AN EXTENSION OF THE CESARI-CAVALIERI INEQUALITY

R. E. FULLERTONY (Maryland, USA}

1. INTRODUCTION. In his book, Surface Area (Princeton, 1956)
[1, Chapter VI, sec. 20], L. Cesari proved an inequality of basic
importance in the theory of Fréchet surfaces and of variational problems
connected with them. Since the Cavalieri principle for surfaces is a special
case of this inequality, he called it the Cavalieri inequality. More recently,
various inequalities of the same type have been developed and extensively
used. Hence we shall refer to the inequality of Cesari as the Cesari-
Cavalieri inequality. In [1] the inequality was proved for surfaces defined
over a planar disk. More recently, the inequality has been extended to
surfaces defined over compact two dimensional manifolds [2]. In this note
the inequality is extended in another direction which is useful in the study
of the recently developed Cesari-Cavalieri area of a surface [3].

Let Q be a compact, triangulated 2-manifold (with or without boun-
dary) and let T:Q—Ey be a continuous mapping of Q into N dimensional
Euclidean space (N>>2). Then, as in [1], 7, Q define a Fréchet surface S
Let [S] be the set of points in Ey occupied by the surface S. Let f:[T}—reals be a
continuous real valued function defined over [S]. For a real number
t, let C(t), D~(f), D*(t) be respectively the sets of points of Q for
which f(T(p))=t, f(T(P)) <<t f(T(p))>t C(t) is the contour correspon-
ding to ¢ under f and the length of its image in T(Q) can be computed
as in [1, sec. 20] by considering prime ends on the boundary of D—(#).
The function /(f) which represents this length for each ¢ in the range of f
and is zero outside this range is called a contour length function. It can
be shown that [;(f) is Lebesgue measurable for —oo<{t<oo. Assume
in addition that there exists a constant K >0 such that for every pair of

1) Guggenheim Fellow. Also the work was supported in part by a grant from the
National Science Foundation.



124 R. E. Fullerton

points p,,p,€S, |f(p)—f(p.)|<K|p,—p,| where the absolute value signs
denote distances in the spaces involved. Then the Cesari-Cavalieri inequ-

+o t
ality asserts that [ [ () dt<KL(S) where L(S) is the Lebesgue area of S.

This inequality holds for all Lipschitzian functions of constant K defined
over an open set containing [S]. However, in certain cases, the class of
Lipschitzian functions of constant K is too restrictive. It would be conve-
nient to have the inequality hold for functions which are not Lipschitzian
in the large but which are in a certain sense only locally Lipschitzian.
Since the Cesari proof depends only on local arguments, it appears that
this objective could be realized and that the class of functions for which
the inequality holds can be substantially enlarged. In this note we first
define a class of locally Lipschitzian functions which includes the class
of Lipschitzian functions of constant K and we then show that the Cesari-
Cavalieri inequality holds also for this larger class.

2. LOCALLY LIPSCHITZIAN FUNCTIONS AND THE EXTENDED
INEQUALITY.

DEFINITION 1. Let A be a closed subset of a compact metric space B
with distance function denoled by |p,—p.|. The family Jx(A)of Lipschitzian
Junctions of constant K is the set of all real valued functions defined on
an open set GO A such that if py,p, § G, then [f(p)—f(P) IS K|Pi=pal.

DEFINITION 2. Let A be a closed subset of a compact metric space B. The
family J;(A)af locally Lipschitzian functions of constant K is the
set of all real valued functions | f} defined on an open set G D A satisfying
the following conditions. For every € >0, there exists a real number K, > O.
and an open set Ge D A such that lim inf .0 Ke << K and |f(p,) —f(p,)| <
Ke |py—pa| for every py, ps € Ge with |p, - p,| <e&.

Several elementary facts about these classes are immediately evident.
(1) Jx (A) (:J‘;‘{(A); (2) all functions in Jf((A) are continuous on Aj; (3) if
K’ <K then J;(A)D J%(A); (4) by the compactness of A, there exists a
number M >K such that J5A CJy(A).

THEOREM. Let T be a continuous mapping from a 2-manifold Q into
En which defines a Fréchet surface S with Lebesgue area L(S).} Let
fEJf{(S) and let l;(t) be the corresponding contour length function. Then

-+
f I () dt < KL(S).
x
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Proof: Evidently if L(S)= oo or if f /,(f) dt=0, the inequality is

trivial. Hence we need not consider these cases.

The proof depends upon six lemmas. Of these six, the first three
depend only upon the continuity of the function f and the proofs are
exactly the same as in [I] for disks and as generalized in [2] for 2-mani-
folds. Lemmas 4 and 5 are exactly the same as in {1, sec. 20]. To avoid
repetition we shall list these lemmas without proof and refer the reader
to [1] and [2] for proofs. Lemma 6 will be stated and proved.

LEMMA 1. Let T: Q— Eyn be a continuous map of Q into Ey. Let f,,
n=0,1,2,..., be real valued and conlinuous on a fixed neighborhood G of
[S] such that f.(p)>fo(p) for all p€ G and for n=1,2, ... and let
lim, _,  fa (p)=fo (p) uniformly in G. For each n=0,1,2,..., let 1,(f) be
the contfour length function corresponding to f,. Then I, (f) < lim inf, _, I, ()
for all t.

LEMMA 2. Let T, Q be us above and let f(p) be continuous and real
valued on a fixed neighborhood G of S with corresponding confour length
function I (#). Then [;(f) < lim infy ;- [ (z) for all t, — oo <t < co.

LEMMA 3. Let To:Q—E,,n=0,1,2,..., be a sequence of continuous
mappings from Q into Ey such that liMpu 54 Ta (q) = T, (q) uniformly for g€ Q.
Let { be a continuous real valued function defined on a fixed neighborhood
G of Ty (Q). Then for all ti,(f) < lim infr 4~ {lim inf, 5 I, (1)} Where [, (z),
n=0,1,2,..., are the confour length functions corresponding fo f for T,.

LEMMA 4. Every real valued function F (t), — oo < F(f) < oo such that
F()=lim inf,, —F (1) for a <t b is measurable for a < t<b.

LEMMA 5. If A is a triangle in E, where E, has a coordinate system
(a,v), if o (u,v)=au+0bv+c is a linear non constant function on A, if t,. 1,
are the minimum and maximum respectively of @ (u,v) in A, and if \(f),
t, <ty is the length of the segment of A on which ¢ (u,v)=1t, then

-} 00
(a*+b?)-areaA= A (f)dr.
—c

For the proofs of lemmas 1—5, see [1, sec. 20] and [2].

LEMMAS. [ete,n >0 and let M be a compact subset of Ey. Let f be a
real valued function satisfying the following conditions. There exists an
open_set Gn O M and a real number Kq> 0 such that f is defined on Gy and
[f(p) = f(p) | < Knlpy—p, | if pys P2 € Grand |p,—py| <n. Then there exists
a piecewise linear function ¢ defined on G with| ¢ (p)~-f(p)|<le, p€ G and

such that | grad ¢| < Kq + & on some open set Gy where M < Gn C Gy.



126 R. E. Fullerton

Proof: We construct the set G;]c Gy as follows. Let Gy c Cc Ex where
C is a hyper cube. Let C be subdivided into equal smaller cubes {C/},
i=1, 2, 3,..., m, by hyperplanes parallel to the faces of C in such a way
that all of the sub cubes intersecting M plus all sub cubes which have a
face of any dimension in common with these lie in Gn. This can be
achieved by making the sub cubes sufficiently small. For every cube C/,
intersecting M, let C, be the set consisting of C; plus all cubes adjacent
to it. Let Gq=(U; C,)°. Then M — Gq C Gy and Gy is open. Assume fur-
ther that the original subdivision was made in such a way that each C;
has diameter less than n. Hence if p,, p,€ C; for any i, |f(py)—f(p2) | <
&K Ky |py—ps|. Let a coordinate system be set up in C using its edges as
axes, As in [1, p. 326] we define the mean value integral of order n at
each point of G’ to be f‘ﬂ’(p)zfi“+1/"... fiﬁ!/"f(x“xﬂ,...,xN)dx...de

N

1
where n is chosen sufficiently large to insure that no points outside Gy arise

in the integrand. By theorems in [1}, f® (p) is continuous, has continuous
derivatives with respect to each variable, lim,, . % (p)=f(p) uniformly
in Gn, and if py, p,€ C; for any 4, | f™ (p)—f® (p,) | < Kn|ps—ps|. Let n
be chosen so that | ™ (p)—f(p) | <&/2, p€ Gy. Let the Gy be subdivided into
smaller cubes by equally spaced hyperplanes parallel to the sides of C
in such a way that on each of the smaller cubes the functions fm,

O, 19,8 have oscillations less than e/N. It is then possible to divide
each of these cubes into disjoint simplices in such a way that each simplex
of the subdivision containes edges parallel to all the coordinate axes.
Let {0}, j=1,2,3,...,k be the collection of these simplices. Define

the function ¢ to be linear in each simplex o; and to have the same
values at the vertices as f®’. Evidently for any p €Gn, lo(p)—fp) <
<le(P)=F™(p) |+ f™ (p) — f(p) | <€/2 +¢/N e. Hence ¢ satisfies the
first conclusion of the lemma. To verify the second conclusion we note that in
any o; the partial derivatives ¢, %,..., ¥x, are constant. However, by

the mean value theorem, at convenient points on the sides of g, parallel

to the axes @ (py)=12(p), 9 (P2) = 15 (Pa)y - . - » Pxp(Pn) = fomlpn)-  Let

p, p' €o;. Then |5, () —1D(p)|<e/N, ..., 0xy (P)—fxy (P)|<e/N. Hence

|grad o (p) | —| grad /™ (p)| = |
=] (@a (PP + -+ (g (0) 2= (£ ()4 -+ + (£33, () <

L oxP) =L @)+ - +loxy () —FE0(P) | <&
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for any p, p'€c;. Hence |grad ¢ (p)|<|grad f"(p)|+e. However, since
|grad f(p)| is the maximum of all the directional derivatives of fm at p,

if n>0,

L (g e XNDDPH e (PR (X ey X8))2 ] <<

f(n)(xl+hl)x2+h21- 1xN+hN) f"’)(x,,x2,...,xN)
(W} +-h5+ - + Hi)'e

tor Ay, hy, ..., hn properly chosen. Hence | grad £ (p) | C Ky and | grad ¢ |
<Kn+te for all points of Gj.

< +p < Ky+p

The proof of the theorem follows from lemmas 1—6 in exactly the
same manner as in [I, p. 328]. To avoid repetition we shall state the steps
involved and refer the reader to the proof of Cesari for details. Assume
that n>0 and Ky, Gy are given so that |f(p,)—f(p.)| <Kylp,—p,| if
|Py—=p2|<ny Py, P2€Ga.

(a) Let T: Q— Ey be piecewise linear from a triangulation of Q into
Ey and assume that the triangulation of Q is sufficiently fine to insure
that the image of each triangle §,, i=1,2,3,...,n is of diameter less
than n. Assume that f is also p1ecew1se lmear over [S]. Then for each

triangle A;=T(§,)C S, an(A)>f lA (f)dt where o (A) is the area of

A and lﬁ(t) is the contour length functlon defined only over A. Thus as
in [1}, KqL(S$)>3 f 18 (f) dt = f Ir(t) dt, where I (t) is the contour
i=

—0eo

length function defined by f
(b) If T is piecewise linear and fcJ%([S]), then by using lemma 6,

there exists a sequence of piecewise linear functions defined over open
sets G, D § with domains of linearity in G, of diameter each less than g

such that for each n, |, (p)—f(p)|<<1/n, | grad ¢, (p)|<Ky+1/n for all
p€G,. Then by use of lemmas 1 and the Fatou theorem as in [1, p. 329 (b)]

it is proved that Ky L(S)> f I (t) dt.

(c) If T: Q—Ey is any continuous mapping and if fe.l,"( ([S]) then
by exactly the same proof as in [I, p. 329 (c)] where we need only restrict
ourselves to approximating piecewise linear surfaces with triangles of
diameter less than n, we prove by the use of lemma 3 and Fatou’s theorem that

-+

Ko L(S)> f I (1) dt.
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Assume that f € J% (S]). Then by definition of J% ({S]), for each n>0
4>
there exists Kq >0 such that lim infy 0 Kq < K and Ky L () > f I () dt.

—®

a0
Hence K L (S)>> f 5 (t) dt.

3. AN EXAMPLE. In [3] the author defines the Cesari-Cavalieri area
+ o0
of a surface § to be K(S):sup,em(g)]f' I;(t) dt. This definition of area

has the usual properties which one associates with a reasonable definition
of area and coincides with the Lebesgue area at least for simple surfaces.
However, if S is a surface of large Lebesgue area but of small diameter,

- oc
then any f € J, ([S)] for whichf I;(t) dt gives an approximation of L (S)

must of necessity not have large oscillations. Hence, f must have many
small variations and the contour it defines- will probably be of a compli-

-+ oo
cated nature. However, if we define K*(S):supfgjfl(s)]f L (t) dt, then

the functions f in this class may have large oscillations in the large since
the functions need be only locally Lipschitzian. "

For example, let § be the surface of revolution generated by revol-
ving a differentiable curve C: y=g(x) about the x axis, a<{ x < 6. Define
f as follows. For each circular section of & perpendicular to the x axis

define f(p) to be the arc length s; of C from (a,g(a)) to (x,g(x)). It is
+o ~
easily seen that' L (S)=K*(S)= f I;(t) dt. However, fnon€ J, ([S)] if g is

not linear since if p.= (avg(a))’pb:(b!g(b))a then 'f(pb)—f(pa) ’>32> lpa"pb l
It can easily be seen that feJi ([S]) since locally the arc length and chord
length of, C approximate each other. Thus in this case K*(S)=L (S) is
given by an extremely simple function f but in general K(S) can be
approximated only by integrals defined by relatively complicated functions

in J, ([S]).
‘([ D (Received 25.X1.58)
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