. 1. For every Turing algorithm Z, we can find a Turing

algorithm Z' such that, for each m, Z' is m-regular, and, in fact
}{es‘z,:“)1 [ql (1_41, .:—. 5 Am)]ﬁOQQ(Z')\FZ:QI(Al, e, Am)

Proof. The idea of the proof is the same as in the proof of the corre-
sponding Lemma 1 of Ch. 2 of [2]. We begin by putting markers A and p to
the ends of input. Then we let Z work, taking into account the eventual
disturbing influence of A and p. After this, we erase all auxiliar letters and
put the remaining ones close one to another, going to the beginning as to
have only one O before go¢(z).

We introduce the letters A and p as the first two letters in the part of
the auxiliary alphabet, beginning with S, ,, that are not in the alphabet of Z.
(S, is excluded, as it denotes open squares, and S,,;=* is excluded also, as
it serves to represent m-tuples (4, ..., 4,)).

Let Z, be the algorithm:

q.S,Lq,, v=0,1, ..., n—1,n (S,=0)
g, 0 gy (print » on the left end)

922 Ry

qgsS,Rqs, v=0,1, ..., n—1

430 Rq,

3% Rqs

gs* Ry

9.0 Lg,

42 Viadeta Vuckovié

q:0¢45 (print p on the right end)

950 L qs

e L as v=0,1, n~1 n nt+l
gsr Ry, (move left until & is reached).
We have:

Ziigu Ay e Ay oo % A,
gsOAy % Ag% ... x A,
-geh Ay x Agx ... x Ay
Ay Ay Ao ... * Ap,
mAAyx g% ... % Anqs O
—AA ¥ Ayx ... % 4,0q,0
A A,k dyx ... xA,q50
AA 2 Age ... %A, q50
|I=ger Ay x dax ... xAup
o Ag,dyx Aax ... xApp.

Thus, the effect of Z; is to seal the initial instantaneous description
with the letiers A and p.

Now, Z® will behave precisely like Z except that it will begin in the
internal configuration g, instead of ¢, and the index of all of its other internal
configurations will be similarly advanced. Thus, we set k=0(Z®), and we
let Z, consist of all the quadruples of Z® and, in addition, the following
quadruples, where g¢; may be any internal configuration of Z®:

g:2 0 g4 (erase the marker })
Gie+i O Lgop+s

Qap+i O Ngar+; (print A one square to the left)
Gorvi A R Gy (return to the main computation)
gi0 O gapri (erase the marker p)

Qa+i O Rqap+i
Gansi O pdar+: (print p one square to the right)

quet+ie L g; (reiurn to the main computation).

These last quadruples serve to neutralize the eventual influence of A and ¢
on the work of the algorithm Z®. Now, either Resz:%[g1(4y, ... 4wl
is defined, in which case we have
m Zy:ngy (Ays 5o Am)pl‘if-kap,
where

@) < a>=< Resz:alqy (Ay, --- 5 Aml>,

Basic theorems on Turing algorithms 43

or Resz.g [91 (43, -.. , 4,)] is undefined, in which case
Res z,.y N q; (44, ..., 4m)p] is likewise undefined.
Let L=5k+1, and let Z, consist of all quadruples of the form
4:5;S;9L

where ¢; is any internal configuration of Z,, where S; belongs to the alphabet
of Z, (so as to the printing alphabet also to the auxiliar alphabet, inclusive
S,=0 and S,,,=*), and where no quadruple beginning with ¢, S; belongs to Z,.

If 2 Pg; Q¢ is a final instantaneous description with respect to Z,, we have

3) Zy:ZPg;Qet-APqLQop.

Let now Z, consists of the following quadruples, where S may be any
letter in the alphabet of Z, different from §,, Sy, ... , S,—4, 0, » and p. (So
it can be also S,.1;=%):

q.S,Lqr, v=0,1, ..., n—1, n

qrSLqg; (move leftward looking for i)

grhRqriy

gr-1504qry+; (erase all letters different from the quoted ones)

qLﬂS\,RqLﬂ, V=0, 1, cee n——l, n

drL+1PPqL+2

qrrasoLqrys

QL+2SVLQL+2, VZO, 15 vee s n—"19n

gr+s MRqr+s (after erasing, prepare to transport to the left)
gr+3 ORqr 5

qr+3SvO0qriv+s, v=0,1, ..., n—1 (memorize a letter)

9r+v+4 OLqryvia, v=0,1, ..., n—1

griviaSuRqrintvea, 1, v=0,1, ..., n—1

gr+v+a MRGL1niv+s, v=0,1, ..., n—1

Grintv+a 0S8y qrignrs, v=0,1, ..., n—1 (print the memorized letter)
qrisn+3SvRqrig, v=0,1, ..., n—1 (return to the transport)

qry3p09qrian+a (the transport being finished, erase p)
dL+3n+4a SV LQL+3n+4, V=0, 1: e n_l’ n (gO left)
qrian+arOqriga+s (erase i)
9risnts ORGryg,+¢ (terminate with maximal g¢,).
If there is a Resz o then we have
Zy:NPqLQp =M1 PQp
and now Z, does erase all letters which are different from
So> S1, - 5 Spmys O, A, .

44 Viadeta Vukovié

For definiteness, let us have
Za:NPqL Qo [=2qL+3 00S,, Si, 0S;, 00¢

where 0 <i,, iy, ig<n—1. We have further

Zy: 7\ gL+3 008, Si, 0S;, 00p

|=200qL+3 S, Si, 0S;,00¢

=200 qr.i,+408,08;,000¢

= qr+i+a 000 S;,08;, 009

— AgLintinra 000 S;, 0S;, 000

= AgriantsSi, 00 S;, 08,000

S, gr+s 00 S;, 0S5, 000

|—=2.S;, 81, Si, 00000 qr159

= S;. S;, Si, 00000 qr1 3,41 0

| = qr+3nta? Si Siy S, (we omit O-s at the end)

— qr+an+s O Si, Si. Siy

b+ OqrisnteSiSiSiy

Finally, let Z'=Z,UZyUZ3UZ,. Then, combining (1) to (3) with the
role of Z, and Z, we have

Res,, o [0 (A1, - > Aw) = O drransa(ReSZ o [N Ay, Az, - s AnD) =

:OqQ(Z’)\FZ;‘)((Aly A2, e, Am)’

which proves the theorem.
We show now that it is possible to omit the symbol O at the beginning.

Theorem 8.2. For every m-regular Turing algorithm Z for which
Resz.old1(4r, - » A)l=0q0@ 4,
where A C Q(3), we can find an m-regular Turing algorithm Z' such that

RCSZ/:QI[ql(Ala LR Am)]=q®(Z’)A'

Proof. We introduce the doubling alphabet Xy, Ays - v 5 M1 where 2,
is the first letter in the sequence Sy, S,ra, - .. Which is not in the auxiliary
alphabet of Z, and %, the next one, and so on. Let N =0 (Z) and lei Z;, be
the algorithm:

gnOLgns+ynve (f A is empty, terminate)

gn Sy Oqni1y, ¥V=0,1, ... n—1 (memorize the first letter)
gN+1+v 0LqN+n+v+1’ VZO’ 17 | n—l
N+ntvtt OPAN+2nt1> vy=0,1, ..., n—1 (print the first letter in

doubling alphabet)
Gnranii MNRANcanse V=01 s n—1

dN+t2n-t2 ORqnian+s

Basic theorems on Turing algorithms

Onion+3S, Ofnrantyis, v=0,1, ..., n—1 (memorize a letter)
Iniontvia OLdnignivia, v=0,1, ..., n—1 (go left one sqnare)
IN+3nty+a OS,qN1ante, v=0,1, ..., n—1 (print the letter)
GN+an+a Sy Rqnionte (search for other letters)

qn+2nts OLgN+an+s

AN+an+5 Sy LdN+ants, v=0,1, ..., n—1

Intants NSy dn+antes v=0,1, ..., n—1 (terminate).

Let Z'=72yZ, and let

ReSz;g[[q1@ v Ap)l=0gn S, Si,. Si,

where 0< iy, iy, ..., iy <n—1. Then

Z':qy(4y, Aw)
}:OQNS,',S,'Q. e Sik

A

I_OqN+1+i|0Si2Si,- Sik

FONsn+1+i, 00S;,. 8,

dNnvonyi M, OSiy. o0 0 Sy,
X dntant2 O oL Sy

X, Ogntants SiSi. oo . Sy

X, Odnrontin +40 8. .. . Sk
X gNvantinta OO0 Si. oo L S,

M AN+ ante S, 0S8, ... S,-k

i S dnans2 O S oo . Sy
2,8, 0qngnts Siy. o o S,

=%, S0, Si, . .. - Sy AN-+ant2 O

7SSt e Sy OGnignss O

2SS oo - Sy qntants O

= Gnranss M S Siue e L S,

b dnianssSiSh. o - Si —=de@nSu. .. . Sy,

which proves the theorem 8. 2.
Combining theorems 8. 1. and 8. 2. we get

46 Vladeta Vudkovié

Theorem 8. 3. For every Turing algorithm Z, we can find a Turing
algorithm Z', such that, for each m, Z' is m-regular, and, in fact

Res,, o (91 (A1, - Anl =o'V o (s - Am)

We remark also that in the theorem 8. 2. the condition 4 & Q (&) can
be replaced also by 4 € Q(EuU{*}). So, we have

Theorem 8. 4. For every m-regular Turing algorithm Z for which

ResZ:9I [g:(41, Az, ..., A)]=0q0y(By, ... , By),
where B, Q(Z), i=1,2, ..., s, we can find an m-regular Turing algorithm

Z' such that
Res,, o[4:(41, -, Awl=go@)(By, .- , By).

9. Untouched variables. In this section we prove the analogue of lemma
2, Ch. 2 of [2]. The proof iz more involved, because we have to employ a
larger doubling alphabet. All words are suposed to be & Q(S).

Theorem 9. 1. For each m-regular Turing algorithm Z and each p > 0,

there is a (p+m) — regular Turing algorithm Z, such that, whenever
Res, o [(Ai, -+, Awl=qo(By, -, By)
it is also the case that
ResZp:Q[[ql(Cl, vee s Cpo Ay, o, Am)]=q@(zp) (Cys .., Cp, By, ... , By)

whereas, whenever Resz. g [qy (Zl, eo. , A,)] is undefined, so is

ReSZp:‘l[[ql(C17 cee Cp, A]_, PR ,Am)],

Proof. The idea of the proof is to write C;, C,, ... , C, in a doubling
a-alphabet and to let then Z work with the remaining arguments.

Let T be the index of the first letter S;, i > n+ 2, which is not in the
auxiliar alphabet of Z. We introduce the doubling alphabei

=87, M=8r¢1, -+ s M1 =Srin-1,

and the letters A=Sr,,, ¢ =Spins1. If 4 is the word S, S;,, ... , S;,» Wwith
A we denote the word M, %, ..., %,, i.e. the word 4 written in the doubling
alphabet.

Let U,; be the algorithm:

¢:S,Lg,, v=0,1, ... ,n—1,n

g, O N g, ' (set marker A at beginning)

g:* R,

S, N g, v=0,1, , n—1

a*Rq;, v=0,1,...,n—1 i=3,4,..., p+1 (transcript the first

4O Ry, p—1 words into

gi* Rqity doubling alphabet)

Basic theorems on Turing algorithms 47

dor2SyA qpre, v=0,1, ... ,n—1 (transcript the p—th word into
doubling alphabet)

dp+2 O Rqpys

Gtz * 0 Qp+s (erase * between the first p words and the following m
words, and set p for it)

9p+20 Rqprs

We have:

U :q.Ci*Cox-- % Coxdy*---xA,

g OC, *Cox- - - xCpxAyx-- - %A,
FgACi % Cox- - % CpxAy*-- - %4,
FAGaCix Cox- - - xCypx Ay % - - x Ay
—AC, % Cox - - *CppprgAr*- % Ay,

i. e. U; sets markes A and p at the ends of (Cy, ..., C,) and does trans-
cript every word of this p-tuple into doubling alphabet. The internal configu-
ration g,.; stands at the beginning of the m-tuple (4,, ... , Ap).

Next, let M=0(Z®+?) and let U, consist of all the quadruples of
Z@+2 and, in addition, of the following quadruples, where ¢; may be any
internal configuration of Z®+%; (in these quadruples N=Max(M,n)> 3,
where n is the number of letters of the alphabet &. We write there g (i) for g,
for typographical grounds. We profit the fact that 2V > N for N > 3):

gieeq(2V-3") (interrupt computation)

q(2N-3)p Lq(2N-3))

g(2V-3)2,Lq(2N-3),v=0,1, ..., n—1 (search for })
q(2¥-2)« Lq(2V-3)

q(2V-3) OLg (2V-3Y)

g (2N.3)a0q(2N+1.3)) (erase 2)

q(2N+1.3) OLg (2¥+2.3) (go left)

g (2N+2.3) Oag (2N+2.3%) (set A one square left)
q(2N+2.3) A Rq (2N+3. 39

q (2N+3 . 3i) ORgq (2N+4 . 3i)

q (2N+4. 3i) ORg (2N+5. 3i)

g (2V+5. 3 xOg (2N +6 . 3

g (2N+6.3") OLg (2N+7.3%) (transport % one square left)
g (2M+7.3) 0+ q (2447 3)

q(2N+7-37) x Rq (2V+3. 37)

g (2V+1.3)3,0q (¥4 31574, v=0, 1, ... , n—1

g (2N+4. 3i) * Og (2N+4. 3i. 5n+1)

48

crete

Viadeta Vuckovic

q(2N+4,3",5V+1)0Lq(2N+5.3f.5“+1), v=0,1, n—1L,n

g (2N+5.31. §v+1) O\, q(2N+8.3), v=0,1, ..., n—1 (transport left
‘ for one square)
g (2N+8.3%. 5741) Oxg (2V8. 37)

q(2N+8.3) Rg(2V+2-3), v=0,1, ..., n—1

q (2V+8.3%) x Rg (2V+3. 37)

q(2¥+4.3)00q (2N 3))

g (2N+9. 37 OLq (2V+1°. 3i)

q(2VH10-3) 0o g (2VF10-3)

q (V3.3 00 q (2N 3)

g (2¥+10. 395 Rq, (return to the main computation).

For the sake of definiteness we shall exhibit the work of U, on a con-
example:

Up: 20 % 0 ki, x Ogip 4

A0 xx A, % 0g(2V-3)p A
l=q(2V-3)A0 x A, x 00 A
}—q(ZNf‘"I'3“) 00 %N 1xOp 4

— g (2N+2.3 000 %N, 0, % 0p A

g N+ 39000 %N, N, * Op A
—Ag (N33 00 0\, h, % O p A
A0 g(2N+4.3)0 2N N, x 00 A
—A00 q (2N+5. 30 %2 8, * Op A
200 q(2N¥+8.3) 0N N, % 0p 4
A0 g(2Y7-3) 00N %, 00 4
A0 g@N+7.3)xON N, % 0p 4

= 20%g (2N+2. 3 O N 0, 00 A
—AOx0q2NTE. 3N N, x0p A4
A0 0q(2N+4. 3. 50+ O, 2 Op A4
= AOxq(2N+5.3. 50+ 00 %, xOp A
A0 % q (2N+8. 30, 0N, %0 A
A0 %N, g(2N+2-3) 0N, %00 4
RO x N, N, # Og (2V+10. 350 04

e AO x N A, 0 pg; OA.

Basic theorems on Turing algorithms 49

So, the effect of this part of U, is to transport everything left from p
for one square left, as well as to let Z¥+? work freely. In U, we can at
most occupy the internal configuration g (2¥+10.3N.5N+1)=g4(Q), where

o Q=2N+10.3N.5N+1
Let Uy=U,;UU,. Then we have
Ug:gCi% Co - - - xCpx Ay~ - - x Ay,
=AC % Coxn- - - %CpoqpigAr®- - -+ A4,
]i-)\a*t’;*- . -*(:’;quBl*Bz*- - % B,
whenever Res z.q [¢; (A;, ..., A,)] is defined; otherwise there is no A-compu-

tation on quoted arguments.
Let U, be the algorithm

guS,Lggsy, v=0,1, ... ,n—1,n

do+1P*qdp+2

do+e*Lgois

90+30Lqo+s

go+shNS, 90+, v=0,1, ..., n—1 (transcript every A, into S,)

90+145,Lgdg+s

9o+3*Lqo,s

90+3204qgys5

.CIQ+5 ORqg6-

Let now Z'' be U;yU,. We have

Z":q1CixCyx- - - xCpx Ay x - - - %A,

|§7\€1*52*- % ChoquBy*- - - B
}—XEI*Ezaw - *_qu_HpBl*- - - %B;

}—7\61*62*- . -*a,qQJrz*Bl*- - - % B,
[:qQ+3)\C1*C2*' .. *CP*BI*' .. *Bs

== -0ge@z1(Cy, Cyy ..., Cp, By, ..., By).
Applying now theorem 8. 4 we have the assertion of the theorem 9. 1 proved.

10. The copying algorithms. These algoriithms double some arguments and
transport them appropiately.

Theorem 10. 1. For each m>0 and p >0 there exists an (m+p)-
regular Turing algorithm ¥, such that

Resg,,[?l(Bl, . sBp’ Al’ 9Am)]

:q@(gp)(Ala e ,Am9Bl’ e aBp’Ala e aAm)'

4 Publications de I'Institut Mathématique

50 Viadeta Vuckovié

Proof. The idea of the proof is to transport (4;, ... , 4,) to the left
by doubling it. We introduce the auxiliary letters A=S,,, and v=3S,,; and
the doubling alphabet

o= Snt4>)‘I“Sn+5a cee s Moy =Sonis, ?\n=Szn+4’ ;\n+1zS2n+5*

(», will double O, »,.; will double %). We introduce also p=S,,,4.
We treat first the case p> 0. &, will be:

@S, Lgy, v=0,1, ... ,n—1Ln

g O*q, (ptint * before B,)
g2* L qpinirs
9p+n+16 O M Gpintis
9ptnt16 A R prntir (print A before)

Gp+n+17* Ry

92418, R@psr, v=0,1, ... ’”’"1’"} i=1,2, ..., p—1 for p>2
Ga+i* Rapi4q (for p=1 these quadruples are
omitted)

(+) J ‘?p+20R‘Ip4-2
qp+2SvRQ,p+27 V$Os 13 see s n—1
Ipr2*Pqdp+s
Gpr3P RGpiy (B, and A4, are separated by p)
QP+4S‘JRQ;>+5> V=0, 1; e sn""lan '
dpr5*Rqprq
qp+5SVqu+5, \‘::0, i, ... ,n-——l
Gpi5 O T qpis (put marker ~ at the end)
dp+57 L gprg
Porg Sy A Gpivers v=01, ..., n—Lnn+1
q;z+v+7SiLqp+v+7a Vai=0:15 sy n~1,n,n+1
Gprvir Ay Lgprvyy, v=0,1, ..., n-Lnn+l1

Gpivire LGpivis, v=01, ..., n~Lnn+1
Qpivir MSyGpintgs v=01, ..., n—1Lnn+1
GpinteSyLGpintre v=01, ..., n—1Lnn+l
Tp+nt10 O M prntro

Dp+n+10 A Rpinin

Qpin+11 Sy Rpins1y, v=01, ..., n—Lin,n+1

Gpin+11P Rpininy

Basic theorems on Turing algorithms 51

Gpint11 ML o v=0,1, ..., n—1,n,n+1 (return to copy)
9p+60 * Qptn+i12

Ip+nt12 * Rdpinis

Gpint1a NSy dpint1e, V=01, ..., n—1,n,n+1
Gpn+129y Rpint1ss v=0,1, ..., n—1,n
9p+nt+137 O Gprnr1a

9p+n+14 0 Lpinsi1a

Gornt1aSyLprnyy v=01, ..., n=1,nn+1
Gp+nr1ar O dpintis

dp+n+15 O Rqprniys (terminate).

Now, we have

Vp.qiBi*Byx- - - *Byx Ay % - - - %A,

|=AxqgBy*- - -%B,*Ay%-- - x4,

|=A%Byx- - -xB,pq,uiq Ay *- - - %Ay,

|=A*Byx- - -xBpd % %Ay q,i57.

Let now A4,,=S,S, - - -S;; the work of ¥, continues:
FA*Byx. - -xBoAy*- - - #8,S, - Sy dpieSiy T
FA*Byx- - -xB,pA % -85, - Sik—1qp+7+ik)\1kT

|=dptrsih®By% - - xByoAyx- - 8,8, - S _ N, T

- dpinte Sy *Byk - - - xS, - -8 AT

b Gptnt1o OSi ¥ By - - -+, - - -8, _ N7
}-—qp+,,+107\S,-k*Bl*- xS - ~S,k_1)\,-k'r
FAGpint1y Sy ¥ By - - %8 - -8 N7

|=A Sy *By*- - -#Bypdyx- - %S, - - -8y preSi_ My T
[=AAyx- - #Ap*Byx- - %Bygpiep At M1 A hagac Matr AmT
|I=AAy*- - %A, %Byx- - - xByx Ayx- - - xApqpini1aT

’:'qu+n+18(A19 cee Am’Bl’ cee s Bp’ Al’ e s Am).

Applying now theorem 8. 4 we have proved our theorem for p > o.
For p=0 we get ¥, omitting in &', all quadruples (+) and the quadruples

4:0%q;
qe* Lqui1g
Gnt17* Rqs

4>

52 Viadeta Vudkovid

and adding the quadruples

4,004,
920 Lgyiqg

gnt170 Ry
and in the same time writing in all other quadruples o for p. Then we have

WoigrAyx. - - w Ay
mhpgydy®- - - x Ay

and other work exactly as before until
20 ¢quiigdi*- - - xdpxdyn- - x4,

is reached. Now, apply theorem 8. 4. -

Theorem 10.2. (The transfer algorithms H,). For each m>0 and
p>0 there exists a (p+m)-regular Turing algorithm M, such that

Resy (41 (Brs -+ By, A1y -+ > Am)]
=qo®) (Ay, ... , Ap, By, ... ,B,).

Proof. We construct ¥, exactly as in the proof of the theorem 10.)
for p>0, up to the quadruple ¢,i¢p*Gp+nt12, and we add the following
quadruples (whose role is to erase the doubled part):

9p+60 O Gpinira
Gp+n+12 O Rpiniss
Gprni13 ™ O Qoantres v=0,1, ..., n—1L,nn+1
Tp+n+18T O Gptntaa
Dprnt18Sy L Gpinsrs, v=0,1, ..., n—Ln,n+1
Tp+n+1ar O Qpiniss
Tp+n+15 O RGptni1s:
This algorithm we call 9',. We have
RpiqiBy#-- -« Byx Ay x4,
=Ady s %Ay xBy* - ¥B,gisp A hrr - MprAm®
|=2dy%x . - xAd,xB - -%B,00-- - O¢pypr13™
=" Odpintig Ay *- - - % dm* By- - - % B,
Applying now theorem 8.4 we have the proof of theorem 10. 2.

11. Conservation of arguments and composition.
Theorem 11.1. For each m-regular Turing algorithm Z, there is an
m-regular Turing algorithm Z' such that, whenever

Resz.9[q,(4y, ... » Awl=90@) By, ... , By

Basic theorems on Turing algorithms 53

it is also the case that

Resz .o [91. (A1 - .- Am)]:q®(Z/)(731, .., By Ay, ... A
whereas, whenever Res z.9([q, (4, ... , An)] 8 undefined so is
Resy g [g: (Ay, -« - An)].

Proof. Having now at our disposal all the algdrithms which are employed
by Davis in the proof of Lemma 3 of §1, Ch. 2 of [2] we refer to the proof
of this lemma. which can be here repeated literally.

The similar is for the proof of

Theorem 11.2. For each m-regular Turing algorithm Z, there is an
m-regular Turing algorithm Z' such that, whenever

Resz.o [(A1, - » Am))=qow (Brs - 5 B

it is also the case that

Res 7 o [qr (A1, - » Aw)]=qo @) (A1 -+ s Am, By - 5 BY)
whereas whenever Resz.o [q1 (m)] is undefined so is also
Resz g [q1 (Ars -« > Am)]-
Theorem 11. 3. (Composition). Let Z;, Z,, ... , Z, be Turing algo-
rithms and m=>0. Then, there exists an m-regular Turing algorithm Z' such that
Resy .y [91 Ay, ... Aw]
oz Tz Are 2 A, Wz q((Ars o A Wz, (4 ey Am)).

Proof. Induction on p, as the proof of Lemma 4, §1, Ch. 2 of [2].
ul needed algorithms (i.e. machines) are at our disposal now).

A straightforward corollary of the foregoing theorem is

Theorem 11.4. Let f(Xy, Xy, ... , X,) and all g;(Xy, Xy, .., Xp),
=1,2, ..., m be (partially) N-algorithmic. Then, the function
Xis oov s Xp)2f(gr Xy, oo v X 8a(Xes - 2 Xp)y oo Em (X1 e X))

also (partially) N-algorithmic.
Hence: the class of (partially) -algorithmic funcuons s closed under
€ operation of composition.

12. Minimalisation. We recall that we call numerals all words written
ith the only letter S,. Obviously, the numerals correspond 1—1 to the natu-
1l numbers; therefore we write 1 for S,, 2 for S, Sy, 3 for S, S, S, and so
n. The empty word O corresponds to zero. Hence, numerals are words
f Q(&,), where Sy={S,}.

When we wish to denote that a word vanable runs only over numeral$

(i. e. over the set (S,), we shall write it in italics: x, y, z,...

The meaning of ,,the least numeral such that...* corresponds to ,,the

least natural number such that...*.

54 Viadeta Vudkovié

Definition 12. 1. The word function f(y, Xy, Xu) is restrictively
in y total if it is defined for all m-tuples of words X1, X,, ... , X,, of Q(&)
and for every numeral y & Q(S,).

Definition 12.2. The operation of minimalization associates with
each funcion f(y,Xy, ..., Xp). which is restrictively in y total, the function
h(Xy, ..., X,) whose value, for given Xy, ..., X,, is the least numeral y,
if such exists, for which f(y, Xy, ..., Xm)=0, and which is undefined if no such
y exists. We write

h(Xl, cen s Xm) ja-4 miny [f(y, Xl’ vee s Xm)xO].

Naturally, if h(d4y, ... , Ay) exists, it is always a numeral. The func-
tion k4 (partially) maps the set Q(2) X ... X Q(3) into the set Q(éﬂ).‘

Definition 12. 3, The function f{y, X1, ... , Xpn) which is restrictively
in y total, is called regular if

WXy, .., X)) 2 min [f(0, Xy, ..., Xp)=0]
is total.
Definition 12.4. f(p, Xy ... , Xy is restrictively in y W-algorithmic
if there is a Turing algorithm Z such that

‘FZ:%(y’Rb cses Xm)?"f(y?Xla sy Xm)

and f(y, Xy, ... s Xn) is restrictively in y total.

Theorem 12. 1. If f (0 Xy, ... , Xp) is resirictively in y U-algo-
rithmic, then

B(Xy oo s Xo) = ming [f(0, Xgs ... Xp)=0]

is partially N-algorithmic. Moreover, if f(y, Xy, X)) is regular,
h(Xy, ... s Xm) is N-algorithmic.

Proof. The proof is a very easy version of the proof of Th. 2. 4, Ch. 2
of [2]. Only some minimal technical changes are necessary.

So, the class of partially -algorithmijc functions is closed under mini-
malization over a numerical variable of functions which are restrictively in that
variable -algorithmic. The class of H-algorithmic functions is closed under
minimalization over a numerical variable of functions which are restrictively
in that variable ¥-algorithmic and regular.

13. Primitive recursion.In this section we shall prove that the operation
of primitive recursion over H-algorithmic functions generates also A-algorithmic
functions. With this it will be proved that all (3{—) primitive recursive word
functions are (A—) algorithmic. (For the definitions of primitive recursion
and -primitive recursive function we refer to our papers {3} and [1]).

Theorem 13. 1. Let a(X;, ..., X,) and all &(Y, Xy, ... , X, Z) be
W-algorithmic for i=0,1, ..., n—1. Then the function f(¥, Xy, ... , Xu),
defined by

f(O, Xj.a e Xm)::a(Xla coe s X,

FS:Y, Xys oo s X)=b, (Y, Xy, oo, X f(Y, Xy, oo, X))

i=0;1, ..., n—1
is also N-algorithmic.

Basic theorems on Turing algorithms 55

Proof. Let the Turing algorithms Z,, Z;, i =0,1, ..., n—1, compute
the functions @ and b, respectively (i=0, 1, ... , n—1). The idea of the proof
is the following one:

we construct first an algorithm @ which will, beginning with the given
(m+ 1)-tuple S; Y*X;%- - - %Xy, write all (m+ 1)-tuples

YaXyn o %Xy, v(Y)*X1%- 5 Xp, .00

up to O% Xy*- - - *X,,; then, we shall let work first Z, on the last m-tuple,
and then all Z; needed on successive (m -+ 2)-tuples

ZxXyx- o % Xpxf(Z, Xy, ... s Xm)
as to come to the first (m+ 2)-tuple
YaXyn- -« Xpxf(Y, Xy, ..., Xn).

Let S be the first letier of the letters S,+s, S,+3. ... which is not in
the alphabet of any of the algorithms Z,, Z,, Z,, ... , Z,_,- Beginning with
1,=S¢ Wwe introduce the letters Ty, Tg» .- » Tue1s T A £5 G5 N,

Ros o s M1 Any Mt

to be the letters which follow =, successively.
We suppose that the printing alphabet of Z,, Zy, ... , Z,—1 i8

©={Sy, S, --- » Su—1};
O is S, and * is S,;; in all of them.
Let @ consist of quadruples:
g, 8,745, v=0,1, ... ,n—1
g7 Rqy, v=0,1, ... ,n—1

g, S,Rqy, v=0,1, ... ,n—1,n
9o * Rqs .
q2+iSVRq2+i’ V=0, 1’ <t ’nwl’ n, lzly 2’ e sm‘—l

gori*Rqaris 1=1,2, ..., m—1
GmisSyRqm+s, v=0,1, ..., n—Ln
Gmi3SySyGmis> v=0,1, ..., n—1
Im+3 0 T dm+s

Gm+sT™ Rm+a

Gm+4 O M Gm1q

Gmiar Lms

dm+5 T LGmrs

misSyLgmis v=0,1, ..., n—1,n,n+1
GmigTi Rqmie i=0,1, ..., n—1

Gm+e* Rqmiq

56

Vladeta Vuckovié

Gmi7 Sy Rqmin, v=0,1, ..., n—1,nn+1
Imt77T Rmss

dm+7 2 O Gmig

Gm+s O Rm+g

Gm+9 O Mmoo

Gm+10* Lmi1r

dm+11 O Lqms1s

dm+12T O Gm+1s

Im+13 0 Rmyi14

dm+14 O dm+1s

Im+15 T L Gmi1s

Im+15 O L Gmy16

Gm+165y O Gmivirrs v=0,1, ..., n—1,n,n+1
Gmivi1r O RGmontviie v=01. ..., n—1nn+1
Qntvint1g OSymirs, v=0,1, ..., n—1nn+l1
Gmi159y Lgmi1; v=0,1, ..., n—1,nn+l1

Gmi1sTi RGmizntan, i=0,1,.,.,n—1 (all letters, with exception of
ts are placed one square to right)

dm-+e Sv qum+2n+21’ V=0,1, ety n—1
G anesr Sl dmsgnaviz V=01, . n—T.mn+1 (begin the transport)
Dmrontvroody Rmiontvioes v=01, ..., n—1nn+1

Gm+ontvtez Si qu+2n+v+22’ i’ V= 0>1’ ces s R 1’ n, R+ 1
qm+2n+v+22Tqu+2n+v+22’ v:()’ls R 17 n,n+ 1
Im+ontvree NSy dmrantoss V=01, ..., n—Lnn+1
Gm+antoaSy Rmigniss, v=0,1, ..., n—1,nn+1
Gm+an+2s O Ndm+3ntas

Gn+3nt25 M L Gmtan+tae

Gm+snros v L Gmisnteg. V=01, ..., n—1,nn+1
Gm+3n+26 7 L Gmt3ntas

Gmign+o6 v RGmiontor, v=0,1, ..., n—1,n,n+1
Gm+on+21 7" L Gmignto; (finish the transpont)

Gm+antor NSy mtantegs v=0,1, ..., n—1,nn+1 (translate)

qm+3n+2sSvLQM+3n+27a v=0,1, ... ,n—1,nn+1

Gm+ani 277 RGm+3nt29, i=0,1, ..., n—1

Basic theorems on Turing algorithms 57

Gm+3n+29 Sy RGm+an+29 v=0,1, ..., n—1,nn+1
dm+sn+20 T R Gm-+antso
dm+3n+30 Sv qu+3n+30’ v=0,1, ... , n—1, n,n+1

Im+sntso O mtanta (erase 1)

Gm+antar Sy Ldmisnssr, v=0,1, ..., n—1,nn+1
Im+3n+31T Rmtgntse-

Let Y 5 O. We have

D g S YrXyH- - x X,

qot; Y Xq% -« - %X,

=1, Y X1%- - %xqpiy Xy

kD €' FE RIS, S Y

= Tigmig Y * Xy - - % X7

- Tigmrontar Y * Xy - x Xy w5

If, by a bar (X), we denote the translation into A/ s-alphabet, we have
further

|:‘r,~77\,,+1:\;17\,,+1*- % Mgt Xop Gmontan T Y X o o % X h
= Gmtantiog Y*Xy%- - - %Xt YaXi%- - - %X, 0
=om Yo Xi% o - % X Tqmrgnrag Yo Xy % - - %X,
If Y=0, i. e. $;Y=S5;0=S; we have
Digy SixXqx- - - x X,
= O* X% o Xy Tqmianiap OF - - - x Xy,
So, be Y empty or not, we have always
Resss'[fI1SiY*X1*' -ex X,)=
T Y*xX % % X Tqmranra Y ¥ X % % X,

Take into account that ©’ is operating always ..to right*, moving the
tape expression not any square to the left.

Let now D" consist of the quadruples

Gm+3n+325y Sy g1, v=0,1, ..., n—1,

and let D='UD"”. What will be the effect of T on ¢; S; Y * X7 %% X,,?
Obviously it will repeat the effect of @' on that part of the instantaneous
description which beginns by ¢,,1g.+30 until we get one ,last part‘ of the
form q,,13,43, 0% X7 % - - x X, for which there is no more computation.

So, if Y=8,8;,, ..., Si, we will have:
Dig1 S; ¥ *x Xy - -+ %X,
i:-‘riY*(j’;_.ﬁ)rvilSG. cee S,-k*mﬁ;)‘r. R
T 0% (X1, o s X)) TOmisnta O% Xyx Xy %o - - %Xy,

which is final.

58 Vladeta Vudkovié

It is easy to show that we can concieve the algorithm Z, as working not

on m-tuples (X, ..., Xn), but on (m+)-tuples (O, Xy, ..., X,). (For
this, we have only to introduce the algorithm Jy which consists of quadruples

4,0Rqy, :1*0q,, 4,0 Rgy and to work with JuZ?)y.
So, we shall regard the algorithm Z, as working on (m-+ 1)-tuples
O, Xy, ..., X,,) compuiing a(Xy, ... , Xu). Other algorithms

Z,', i=0, 1, “ v . ,n'—‘l

act onto (m+ 2)-tuples (Y, Xy, ... , X, Z) computing b;(Y, X3, ... , X, Z).

Now, we have to include all these algorithms; but we have to take into
account the necessity to move left if any of their internal configurations meets
+ on the left. Also, after the computation of any of these algorithms we have
to change this + into * and (erasing the 7, which was after 7) to put the
result left, close to this =.

Let N=m+3n+32 (So Z& P will work on tgyO#X;*- - - X, and,
if undisturbed from left, finish with 'cq®(Z(N..1))a(X1, ... » X,). But, using

th. 8. 1. we shall suppose Z, (and only Z,) to work so that it finishes with

Ogezya(Xy, ..., Xn). SO Z®Y will finish with
TOQ@)(Z(ale))a(Xl, L X))
Let now

Ny=0(2Zd™"),

N =02Z§"),

N=0@E Py, i=2,3, ..., n—1,
and let

ZI =Za(N'—1)UZO(No)UZI(Nx)U, e, UZn(i\(;!‘-l)‘

We have to take into account that Z{"™” has gy, as the internal con-

figuration with maximal index, and that ZM® has qno+1 as the internal con-
figuration with lowest index. Similar is the situation with other algorithms;
so, the internal configurations

qNu’ qqust R] an-l

do not occur in Z’. Lat now T=0(Z’). We introduce the algorithm T, whose
role is to transport the part after gy; one square left, to transform =« before
it into % and to seek for first v, on the left.

T will consist of following quadruples:

gni Sy Syqri, =01, .., n—1;v=01, ..., n—1,n
gri1S, Rqreq. v=01, ..., n—1

gr+10 64T

qri20 L gri,

gr+aSyL gris, v=0,1, ..., n—1

Qri3SySyqres v=01, ..., n—1

gr+2 O Lqriy

Basic theorems on Turing algorithms 59

gr+a7t Rqry, (if = does not exist, terminate)

qdr+5 ORqr4ig

Gr+68,0411947, v=0,1, ..., n—1
4rivt7OLqrintyts, v=0, ..., n—1
qTintvi1 08, qre2nts, v=0,1, ..., n—1
driznt7SyRIT42018, v=0,1, ..., n—1
dr+2n+s ORG T4

Gr+600G142n+9
GrionteSyLdrionts, v=0,1, ..., n—1,n

dT+2n+9T*¥dT+2n+10

qT+2n+10SquT+2n+109 VZO, 1’ ce. o, B— 1: n, n+ 1
Gr+ont10%i0dr12nrit11, i=0,1, ..., n—1
d742n+i+11 ORgN, 11, i=0,1, ... n—1

We demonstrate the work of IT:

TPy, Yx Xy %% Xpy70qN S, 8. oo . S
Prr, Yo Xox- - -+ Xpy10qr41 53,8, S

|= Prr, Y* Xy % - - % X108, S, qr+20

= Prr,, Ye Xy % - % Xpqreq70S;,S;,. S0
=Pt YxXy % % Xpy©0qr16S5, S, --- . Sj0
Pt Y« Xy % - % X,70qryj, +70S),. S0
P, Y Xy % o % Xy Tqrint), +7 008, S0
Py Y Xyx- -« XpTqr400479, 08, S0
=Pty YeXyx- - 2 XoGriona©SiSi. o - S

|=- PrOgny 1 Y* Xy%- - % Xy %S, S, 5.

Obviously, the effect of T is to arrange the righimost part of the tape

expression for the computation with the due Z;M).

Therefore Z''=Z'UT will compute for every algorithm ZM) as its v

appears. We have still to take into accouut the eventual disturbing role of the
left part.

Let M =0 (Z") and let ¥ be the algorithm: (In these quadruples g; runs

over all internal configurations of Z’; we write still once ¢; as ¢ (i)):

gitng (2M+1. 3)

q (2M+1- 3y Lg (2M+2. 3))

q(2M+2.30) 8, Lg(2M+2.3), v=0,1, ..., n—1,n, n+1
g(@M+2. 35, Lg(@M+3.3), v=0,1, ..., n—1

60 Vladeta Vuckovi¢
g (2M+3.3) = Lq (2M+*- 3)
g (2M+3.37) O Rq (2M+4.3))
g(@M+4.30)z 0q(@M+4.37. 5%+, v=0,1, ..., n—1

q(2M+4.3i.5“+1)0Lq(2M+5'3i'5v+1): v=0,1, ..., n—1
g (QM+5. 3. 5V O ¢ g (2M+5.30. 5" v=0, 1, ... , n—1
g (2M+5.31. 57y z Rg(2M+3.3), y=0,1, ... , n—1

gq(@M+4.3) 8,0 q(2M+4. 3.7+, v=0,1, ..., n—Lmn+1

g (2M+4. 3. T O Lg(2M+5.31. 7"+, y=0,1, ..., n—1, m,n+1
g (@M+5.31. 7"+ 0 §,q(2M+5.37.74%), y=0,1, ... n—1,n,n+1
g (2M+5.31. 7143 S, Rqg(2M+3.3), v=0,1, ..., n—Lnn+1

g (2M+4. 3% O g (2M+8. 3)

g (2M+6.39) 0 L g (2M+7. 3}

g (2M+7. 31y O 7 q (2M+8. 37)

q (2M+8.3) T Ryq;.

The effect of € is to eliminate the role of the T and the part on the
left of it in the work of Z'.

Let now Z'"'=Z"U¥Y. We have

Z'":PtOgqn, 41 Y x Xy %, ..., * X, Z

!:PTOquleFZ"v:‘)I X, Xy, ..., X Z),

and now beginns the work of .
We state that the algorithm
Z=DUZ'UTULU{q, O Ogn}
is such that
(1) \FZZ QI(Y’ D TR Xm)sf(Y’Xl’ cee s Xm)
We prove first two lemmas.
Lemma 13.1. Lst P be any expression. Then
Z:Prq YxXi%, ..., X,
‘quT+2n+10*f(Y, Xls L] Xm)

Proof. (Note that the instantaneous description after |— is not meant
A
to be finall)

Basic theorems on Turing a'gorithms 61
For Y=0 we have:
Z.:PrqOxX % Xyx- . %X,
FPTtgnO*xX % X% - - %X,

IiP‘rQqNua(Xl, e X))

|:PTho+1a(X1, cee s Xm)

FPrOa(Xy, ..., Xm)qdrig0
|:PqT+4TOa(X]_’ ‘e ,Xm)O'
[=Pt0gqriza(Xy, ..., X))o

= Pqrignigra(Xy, ... , X,
FPgrians10*f (0, X1, ..., Xp).

Let now the statement of the lemma be valid for Y. Then, for every
i=0,1, ... ,n—1 we have

Z.Prg; S;Y*« X%+ %X,
|=Prr,Y* X% 4 Xptq Y X;%- - - %X,
and, by induction hypothesis,

:PTTiY*Xl*' : '*quT+2n+10*f(Ya XI’ cee s Xm)
A

[:PTOqu+1Y*X1*~ x X f (Y, X, ..., X,

|§PqT+2n+10*lFZi:QI (Y’ Xl’ M Xms f(Ys Xl’ cet o XM))
=Pqrisni10*bi (Y, X1, ..., Xy f(Y, Xy, ooty X))
:PqT+2n+10*f(Si Y, Xy, oo, Xy)

and this proves the lemma.

Remark. In the proof of the foregoing lemma we did employ the induc-
tion axiom for the set (&) in the following form: If f(0) is true and if
from the truth of f(X) follows the truth of all f(S; X), for i=0,1, 2, ..., n—1,
then f(X) is true for every word X & Q(&). We call this form of the induc-
tion-axiom the axiom of the stage induction. In [3] we have
shown that this axiom can be proved if the uniqueness of the recursive defi-
nition is assumed.

We prove now

Lemma 13.2. For i=0,1, ..., n—1
Z.g;S;Y*Xy%- - %X,
i‘;T’qT-I-AIOOf(SiY’Xls ey Xm)

62 Viadeta Vuckovié

Proof. (Note that the instantaneous description after |=- is now final).
We have A ‘

Z:g1S;Y*Xi%---xX,
‘:TiY*XI*' .. *Xm‘L'ql Y*Xl*' . .*Xm
=T Y Xy% - - * Xp@riont10*f (Y, Xos oon s X,,)—(by Lemma 13. 1)

A .
IZO‘]N,-HY*Xl*‘ ok X2 f (Y, Xy, o, Xm)

l:Oqu+1bf(Y’Xl’ cee Xm,f(Y,Xl, vy Xm))
9€ .

"_OqT-Flf(SiY’Xl» LR Xm)
‘:qT+400f(SiY7 Xl’ ey Xm)

This proves the lemma.
Now, by direct computation, we have

Yoo (0, X, ooy X)=f(0, Xy, ..., Xn)
and by lemma 13.2 we have
Yog S Y, Xy, oo, X)=f(Si Y, Xy, oy X)), =01, ..., n—L

By the axiom of stage induction follows (1), and the theorem 13. 1. is
proved.

In [1], def. 6.1, we defined the A-primitive recursive functions of words.
As we have shown that all the functions appearing there are f-algorithmic
and that the operations of composition and of primitive recursion are A-algo-
rithmic also, we have

Theorem 13.2. Every ()-) primitive recursive function is (-) algorithmic.

(In [1] this theorem was tacitely assumed).

14. Relation to Markov’s normal algorithms. In this section we prove
that for every normal algorithm there is an equivalent Turing algorithm. To
shorten the proof we shall employ some results of [3] and the theorems of
the foregoing sections.

As always we regard an alphabet ©={S,, Sy, ... , S,-1}, over which
is given some Markov’s normal algorithm I
(14. 1) P—()Q;,, i=1,2,...,r

where P; and Q; are the word; of the alphabet
@I:{S01 Sl; RIS Sn—ly Sn+1’ Sn+25 cee s Sn+k}

of Markov's algorithm It (We excluded the letter S,, as it will represent the
empty square in the corresponding Turing algorithm, — and the empty word
in Markov’s algorithm). We take into account that the Markov algorithm
M mapps the words of Q(S) into the words of the same set.
Sut1> Sptar -+ » Sp+g are also auxiliar letters in M.

We now regard in the alphabet 3’ the function o.(P;, Q;, X), whose
value is equal X if X does not contain P;, and whose value is equal o the

Basic theorems on Turing algorithms 63

word obtained by substitution of the first appearance of the word P; in X
by the word Q; — if X contains P;. As easily seen from [3]

5B 00 X)={[X~ "V P [T 2 Pi= @~ 1= 0} 4 B) |+ 0,
{1~)

Z=0 p=0
5o (X) ~ 5, (Pp) z
+R[R(X)~[X~ 7 (Hoc[P,--'_(XNy.)]:O]}.
z=0 \u=0

So o (P;, 0;, X) is a primitive recursive word-function in Q(&’). (The same
was also shown in [5]). Therefore there exists a Turing algorithm Z;, with
the printing alphabet &', such that

Yz, (X)=0(P;, Qs X) (i=1,2, ... ,7).

By theorems of section 8. there exists a Turing algorithm Z,, with the sams
printing alphabet, such that

(14. 2) Resy 41X =4g 0P Q. X), i=1,2, .., r

Now we shall construct algorithms 9; by which we shall examine if the
words on the tape contain P; or not. This is necessary as to take into account
the terminating and the non-terminating rules of .

Let P,=S;Si, -.. » Sy, where S, €€ for v=1,2, ..., k. 1, will
consist of the quadruples

q1S,Rq, for all §,#S;, and S,&&

4,8, Rqys1, v=1,2, ..., k

q,S8: Sc q, for t#1i,,(z=0,1, ..., n—-1,n+1, ... ,n+k,v=1,2, ..., k)
k18 Sydk+e SEE or S,=0

41 00 gp45

Gkr2eSyLarys S, €@ or §,=0

G+aSyLar+a S, €@

gik+4 ORqrg (if X contains P; finish with Og14X)

dx+3 OL g+

Ge+eSyLrte, S, EE

dx+6ORqrrq. (If X does not contain P; finish with Ogii;X)

Let X=9S,5,5.548,8S;,S.,where all a, b, ¢, d, e are different from
iy, i, ... » ix; 80 X does not contain P;. We have

Pi:q1 X+ 8,418 S: SaSi, Siy Se
| =8485 8 Sa gy Si, Si, Se

a8y ScSaSi, g2 Si, Se

8,8, 8.84Si, 51,93 Se

82 S S SaSi, Si.q1 Se

64 : Vladeta Vuékovié

I—-Sa S Sc Sq Si, S,‘g Se 4 0

S, Sy ScSaSi, Si, Seqr+s O

[=- Ogr+:X.

Similarily, if X contains P; we get

PBirgy Xl:‘ Og+s X
(If P,= 0O the modifications are obvious).

Now the algorithm

P,UZ;&+D

is such that

R (@) Og;4 X, if X does not contain P,
€S .\ 2 (k- = .
PiUzi G 0q06(7z;)+k+70'(P,-, 0;,X), if X contains P;.
Let now N; be some natural number. By IM; we denote the Turing
algorithm (P;UZ;&+2)W; — 1),
So, we have

Oq,. X, if X does not contain P;
(14. 3) Resgp (g, X) :_{ INi+i+e ' : _
PN OQQ(D?I) G(P;, Q;, X), if X contains -Pi
We regard now the given Markov’s algorithm (14 1). Let the length of
the word P, be k;, i=1,2, ..., r.

We construct first the Turing algorithm PyuZy ®D; if the first rule in
(14. 1) is non-ierminating, i. e. if it is of the form P~ Q,, we let M, be

My =RuZ B+ UF,
where ¥, is the algorithm

Qi1 S, S, qn,s S, E 2 or =0, and Ny=0(Z)+k+8,
gN,—1 Sv S* d1s Sv C‘E e or=0.
The effect of §, is: if the first rule is not applied pass to the second;
if the first rule is applied, apply it anew.

If the first rule of (14. 1) is terminating, 1. ¢, of the form Py~ 0y, We
eliminate from §, the quadruples of the second row. So, if the finst rule is
applied, the process will finish. (Then, for the next rule we shall employ gw,)-

Let now the Turing lagorithms My, My, ... » My—y for k—1<r be
constructed.

We construct the Turing lagorithm 9%, corresponding to the k-th rule
P;éw>(<) Q,. Let N, be © (M,_,) (which is in the quadruples of te first row
of Fr—1).

If the k-th rule is non-terminating, i. e. if it is of the form P~ @, we
let gﬁ;‘ be

My = (By U Z, Kie + D)W —DUF,
where §; is

qN’k + Kk + GSV S\'qu+l fOr S\,E 6’ Or:() and ng.l:@(%kU—Z(Kk +7))Nk - 1)+1

qu+1_1S\,qu1 for §, &€ or=0.

Basic theorems on Turing algorithms 65

If the k-th rule is terminating, i. e. of the form Py~ O, we delete the
quadruples in the second row of .

From the construction it is obvious that the Turing algorithm
Z=PW,UuM,U, ..., UM,
works exactly as the Markov algorithm . So
Vz (X) ~ M(X),
for every word X C Q(&’), especially for every word X © Q(&).
Therefore we have
Theorem 14. 1. Let M be a Markov normal algorithm over 3, and

let @ D& be its alphabet. Then, there exist a Turing algorithm Z with ' as
the printing alphabet, such that

MX) =¥z (X)
Jor every word X < Q(3).
As a special case we have

Theorem 14.2. Let M be a Markov normal algorithm in &. Then,
there exists a Turing algorithm Z, with the same printing alphabet, such that

M) =¥z (X)
Sfor every word X & Q(3).
From [4] it is easy to infer the inverse conclusion. Therefore Turing
algorithms and Markov’s normal algorithms are completely equivalent.

LITERATURE

{11 V. Vuckovié: Turing algorithms. Zeitschr. f. math. Logik und Grundlagen d.
Math., Bd. 7, (1961), 106—116.

21 M. Davis: Computability and Unsolvability. McGRAW—HILL, New York, 1958.
31 V. Vuckovié: Rekursive Wortarithmetik. These Publ. T, X1V, (1960), 9—60.

[41 B. C. UepHasckwuit: OF ognom kaacce HopMadsHelx asiopupmoe Mapkosa. Jloiu-
ueckue uccaegosanusn. Axanemus CCCP, Mockea (1959), 263—299.

~_I51G. Asserund V. Vuiékovié: Funktionen-Algorithmen. Zeitschr. f. math. Logik
und Grundlagen d. Math. Bd., 7, (1961), 1—8.

[6] G. Asser: Turing-Maschinen und Markowsche Algorithmen. Zeitschr. f. math. Logik
und Grundlagen der Math., Bd. 5 (1959), 346—365.

5 Publications de I’Institut Mathématique

	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif

