ON ROOTS OF AN ELEMENT OF A BANACH ALGEBRA1*

Svetozar Kurepa

(Received 30. III 1961)

An element b of a Banach algebra B is called an n-th root of $a \in B$ if

$$b^n = a$$

holds. It is well known (see Theorem 1 below) that an element $a \in B$ need not possess any root in B. If B is an algebra of matrices of finite order and if $a \in B$ is regular, then it possesses any root in B. It is an interesting result of [1] and [2] that in the case in which B is a Banach algebra of bounded operators on a Hilbert space a regularity of an element $a \in B$ does not imply the existance of a square (n-th) root of a. Moreover as it is proved in [2] the set of elements in B which possess square roots is not dense in B.

It is the object of this paper to prove (Theorem 2) that any Banach algebra B can be imbeded isomorphycally and isometrically in another Banach algebra B' in such a way, that any element of B as an element of B' possesses any root in B'. This is generalisation of our result obtained in [4], in which B was imbeded in B' isomorphically, but not isometrically in such a way that any element of B possessed a square root in B'. Furtheremore (Theorem 3) the algebra B can be isomorphycally and isometrically imbeded in a normed algebra B'' which has the property that any element of B'' possesses any root in B''.

Beside this in Theorem 1 we find necessary and sufficient conditions for an entire function f in order that f maps a Banach algebra B of matrices of (any) finite order on B.

Theorem 1. Let

$$f(z) = \sum_{0}^{\infty} \alpha_n z^n$$

be an entire function and $B = \{J, S, T, W, ...\}$ a Banach algebra of all matrices, with complex matrix elements, of finite (any) order.

Then, the mapping

$$T \to f(T) = \sum_{n=0}^{\infty} \alpha_n T^n$$

of B in B is on B if and only if for any complex number α the set

$$\Gamma_{\alpha} = \{z \mid f(z) = \alpha, \quad f'(z) \neq 0\}$$

is not empty.

¹ The author wishes to thank Professor John M. Horwath and Professor James A Hummel for their interest and fruitfull discussion during the preparation of this paper.

^{*} This work was supported by the National Science Fundation.

Proof: Necessity. Suppose that Γ_{α} is empty for some α_0 . Then at least one of the following two cases occur: 1. $f(z) = \alpha_0$ has no solution or 2. f'(z) = 0 whenever $f(z) = \alpha_0$. In the first case f is not a mapping onto already in the case f is the algebra of complex numbers. In the second case for f take the algebra of all f and f are an equation:

$$f(T) = \alpha_0 E + J$$

where E is the unit matrix, $J_{21} = 1$ and all other matrix elements of J are zero. Since T commutes with f(T) it also commutes with J and therefore

$$T = \alpha E + \alpha_1 J$$
.

Since α is a single eigenvalue of T we have $f(\alpha) = \alpha_0$. Now $\alpha_1 = 0$ would imply $f(T) = \alpha_0 E$ which is impossible. Therefore $\alpha_1 \neq 0$. But $\alpha_1 \neq 0$ implies the existence of a regular matrix S such that

$$S^{-1}TS = \alpha E + J$$

from which follows:

$$S^{-1} f(T) S = f(\alpha E + J) = f(\alpha) E + f'(\alpha) J = \alpha_0 E$$

because $f'(\alpha) = 0$. Hence again $f(T) = \alpha_0 E$ which is impossible.

Sufficiency. Suppose that B is an algebra of all $n \times n$ matrices with complex elements and let V be any element of B. We assert that the equation

$$f(T) = V$$

has at least one solution T in B. Let S be a regular matrix with a property that

$$U = S^{-1} VS$$

is a Jordan form of V, i. e.

$$(2) U = \Sigma + (\alpha_k E_k + J_k)$$

where E_k is a unit matrix of the order n_k ; $J_k = 0$ if $n_k = 1$ and for $n_k > 1$ $(J_k)_{21} = \cdots = (J_k)_{n_k}$, $n_k = 1$ and all other matrix elements of J_k are zero. The symbol + denotes the direct sum of matrices. Now, consider the equation

$$f(W_k) = \alpha_k E_k + J_k$$

where W_k is a matrix of the order n_k . By the assumption about the function f there exists at least one number z_k such that $f(z_k) = \alpha_k$ and $f'(z_k) \neq 0$. Now,

$$f(z_k E_k + J_k) = f(z_k) E_k + \frac{f'(z_k)}{1!} J_k + \cdots + \frac{f^{(n-1)}(z_k)}{(n_k - 1)!} J^{n_k - 1}$$

and $f'(z_k) \neq 0$, $f(z_k) = \alpha_k$ imply the existence of a regular matrix S_k of the order n_k such that

$$S_k^{-1} f(z_k E_k + J_k) S_k = \alpha_k E_k + J_k.$$

Thus the matrix:

$$W_k = S_k^{-1} (z_k E_k + J_k) S_k$$

satisfies (3). But then the matrix

$$W = \Sigma + W_k$$

has the property that f(W) = U. Thus the matrix

$$T = SWS^{-1}$$

satisfies (1).

Observe that functions $z^n (n > 1)$, $\sin z$, $\cos z$, $\exp z$ do not satisfy the conditions of Theorem 1. Thus matrix equations $T^n = V(n > 1) \sin T = V$, $\cos T = V$, $\exp T = V$ have not always solutions. On the other hand functions

$$f(z) = z^3 - z$$
, $f(z) = \int_0^z \exp[\exp[t] dt$

satisfy all conditions of theorem 1 ([5], p. 257).

From the proof of Theorem 1 we see that if f is an entire function and if f(T) = V has always a solution in the *Banach algebra* of matrices of second order then the function f satisfies all conditions of Theorem 1.

Theorem 2. Let $\Phi = \{\alpha, \beta, \dots\}$ be a field of real or complex numbers and $B = \{a, b, \dots\}$ a Banach algebra over the field Φ with a unit e.

Then, there exists a Banach algebra $B' = \{T, S, ...\}$ over Φ with a unit E and a mapping (imbedding) $\theta: B \to B'$ such that

- 1) $\theta(\alpha a + \beta b) = \alpha \theta(a) + \beta \theta(b)$ $(\alpha, \beta \in \Phi, a, b \in B)$
- 2) $\theta(ab) = \theta(a) \theta(b)$
- 3) $\|\theta(a)\| = \|a\|$ and
- 4) θ (a) and a have the same spectrum.

Furthermore, if a is any element of B and n any natural number then, there exists at least one element $T \subseteq B'$ such that:

- I. $T^n = \theta(a)$ and
- II. If $b \in B$ commutes with a, then T commutes with $\theta(b)$.

Proof: Consider the set of all sequences:

$$x = (x_1, x_2, \ldots), x_i \in B$$

for which

$$\sum_{0}^{\infty} ||x_{j}|| < +\infty.$$

This set, which we denote by X, is a Banach space over Φ with the usual definitions of the addition and multiplication with a number from Φ and with the norm:

$$||x|| = \sum_{i=1}^{\infty} ||x_i||.$$

Let B' be the set of all bounded and linear operators T which are defined on X and have ranges in X. The set B' becomes a *Banach algebra* in the usual way by the norm:

$$||T|| = \sup ||Tx|| \ (x \in X, ||x|| \le 1, T \in B').$$

Now, if a_{ij} (i, j = 1, 2, ...) are elements of B such that

(4)
$$\begin{cases} \sum_{i=1}^{\infty} ||a_{ij}|| \leq M < +\infty & j=1, 2, \dots \text{ and} \\ \sum_{i=1}^{\infty} ||a_{ij}|| \leq M & i=1, 2, \dots \end{cases}$$

where M is a constant, then y = Tx defined by

(5)
$$y_i = \sum_{j=1}^{\infty} a_{ij} x_j, \quad \sum_{j=1}^{\infty} ||x_j|| < +\infty$$

is a bounden and linear operator on X. Indeed, the series (5) converges in B for any $i = 1, 2, \ldots$ and

$$\sum_{i=0}^{\infty} ||y_i|| \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} ||a_{ij}|| ||x_j|| \leq \sum_{j=1}^{\infty} ||x_j|| \left(\sum_{i=1}^{\infty} ||a_{ij}||\right) \leq M \cdot \sum_{j=1}^{\infty} ||x_{ij}||, \text{ i. e.}$$

$$||Tx|| \leq M ||x||$$

for any $x \in X$. For any $a \in B$ the operator aE defined by the matrix $a \delta_{ij}$ ($\delta_{ij} = e$ if i = j and the null-element of B otherwise) is an element of B'.

We set:

$$\theta (a) = aE.$$

Obvously θ satisfies the conditions 1-4 of Theorem 2. It remains to prove that every element aE possesses n-th root in B'.

Suppose that $a \in B$ and a natural number n are given. Consider an $n \times n$ matrix T_n , matrix elements of which belong to B^2 , such that:

$$[T_n]_{1,n}=a, [T_n]_{21}=\cdots=[T_n]_{n,n-1}=e$$

and all other matrix elements of T_n are equal to the null-element of B. Then:

$$[(T_n)^n]_{ij} = \sum_{k=1}^n (T_n)_{ik} [(T_n)^{n-1}]_{kj} = [(T_n)^{n-1}]_{i-1,j} = \cdots = [(T_n)^{n-i+1}]_{1,j}$$

$$= \sum_{k=1}^n (T_n)_{ik} [(T_n)^{n-i}]_{kj} = a [(T_n)^{n-i}]_{nj} = a \sum_{k=1}^n (T_n)_{nk} [(T_n)^{n-i-1}]_{kj}$$

$$= a [(T_n)^{n-i-1}]_{n-1,j} = \cdots = a (T_n)_{i+1,j}.$$

Thus

$$[T_n]^n = aE_n$$
.

where E_n is an $n \times n$ diagonal matrix with e on the main diagonal. Now, the matrix elements of the matrix

satisfy conditions (4) with M = 1 + ||a|| and therefore (5) defines an element T of B'. Obviously

$$T^{n} = \sum + [T_{n}]^{n} = \sum + aE_{n} = a \sum + E_{n} = aE = \theta (a).$$

Furthermore if ab = ba $(a, b \in B)$, then T and a ,,scalar" matrix $\theta(b)$ commute. Thus Theorem 2 is proved.

² For general definition of a matrix see [3].

Notice that two elements a and b of B may commute, but their constructed roots need not commute.

Theorem 3. Let B be a Banach algebra over a field Φ of complex or real numbers with a unit e.

There exists a normed algebra B' such that for any S of B' and any natural number n there exists at least one element $T \subseteq B'$ such that

$$T^n = S$$
.

The Banach algebra B can be isomorphycally and isometrically imbeded in B'.

Proof: Let ω denote the ordinal number of the set of all natural numberes and denote $\Omega = \omega^{\omega}$.

The set of all sequences

$$x = (x_0, x_1, \ldots, x_\alpha, \ldots)_{0 \leqslant \alpha < \Omega}$$

 $x_{\alpha} \in B$ for which

$$||x|| = \sum_{0 \leq \alpha < \Omega} ||x_{\alpha}|| < +\infty$$

is a *Banach space* if the addition of two elements and the multiplication with and element of Φ is defined in the usual way. For an element $a \in B$ and $x \in X$ define:

$$ax = (ax_0, ax_1, \ldots, ax_\alpha, \ldots)_{0 \leqslant \alpha < \Omega}$$
 and

$$xa = (x_0a, x_1a, \ldots, x_\alpha a, \ldots)_{0 \leqslant \alpha < \Omega}.$$

Obviously ax and xa are in X. By f_{α} , $0 \le \alpha < \Omega$, denote a vector which has the α -th coordinate e-the unit of B, and other coordinates the null-element of B. Then:

$$x = \sum_{0 \leqslant \alpha < \Omega} x_{\alpha} f_{\alpha} = \sum_{0 \leqslant \alpha < \Omega} f_{\alpha} x_{\alpha}.$$

By a bounded linear operator $T: X \rightarrow X$ we mean a mapping which has the following properties:

- 1) $T(\lambda x + \mu y) = \lambda Tx + \mu Ty$ for all $x, y \in X$ and $\lambda, \mu \in \Phi$.
- 2) $||T|| = \sup ||Tx||$ $(x \in X, ||x|| \le 1)$ is finite and
- 3) T(xa) = (Tx) a for any $a \in B$ and $x \in X$.

The set of all bounded linear operators form a Banach algebra B'' over Φ . If $T \subseteq B''$ and $x \subseteq X$, then

$$Tx = T \sum_{0 \leqslant \alpha < \Omega} f_{\alpha} x_{\alpha} = \sum_{0 \leqslant \alpha < \Omega} (Tf_{\alpha}) x_{\alpha}.$$

Hence T is completely determined by its values on the basic set $\{f_{\alpha}\}$. Setting

$$Tf_{\alpha} = \sum_{0 \leqslant \beta < \Omega} f_{\beta} T_{\beta \alpha}$$

with $T_{\beta\alpha} \subset B$ we find that to the product T'T'' of two elements of B'' there corresponds the matrix:

$$(T'\ T'')_{\alpha\beta} = \sum_{0 \leqslant \gamma < \Omega} (T')_{\alpha\gamma} (T'')_{\gamma\beta}$$

and also to the sum of operators there corresponds the sum of the corresponding matrices. In such a way we have an isomorphism of $B^{\prime\prime}$ with a set of bounded matrices, provided that a bounded matrix is defined in usual way, and matrices in question are matrices of the order Ω with matrix elements in B.

A matrix $T = (T_{\alpha\beta})$ such that for some $0 \le \sigma < \Omega$

$$T_{\alpha\beta} = T_{\sigma, \gamma+\alpha, \sigma, \gamma+\beta}$$

for all $0 \le \alpha$, β , $\gamma < \Omega$, and all other matrix elements of T vanish will be called a direct sum of a matrix

$$(T_{\alpha\beta})_{0 \leqslant \alpha, \beta < \sigma}$$

which is of the order o. We will write:

$$T = \sum \dot{+} [(T_{\alpha\beta})_{0 \leq \alpha, \beta < \sigma}]$$

If X_{σ} is a subspace of X determined by the vectores $f_0, \ldots, f_{\alpha}, \ldots, \alpha < \sigma$, then the set of all bounded linear operators from X_{σ} in X_{σ} form a *Banach algebra* $B(\sigma)$. To any element of $B(\sigma)$ there corresponds a bounded matrix

$$[T_{\alpha\beta}]_{0 \leq \alpha, \beta < \sigma}$$

of the order σ . Taking a direct sum of such a matrix we get a matrix of the order Ω which represents an element of B''. By this construction, from $B(\sigma)$ we get a *Banach algebra* $B'(\sigma)$ which is a subalgebra of B''.

Set $B_n = B'(\omega^n)$ and $\omega^0 = 1$. Then the algebra B_0 consists of "scalar" matrices only. Thus, an element $a \in B$ can be identified with the corresponding matrix which is in B_0 and which is obtained as a direct sum of the matrix a of the order $\delta = 1$. Furthermore we have:

$$B_0 \subset B_1 \subset \cdots \subset B_n \subset \cdots \subset B''$$
.

The cannonical mapping of B_n into B_{n+1} or B'' is an isometric and isomorphyc imbeding of B_n into B_{n+1} or B'' respectively. Suppose tat a natural number m>1 is given and that S is an element of B_n . We assert, that there exists at least one element $T \subseteq B_{n+1}$ such that $T^m = S$. Indeed, any element of $B(\omega^{n+1})$ can be considered as a block-matrix of order ω with block-matrices of order ω^n . Thus, elements of $B(\omega^n)$ appear as "scalar" matrices in $B(\omega^{n+1})$. On the other hand S is a direct sum of an element $S_0 \subseteq B(\omega^n)$. The element S_0 is a "scalar" matrix in $B(\omega^{n+1})$ and we can, as in Theorem 2, in terms of S_0 define $T_0 \subseteq B(\omega^{n+1})$ in such a way, that $T_0^m = S_0$. However, here we also take into account the obvious fact, that the multiplication of block-matrices satisfies the usual rules of multiplication of block-matrices with complex matrix elements. If T is a direct sum of T_0 , then T is in B_{n+1} and obviously $T^m = S$. Thus any element of B_n as an element of B_{n+1} possesses any root in B_{n+1} . Set

$$B'=\bigcup_{0\leqslant n<\omega}B_n.$$

Plainly B' is a subalgebra of B''. It is a normed algebra and any element of B' possesses any root in B'.

Q. E. D.

REFERENCES

- [1] P. R. Halmos, G. Lumer, J. J. Schaeffer: Square roots of operators, Proc. Amer. Math. Soc. 4 (1953), 142-149.
- [2] P. R. Halmos and G. Lumer: Square roots of operators II, Proc. Amer. Math. Soc. 5 (1954), 589-595.
- [3] G. Kurepa: Une généralisation des matrices, C. R. Acad. Sci. Paris 239 (1954), 19-20.
- [4] S. Kurepa: A cosine functional equation in Banach algebras.
- [5] R. Nevanlinna: Eindeutige Analytische Funktionen, Verlag-Springer, Berlin 1936.