THE AREA OF A GENERALIZED CIRCLE IN
THE HYPERBOLIC PLANE

SVETOZAR KUREPA (Zagreb)

If M is a bounded and closed set of the hyperbolic or Euclidean
plane and M the convex hull of M, then the area p M, of the circle M,

around M with radius r and the area p/v?, of the circle M, around M have
the property that

lim (a M, —p M,)

. r>o
exists. If M is in the Euclidean plane then this limit is zero, but if M is
in the hyperbolic plane and if it does not contain the boundary of M then
this* limit is. +oo. R -
If M consists of two points of an n-dimensional Euclidean space
(1>>2), M is the convex hull of M and M, resp. M, the spheres of radius
r around M resp. M then

pM wM,=0(rn"3)
where 1 S denotes the n- ~dimensional measure (the volume) of S.

Furthermore, for a convex set M in the hyperbohc plane (1) and (2)
are valid, where v F (M) is the length of the boundary F (M) of M. These
results are formulated in the following theorems:

THEOREM 1. Lef X be the hyperbolic plane, d (xy y) the distance between
two points x,y € X, p.S the area (two-dimensional Bebesgue’s measure) of
SCX, F(S) the boundary of S uand vF(S) the length (one-dimensional
Lebesgue’s measure) of F(S).

If M C X is a non-linear convex, closed and bounded set and
M ={x|d(x,M)<r,x€X,r>0}
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a generalized circle around M with radius r, then

(1) pM,=pMchr+vF(M)shr+2r(chr—1)
and

d
(2) vEM)=—(uM).

dr

THEOREM 2. Let X be a Euclidean plane, d(x,y), pS, vF(S) the
corresponding functions for the Euclidean plune.

If M is a closed and bounded set and M the convex hull of M (i. e.
the smallest convex set which contains M) then

lim (p M, —pM,)=0.

r-»ow

In the case when M is a continuum of the Euclidean plane, theorem
2 was proved by G.Fast ([1], theorem 6, p. 162) who has studied more
carefully p M, as a function of r.

THEOREM 3. Let X be a hyperbolic plane, MC X a closed and boun-
ded set, M the convex hull of M, F(M) the boundary of M in the case
wM>0 and F(M) =M otherwise.

If M2 F(M) then wM,—p.M, =0 fur every r>sup d(x,y)(x,y €M)
and if M does not contain F(M) then

lim (o M, —pM,)= + oco.

Proof of theorem 1. First, suppose that M=P is a convex polygon

with verteces p,, p,, ..., pa, angles a, at p, and sides a, =pg pr 41 (Pny1=p1)-
In p, we construct the perpendiculars on a,_; and g, and denote the

angle between them by ay. We have a;+az== and therefore

3 (o + ag) = nm.
k=1

It
D(P)=(n—2) — 3 a
k=1

denotes the defect of P, then we find :

=21+ D (P).
k=1
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The boundary of P, consists of arcs of circles of radius r correspon-
ding to angles @& and of equidistant-curves with segments a; on their
axes and having the distance r. Thus we have:

pP,=pP+ éa,‘shr+[21r+D(P)](ch r—1)
&) )

vF(P)= Y acchr+[25+D(P)]shr,
k=1

because the length of an arc of the equidistant-curve is achr, and to an
angle o on the circle corresponds the arc ashr, while the corresponding
areas are ashr and a(chr—1) respectively.

On the other hand numerically D(P)=p P. This and (3) imply:

pP,=pP chr+vF(P)shr+2r(chr—1)
vF(P,)=pPshr+vF(P)chr+2nshr.

(4)

If M is a convex set then we can fake a sequence P™ of convex
polygons which tends to M. Since the area and the length are continuous
functions (4) implies:

pM,=pMchr+vFM)shr+2r(chr-1)
vF(M)=nMshr+v F(M)chr+2xshr
from which we see that (1) and (2) hold true. Q.E.D.

For the proofs of theorems 2 and 3 we need the following well-
known and obvious lemma 1.

LEMMA 1. Let M be a closed and bounded sef in the FEuclidean plane
or in the hyperbolic plane, M the convex hull of M and F(M) the boun-
dary of M. -

If x € F(M) and x & M then x is an interior point of an open interval

which is disjoint with M but which is contained in F(M) and the end points
of which are in M.

Proof: For the element x € F(M) there is at least one line p

which passes through x and such that M is on one side of p, say in the
lower half-plane. We assert that p contains at least one point of the set
M. Otherwise the distance of these two closed sets would be positive,

i, e. d(p,M)>0. Since M is bounded, there is a point x’ on p such
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that M is ou the right side of the perpendicular n 01 p at'x’. On the
line n in the lower half-plane construct a point x” such-9that 0 << d(x’; x")
< d(p, M) and through x” draw the line ¢ parallel with p-on the side in

which is M. Obviously M is in the lower half-plane with respect to g,
d(x,q)>0 and x is in the upper half-plane with respect to ¢g. The inter-

section of the lower half-plane with respect to g with M is a convex set
which contains M and which does not contain M. Since this contradicts
the definition of M we conclude that the set

M,=MQp

is not empty. Now, M, belongs to F(M). We assert that x is an  interior
point of M,. Suppose that this is not so and that M, is .on the right side
of x. Since M is closed and has no point on p which is on the left of x
there is a line p’ # p through x such that M is on the right half-plane
with respect to p’. Thus M is in the intersection of two: hali-planes deter-
mined by p and p’. Further x M implies d(x,M)>0, i.e. there is a
circle {x}, in which M has no points. This circle meets p’ in the -~ lower
half-plane in y and p in the right half-plane in 2. The line p” thfough y
and 2z divides the plane in two half-planes: in one is M and in the other
is x. Since d(x,p")>0 there is a contradiction with the definition
of M. Thus M, is not on the right side of x. On account.of the same reason
it is not on the left of x. Thus x € M,. Since x M we. find that x is. an
interior point of the segment M,, and therefore an interior point of the
open interval which does not contain points of M, but end-points of which
obviously belong to M. Q.E.D. o T

Proof of theorem 2. According to lemma,’l_F(Afltj con>s:ist‘s oflpo_in\ts

of M and of some open, with M disjoint, intervals with leng'th;'a',c ‘_whiéh
have end-points in M. ' S

Let N=MOF(#M).
Since NC M CM we have

and therefore

If :
r>sup d{x,y), a=sup ag,
xyeM Sk o
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then

0 e —pM, < pM,—pN, < X (ar—a, Vre—af) <
k.
<Slar-a V=) = (Sa ) (- VF=a) <
’ & 14
< vF(i)—%
v e —— o
= r+\r2—a®
Since vF(M) is finite we deduce
lim (pM, —aM,)=0.
row
Q.E.D.
COROLLARY 1. If M is a bounded and closed set in the Euclidean
plane and
pM, =a+Br+yr?
for all r, then M is a convex sel.
Proof: For a convex set M in the Euclidean plane the same
arguments as in theorem 1 lead to the well-known formula due to Min-

kowski:
pM, =pM+ vF(M)r +rix.

Thus: 3 ) ;
wM, =pM+vF(M)r+rén
holds ‘for all r. According to theorem 2 pM,—M~0 as rsoco. This can
be only if a=pM, 3= vF(M) and y ==, ie.
(5) wM, = pM +vF(M)r +r*s.
If we pass to the limit r~0 in (5) we find

(6)  pM=pil,

If pM =0, then M is either a segment or a point. If M is a point then M
is also a point. If M is a segment then one easily concludes that #M =M.
Suppose that pM 0. If M is not a convex set, then two points x,, x, €M
exist such that the segment x,x, is not in M. There is therefore a point
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x € x,x, which is not in M. But then d(x,M) >0, i.e. there is a circle
{x}, such that:

. ‘ xk N M=0.
Since pM >0, the set M possesses a point x; which is not on the same
line as x;, x,. The triangle A=Axx,x; is in M and therefore:

AN{x}, CM
has positive measure. We have:
(7 p(MNA) <p(MNA)=pA.

Furthermore MNCA C M CA where CA denotes the complement
of A. Thus,
(8) rMNCAY < n(MNCAY,
If we add (7) and (8) we get:
pM < oM

which contradicts pM =pM. In such a way we have M=M, ie. M is a
convex set.

In the case when M is a continuum corollary 1 was proved by
G.'Fast ([1] theorem 5, p. 161) in a somewhat different way.

Proof of theorem 3. Since the first assertion is obvious we prove
only the second assertion.

I. The set M is not linear. Since M does not contain F(M) there is
a point x€ F(M) which is not in M. But then x is an interior point of a

segment yz (y,2€ M) which belongs to F(M) (lemma 1). Now x & M implies
d(x,M)>0, i. e. there is a circle with radius € >0 such that

Obviously we can find ¢ such that:

1. a+2[1(a/2)—n #0* where I1(a/2) is the angle of parallelism
of /2 and
2. The Saccheri quadrilateral x'y’2’x” (see the figure) is in the set

(e ‘ {x}eN M,

it§. height is a and xx'=xx"=a/2.

2%t s easy. fo prove that a+2T1(a/2)~xn > Qfor a > Q.
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Let M’ be a closed set which is obtained by removing from M “the
Saccheri quadrilateral x')y’ 2" x”. Obviously MC M'C M and therefore

9 M, C M, CM,

On the opposite side of M with respect to x'x” construct two
equidistant-curves e and e with Qs
distance r>sup d(p,9) (p,q€ M)
and x’ x"” resp. y’ 2' as their axes, Y ¢
and two circles C,, C, with radius 1
r and with centers x” resp. x'. Let e
w be the meeting point of arcs of )
these two circles which is on the
same side as e with respect to x’'x"". h
With H denote xw, put A=r-—a
and by Q(r) denote the set which
is bounded by C,, C, and e. From
the triangle x’xw we have chr=

= ch-g.chH. Since r=h+a>h+

4 X’

L e
2

we have:

chﬁ-chh’>ch(f- +h) =chZLchh+shl sh h,
2 2 2 2

chg-(chhuchhpo

which implies chH~chh >0, i.e. H>h. Thus the equidistant curve e"
has no common points with Q(r). This implies:

QNN {yz}, =
Let u be any point between x’ and y’. We assert that:
(10) {u} NQ(r)=2.

Otherwise a point v€ Q(r) would exist such that uv=r. Consider. the tri-
angle, uvx’. The angle of this triangle at x' is > =/2. Thus the angle at
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u is < n/2. -However this implies r=uv > x’v >>r which is impossible. In the
same way we see that (10) holds if u€ M’ is any point which is not between
the lines x’y' and x” 2. But if u is between y’ and 2’ then as we have
proved (10) holds too. This implies that (10) holds for every u€M' which
is between these. two lines, i.e. (10) holds for every u€ M’ Thus:

I “ QNNM =2,
This and (9) imply:
QNS M\ M; S M\ M,
and therefore: '
(12) Q) < MMAN M) <p(MAM,).
On the other hand
pQ(r)=ashr—[2¢(r)(chr—1)+pa],

where A is the triangle x'x"w and $(r)=n/2 — <¢ (xx'w)<mn/2. We can
write pQ(r) in the following form: '

(13)  BQU)=24() -pd——-[a+2¢(r)] exp(—r) + _ [a—2¢(r)] exp .

Now, rooo implies:
pA > - 2[(a/2), 9(r)»w/2-T1(a/2) -
and ‘

a—20(r) » a+ ST (%) — x50,
This and (13) implies | ‘
4 lim §Q() =+ o0
which together with (11) and (12) leads to:

lim wW(M\M,)=lim (pM,—pM,)>>1im Q(r)= + oo.
r o r-yo r—-s

Il. The set M is linear. In this case M is a segment. Since M #M there

is a segment x'x"C M which has no points in M. We take this segment
and we construct an equidistant-curve e, circles C,,C, and Q(r) as in the
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case 1. By M’ denote the closed set M without the open interval x'x". Then
(12) is valid and therefore

p./ﬁ, pM, > pQ(r) > +ocas r--+ oo
Q.E.D.

It is interesting to note that the Euclidean plane is an exceptional

case in which pM,mpM,ﬁ() as r»oo. In order to see this we consider in the
n-dimensional Euclidean space a set M={x,p} consisting of two points
x,y such that d(x,y)=2a>>0. 1f pS denotes the n-dimensional measure
(volume) of § and

Sr={z| d(z,S)gr, r>0}

the n-dimensional sphere around S with radius r, then pM,—pM, behaves
as rn—3(n >2) for rooo. Indeed if V,._,(p) denotes the volume of (n—1)-di-
mensional sphere with radius p, then V,_(p)=a,_;p"~! with a constant
Tn—y- Now for r>a we have:

a
PM,“FM,:Q(I Vn-—l(r) - 2fvn—1(vm;dt=

a
—1
=20, [arm—t -- f(r2~ 12)% dt}=

ajr

a n—1
=2an_1r“[w~* — f(l‘tg) z di]—-—
r
0

1 n—3 (a\?
=, {n—1)a¥rm"3| — — — ) 4+
oy )aér [3 20 (r) ]

i. e.
(15) pM, — pM, = O(r=3).

Probably (15) is valid for every bounded and closed set M in the n-dimensi-
onal (n>>2) space which does not contain the boundary of M. This
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would--be interesting to prove at least in the case n=3, because it seems
that in this case lim (p./V],——pM,) exists, that this limit is finite but in
r®

general (even for a continuum M) different from zero.

(Recelved 15.V1.1960)
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