ON A CONVERGENCE THEOREM OF (0, 1, 3) — INTERPOLATION

R. B. Saxena

(Received 16. X 1961)

1. The (0, 1, 3) — interpolation concerns the investigation of the polynomials $R_n(x)$ if they exist and are unique, of degree atmost 3n-1 which take at the n given points $x_{\nu n}$ ($\nu=1,2,\ldots,n$) the arbitrary values $\alpha_{\nu n}$, whose first and third derivatives take at the same points the values $\beta_{\nu n}$ and $\gamma_{\nu n}$ respectively. We have solved in [4] the above interpolation problem for a particular choice of the points $x_{\nu n}$ which are the n real zeros of the polynomial $(1-x^2)P'_{n-1}(x)$ where $P_{n-1}(x)$ is the (n-1)th Legendre polynomial. For this choice of the abscissas we have shown in the first part of our work [4] that these polynomials exist and are unique only when n is even. In the other part of our work [5] we have studied the polynomials $R_n(x, f)$ for their convergence behavior when the numbers $\alpha_{\nu n}$ and $\beta_{\nu n}$ are taken to be the values of a function f(x) and its first derivative respectively at the points $x_{\nu n}$. There we have shown that the sequence $R_n(x, f)$ converges uniformly to f(x) in [-1, 1] if f(x) is continuously differentiable of order 2 in [-1, 1].

In this paper we shall be concerned with the convergence (which we shall see, does not require the differentiability of the interpolatory function) of the polynomials $R_n(x, f)$ satisfying the following requirements:

(1)
$$R_{n}(x_{\nu n}, f) = f(x_{\nu n}) \\ R'_{n}(x_{\nu n}, f) = 0 \\ R''_{n}(x_{\nu n}, f) = \gamma_{\nu n}$$
 $\forall = 1, 2, \dots, n.$

2. For the form of the polynomials $R_n(x, f)$ we obviously have [4]

(2)
$$R_{n}(x,f) = \sum_{\nu=1}^{n} f(x_{\nu n}) u_{\nu n}(x) + \sum_{\nu=1}^{n} \gamma_{\nu n} w_{\nu n}(x)$$

where [4, § 11] $u_{\nu n}(x)$, $w_{\nu n}(x)$ are the uniquely determined polynomials of degree $\leq 3 n - 1$.

We shall prove the following

Theorem. Let the continuous function f(x) satisfy the condition

(3)
$$[f(x+h)-2f(x)+f(x-h)]=o(h)$$
 $(x-h, x+h) \in [-1, 1]$ and the numbers γ_{ny} of interpolatory polynomial (2) satisfy the condition uniformly in v

(4)
$$\gamma_{\nu n} = o(n^2) (1 - x_{\nu n}^2)^{-1} \qquad (\nu = 2, 3, \dots, n-1)$$

$$\gamma_{\nu n} = o(n^4), \qquad \gamma_{nn} = o(n^4).$$

Then the sequence $R_n(x, f)$ converges uniformly to f(x) in [-1, 1].

12 R. B. Saxena

3. The proof of this theorem mainly depends upon the following

Lemma. Let the continuous function f(x) $(-1 \le x \le 1)$ satisfy the condition (3). Then there is a polynomial $\Phi_n(x)$ of atmost degree n satisfying the following properties:

(5)
$$f(x) - \Phi_n(x) = o(n^{-1}) \left(\sqrt{1 - x^2} + n^{-1} \right)$$

and

(6)
$$\Phi_{n'''}(x) = o(n^2) \operatorname{Min} [(1-x)^{-1}, n^2]$$

uniformly in $x \in [-1, 1]$.

Proof. Part (5) of the above lemma is the particular case of the theorem of G. Freud [2] while (6) follows as a consequence of (5). We follow the same method of proof as given by G. Freud [3].

We define the numbers n_i (j = 0, 1, 2, ..., r) by

$$n_0 = n, \ n_1 = \left[\frac{n}{2}\right], \dots, \ n_{j+1} = \left[\frac{n_j}{2}\right], \dots, \ n_r = 1;$$

$$r = \left[\frac{\log n}{\log 2}\right] + 1.$$

We now have

(7)
$$\Phi_{n}(x) = \sum_{i=0}^{r-1} \left[\Phi_{n_{j}}(x) - \Phi_{n_{j+1}}(x) \right] + \Phi_{1}(x).$$

From (5) we have

(8)
$$\Phi_{n_{j}}(x) - \Phi_{n_{j+1}}(x) = [\Phi_{n_{j}}(x) - f(x)] + [f(x) - \Phi_{n_{j+1}}(x)]$$
$$= o(n_{j}^{-1})(\sqrt{1 - x^{2}} + n_{j}^{-1})$$

which on using the inequality of Dzyadyk [1] gives:

(9)
$$\Phi_{n_{j}}^{(\prime\prime)}(x) - \Phi_{n_{j+1}}^{(\prime\prime)}(x) = o(n_{j}^{2}) \operatorname{Min}\left[(1-x^{2})^{-1}, n_{j}^{2}\right] \\ = o\left(\frac{n^{2}}{2^{2j}}\right) \operatorname{Min}\left[(1-x^{2})^{-1}, n^{2}\right].$$

Hence from (7) and (9) we have

(10)
$$\Phi_{n}^{"'}(x) = \sum_{j=0}^{r-1} \left[\Phi_{n_{j}}^{"'}(x) - \Phi_{n_{j+1}}^{"'}(x)\right]$$
$$= \sum_{j=0}^{r-1} o\left(\frac{n^{2}}{2^{2j}}\right) \operatorname{Min}\left[(1-x^{2})^{-1}, n^{2}\right]$$
$$= o(n^{2}) \operatorname{Min}\left[(1-x^{2})^{-1}, n^{2}\right].$$

This completes the proof of our lemma.

4. We shall further need the following inequalities which have been proved in our work [5].

(11)
$$w_{1n}(x) = O(n^{-5}), \ w_{nn}(x) = O(n^{-5})$$

(12)
$$w_{\nu n}(x) = O(n^{-\frac{7}{2}}) l_{\nu n}(x) (1 - x_{\nu n}^2) \nu + O(n^{-5}) \nu^2, \ 2 \leq \nu \leq \frac{n}{2}$$

(13)
$$w_{\nu n}(x) = O(n^{-\frac{7}{2}}) l_{\nu n}(x) (1-x_{\nu n}^2) (n-\nu) + O(n^{-5}) (n-\nu)^2, \frac{n}{2}+1 \le \nu \le n-1$$

(14)
$$u_{1n}(x) = O(n), \quad u_{nn}(x) = O(n)$$

(15)
$$u_{\nu n}(x) = O(n^{\frac{1}{2}}) \frac{l_{\nu n}(x)}{\nu} + O(1) \nu^{-\frac{5}{2}} + O(1) \nu^{\frac{1}{2}} l_{\nu n}^{2}(x) + O(1) l_{\nu n}^{3}(x), \ 2 \le \nu \le \frac{n}{2}$$
 and

(16)
$$u_{\nu n}(x) = O(n^{\frac{1}{2}}) \frac{l_{\nu n}(x)}{n-\nu} + O(1)(n-\nu)^{-\frac{5}{2}} + O(1)(n-\nu)^{\frac{1}{2}} l_{\nu n}^{2}(x) + O(1) l_{\nu n}^{3}(x),$$
$$\frac{n}{2} + 1 \le \nu \le n-1.$$

We shall also need the results [3]

(17)
$$\frac{c_1}{n} \vee \leqslant (1 - x_{\vee n}^2)^{\frac{1}{2}} \leqslant \frac{c_2}{n} \vee \qquad \left(2 \leqslant \vee \leqslant \frac{n}{2}\right)$$

(18)
$$\frac{c_1}{n}(n-\nu) < (1-x_{\nu n}^2)^{\frac{1}{2}} < \frac{c_2}{n}(n-\nu) \qquad \left(\frac{n}{2}+1 < \nu < n-1\right)$$

where c_1 and c_2 are suitable numerical constants, and the following important result of *Fejér*:

(19)
$$l_j^2(x) \leqslant \sum_{i=1}^n l_j^2(x) \leqslant 1 \qquad (-1 \leqslant x \leqslant 1; \ j=1, \ 2, \ \dots, \ n).$$

5. We now come to the proof of the theorem. According to the usual convention there holds

(20)
$$R_{n}(x, f) - f(x) = R_{n}(x; f - \Phi_{n}) + \Phi_{n}(x) - f(x)$$

$$= \sum_{i=1}^{n} [f(x_{vn}) - \Phi_{n}(x_{vn})] u_{vn}(x) + \sum_{i=1}^{n} [\gamma_{vn} - \Phi_{n}^{(i)}(x_{vn})] w_{vn}(x) + o(1).$$

From (5), (14), (15), (17) and (19) it follows that

$$\sum_{\nu=1}^{n} \left[f(x_{\nu n}) - \Phi_{n}(x_{\nu n}) \right] u_{\nu n}(x) = o(n^{-2}) O(n) + \sum_{\nu=2}^{\frac{n}{2}} o(n^{-1}) \frac{\nu}{n} O(n^{\frac{1}{2}}) \frac{l_{\nu n}(x)}{\nu}$$

$$+ \sum_{\nu=2}^{\frac{n}{2}} o(n^{-1}) \frac{\nu}{n} \nu^{\frac{-\frac{5}{2}}{2}} + \sum_{\nu=2}^{\frac{n}{2}} o(n^{-1}) \frac{\nu}{n} \cdot \nu^{\frac{1}{2}} l_{\nu n}^{2}(x) + \sum_{\nu=2}^{\frac{n}{2}} o(n^{-1}) \frac{\nu}{n} l_{\nu n}^{3}(x)$$

$$= o(n^{-1}) + o(n^{\frac{-\frac{3}{2}}{2}}) \sum_{\nu=2}^{\frac{n}{2}} l_{\nu n}(x) + o(n^{-2}) \sum_{\nu=2}^{\frac{n}{2}} \nu^{\frac{3}{2}} l_{\nu n}(x)$$

$$+ o(n^{-2}) \sum_{\nu=2}^{\frac{n}{2}} \nu l_{\nu n}^{3}(x) = o(n^{-1}) + o(n^{-2}) \sum_{\nu=2}^{\frac{n}{2}} \nu^{\frac{3}{2}} l_{\nu n}(x)$$

$$= o(n^{-1}) + o(n^{-2}) \left(\sum_{\nu=2}^{\frac{n}{2}} \nu^{3} \right)^{\frac{1}{2}} \left(\sum_{\nu=2}^{\frac{n}{2}} l_{\nu n}^{2}(x) \right)^{\frac{1}{2}} = o(n^{-1}) + o(1) = o(1).$$

Again from (4), (6), (11), (12), (17) and (19) we get

$$\sum_{\nu=1}^{n} \left[\gamma_{\nu n} - \Phi_{n}^{"'}(x_{\nu n}) \right] w_{\nu n}(x)$$

$$= o(n^{4}) O(n^{-5}) + \sum_{\nu=2}^{n} o(n^{2}) \frac{n^{2}}{\nu^{2}} O(n^{-\frac{7}{2}}) l_{\nu n}(x) \frac{\nu^{2}}{n^{2}} \cdot \nu + \sum_{\nu=2}^{n} o(n^{2}) \frac{n^{2}}{\nu^{2}} O(n^{-5}) \nu^{2}$$

$$= o(n^{-1}) + o(n^{-\frac{3}{2}}) \sum_{\nu=2}^{n} \nu l_{\nu n}(x) + o(1)$$

$$= o(n^{-1}) + o(n^{-\frac{3}{2}}) \left(\sum_{\nu=2}^{n} \nu^{2} \right)^{\frac{1}{2}} \left(\sum_{\nu=2}^{n} l_{\nu n}^{2}(x) \right)^{\frac{1}{2}} + o(1) = o(1).$$

In the same way we can prove

(23)
$$\sum_{v=\frac{n}{2}+1}^{n} [f(x_{vn}) - \Phi_n(x_{vn})] u_{vn}(x) = o(1)$$

and

(24)
$$\sum_{\nu=\frac{n}{2}+1}^{n} \left[\gamma_{\nu n} - \Phi_{n}^{(i)}(x_{\nu n}) \right] w_{\nu n}(x) = o(1).$$

Hence (20), (21), (22), (23) and (24) complete the proof of our theorem.

REFERENCES

- [1] V. K. Dzyadyk: Constructive characterisation of Functions satisfying the condition $\text{Lip }\alpha \ (0 < \alpha < 1)$ on a finite segment of real axis (Russian), Izv. Akad. Nauk SSSR 20 (1956), pp. 623—642.
- [2] G. Freud: Über die Approximation reeller stetigen Funktionen durch gewöhnliche Polynome, Math. Annalen, 137 (1959), pp. 17—25.
- [3] G. Freud: Bemerkung Über die Konvergenz eines Interpolationsverfahrens von P. Turan, Acta Math. Akad. Sci. Hung., 9 (1958), pp. 337—341.
- [4] R. B. Saxena and A. Sharma: On some interpolatory properties of Legendre polynomials, Ibid., 9 (1958), pp. 345-358.
- [5] R. B. Saxena and A. Sharma: Convergence of interpolatory polynomials, Ibid., 10 (1959), pp. 157-175.