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An clement b of a Banach algebra B is called an n-th root of a & B if
b*=a

holds. It is well known (see Theorem 1 below) that an element a < B need
not possess any root in B. If B is an algebra of matrices of finite order and
if @ © B is regulai, then it possesses any root in B. It is an interesting result
of [1] and [2] that in the case in which B is a Banach algebra of bounded
operators on a Hilbert space a regularity of an element a & B does not imply
the existance of a square (n-th) root of a. Moreover as it is proved in [2] the
set of elements in B which possess square roots is not dense in B.

It is the object of this paper to prove (Thecorem 2) that any Banach
algebra B can be imbeded isomorphycally and isometrically in another Banach
algebra B’ in such a way, that any element of B as an element of B’ possesses
any root in B’. This is generalisation of our result obtained in [4], in which
B was imbeded in B’ isomorphically, but not isometrically in such a way that
any clement of B possessed a square root in B’. Furtheremore (Theorem 3) the
algebra B can be isomorphycally and isometrically imbeded in a normed algebra
B which has the property that any element of B’' possesses any root in B”.

Beside this in Theorem 1 we find necessary and sufficient conditions for
an entire function f in order that f maps a Banach algebra B of matrices of
(any) finite order on B.

Theorem 1. Let

F@ =S a2
0

be an entire function and B=1{J,S,T, W, ...} a Banach algebra of all matri-
ces, with complex matrix elements, of finite (any) order.
Then, the mapping

T—»f(T)zZoc,,T”
0
of B in B is on B if and only if for any complex number o the set

Lo ={z|f(D)=2, [f'(2)# 0}

is not empty.
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Proof: Necessity. Suppose that I'y is empty for some o, Then at least
one of the following two cases occur: 1. f(z) =, has no solution or 2. f{n=0
whenever f(z)=o,. In the first case f is not a mapping onto already in the
case B is the algebra of complex numbers. In the second case for B take the
algebra of all 2% 2 matrices and consider the equation:

f(My=ay E+J
where E is the unit matrix, Jy;=1 and all other matrix elements of J are
zero. Since T commutes with f(7) it also commutes with J and therefore
T == (X.E - ®y J .

Since « is a single eigenvalue of 7' we have f(a)=a,. Now a;=0 would imply
F(T)=u, E which is impossible. Therefore o 7 0. But «, = 0 implies the exis-
tence of a regular matrix S such that

SATS=aE+J
from which follows:
S=1f(T) S=f(aE +J)=f(QE+f (2} J=apE

because f' («)=0. Hence again f(T)=oyE which is impossible.
Sufficiency. Suppose that B is an algebra of all nXxn matrices with
- complex elements and let ¥ be any element of B. We assert that the equation

m =V

has at least one solution T in B. Let S be a regular matrix with a property that
- U=8VS

is a Jordan form of V, i. e. .

2 U=X + (o Ex+Ji)

where E, is a unit matrix of the order ny; J,=0 if =1 and for m > 1

oz = - Z(J“)”k’ T 1 and all other matrix elements of J; are zero.

The symbol I denotes the direct sum of matrices. Now, consider the equation
(3) FWY = Ep+Ji

where W, is a matrix of the order n,. By the assumption about the function
£ there exists at least one number z; such that f(z;) = and f(z)#0. Now,

FzrEx +7) =1 (z1) Ex LG AN Al Y R
1! (e~ 1)!

and f' (z)#0, f(z) =0 imply the existence of a regular matrix S, of the
order n, such that
Si ' f (2 Ex +70) S = Ei + i
Thus the matrix:
Wi = S;i i E + i) Sk

satisfies (3). But then the matrix

W=%+W,
has the property that f(W)=U. Thus the matrix

T=SwWSs-1
satisfies (1).
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Observe that functions z"(# > 1), sin z, cos z, exp z do not satisfy the
conditions of Theorem 1. Thus matrix equations T"=V(n>1) sinT=V,
cos T=V, exp T=V have not always solutions. On the other hand functions

f(@)=2*—2z, f(z)=fexp[exp 1] dt
0

satisfy all conditions of theorem 1 ([3], p. 257).

From the proof of Theorem 1 we see that if f is an entire function
and if f(T)=V has always a solution in the Banach algebra of matrices of
second order then the function f satisfies all conditions of Theorem I.

Theorem 2. Let ®={a, B, ... } be a field of real or complex num-
bers and B={a, b, ... } a Banach algebra over the field ® with a unit e.

Then, there exists a Banach algebra B ={T,S, ...} over ® with a unit
E and a mapping (imbedding) ©:B— B’ such that

1) 6(aa+Bby=ab(@)+B80(h) (BED, a. b B)
2) 0 (ab)="0(a) 0 (b) '

3 0@ =lla] and

4) 0 (a) and a have the same spectrum.

Furthermore, if a is any element of B and n any natural number then,
there exists at least one element T & B’ such that:

1. T"=9(a) and
1. If b & B commutes with a, then T commutes with 6 (b).
Proof: Consider the set of all sequences: '
. x=(xy, X3, --- ), X, &B
for which
z | x;]]< +o0.
0
This set, which we denote by X, is a Banach space over ® with the usual de-

finitions of the addition and multiplication with a number from ® and with
the norm:

uxu=§nx,-n.

Let B’ be the set of all bounded and linear operators T which are defined on
X and have ranges in X. The set B’ becomes a Banach algebra in the usual
way by the norm:

| Tl =sup||Tx|| xE X, [ x|l<1, TEB).

Now, if a; (i, j=1,2, ... ) are elements of B such that
S llagll< M<+e0 j=1,2, ... and
i=1 '

(4) B
> llayll <M i=1,2, ...

-~
]
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where M is a constant, then y=Tx defined by

) y,-=§a;;xj, i | %)< +o0
j=1

j=1

is @ bounden and linear operator on X. Indeed, the series (5) converges in B
for any i=1,2, ... and

for any x & X. For any a & B the operator aFE defined by the matrix a3
(3;=e if i=j and the null-element of B otherwise) is an element of B'.

We set:
(6) 6 (a)=aE.

Obvously 0 satisfies the conditions 1—4 of Theorem 2. It remains to prove
that every element gE possesses #-th root in B'.

Suppose that a & B and o natural number n are given. Consider an nxXn
matrix T,, matrix elements of which belong to B?), such that:

[Tn]ln:a: [Tn]zls vt :[Tn]n,n-lze

and all other matrix elements of 7, are equal io the null-element of B. Then:

()= i (T (T N =UT)" " Hieq, =+ = (T,
k=1

= i (Tn)ik [(Tn)n“i}kj == I(-rrn)”‘i},;; == i (Tn)nk [(Tn)"“i_l} i
k=1 k=1

=a[(T,) "ﬁihl}n_l,j =---=d (Tr!_)i{rl,j-
Thus
[T]"=ak,,

where E, is an nxn diagonal matrix with e on the main diagonal. Now, the
matrix elements of the matrix

|
|

satisfy conditions (4) with M=1+]| @] and therefore (5) defines an element
T of B'. Obviously

T"= % +[T,)'=S +aE,=a¥ +E,=aE=0(a).

Furhermore if ab=ba (a, b < B), then T and a ,scalar® matrix 8 (b) commute.
Thus Theorem 2 is proved.

2 For general definition of a matrix see [3].
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Notice that two elements a and b of B may commute, but their con-
strucied roots need not commute.

Theorem 3. Let B be a Banach algebra over a field ® of complex
or real numbers with a unit e.

There exists a normed algebra B’ such that for any S of B’ and any
natural number n there exists at least one element T & B’ such that

T"=S.

The Banach algebra B can be isomorphycally and isometrically imbeded in B’.
Proof: Let o denote the ordinal number of the set of all natural num-

beres and denote Q=®.
The set of all sequences

. x=(x09 X1s vov s Xas -o )0<a<(2
xq & B for which

Ixl= 2 [[%al<+oo

0La<lQ

is a Banach space if the addition of two clements and the multiplication with
and element of ® is defined in the usual way. For an element a C B and
x € X define:

ax=(axy, axy, ... , AXq, ... Yoca<can and

xa=(Xya, X1d, ... , Xal, ... )o<a<Q.

Obviously ax and xa are in X. By f,, 0 <a < Q, denote a vector which has
the a-th coordinate e-the unit of B, and other coordinates the null-elemeni

of B. Then:
X = z xafoc = Z fcx X -

d<a< Q 0ol Q

By a bounded linear operator 7: X—X we mean a mapping which has the
following properties:

1) TOx+upy)=rTx+uTy for all x,yC X and A, ne .

2) {|T|=sup ||Tx|] (xE X, |[|x||<1) is finite and

3) T(xa)y=(Tx)a for any a< B and x & X.
The set of all bounded linear operators form a Banach algebra B over ®.

If T<& B” and x € X, then

Tx=T 3 fuXa= 2 (Tfa)%x.

0 Q 0<a< Q

Hence T is completely determined by its values on the basic set { f«} . Setting
Tfa= 2 foTp
0SB Q

with Tex & B we find that to the product T"T" of two elements of B" there
corresponds the matrix:

T TYp= 2 Ty (T
0<<y<{Q

and also to the sum of operators there corresponds the sum of the correspon-
ding matrices. In such a way we have an isomorphism of B’ with a set of
bounded matrices, provided that a bounded matrix is defined in usual way,
and matrices in question are matrices of the order Q with matrix elements in B.



10 Svetozar Kurepa

A matrix T=(Ty) such that for some 0 <o <Q
Top =To.vtra,00v+8

for all 0 <a, B, y<Q, and all other matrix elements of T vanish will be called
a direct sum of a matrix
(Tep oo <o

which is of the order o. We will write:

T=3 +{(Toplo<s, s<o)

If X, is a subspace of X determined by the vectores fy, ... , fu, ... , a <o,
then the set of all bounded linear operators from X; in X, form a Banach
algebra B(s). To any element of B(s) there corresponds a bounded matrix

{Taﬁ}ﬂsa, B<eo

of the order o. Taking a direct sum of such a matrix we get a matrix of
the order & which represenis an element of B’'. By this construction, from
B(c) we get a Banach algebra B'(s) which is a subalgebra of B".

Set B,=B'(v»") and «®=1. Then the algebra B, comsists of ,,scalar*
matrices only. Thus, an element @ € B can be identified with the corresponding
matrix which is in B, and which is obtained as a direct sum of the matrix a
of the order 3= 1. Furthermore we have:

BDCBIC-”CB,,C'-'CB”.

The cannonical mapping of B, into B,.; or B” is an isometric and isomorphyc
imbeding of B, into B,.; or B’ respectively. Suppose tat a natural number
m>1 is given and that S is an element of B,. We assert, that there exists
at least one element T¢= B,.y such that T"=S. Indeed, any element of
B{w™1) can be considered as a block-matrix of order « with block-matrices
of order w". Thus, elements of B{w") appear as ,,scalar** matrices in B(o"t1).
On the other hand § is a direct sum of an element S, & B(w”"). The element
S, is a ,scalar’ matrix in B(o""?!) and we can, as in Theorem 2, in terms
of S, define T,& B(w"™) in such a way, that To =S,. However, here we
also take into accouni the obvious fact, that the multiplication of block-
matrices satisfies the usual rules of multiplication of block-matrices with
complex matrix elements. If T is a direct sum of T,, then T is in B,y, and
obviously 7"=S. Thus any element of B, as an element of B,,, possesses
any root in B,.,. Set
B = B,
OLn< @

Plainly B’ is a subalgebra of B’. It is a normed algebra and any element
of B’ possesses any root in B'. Q. E. D.
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