A REMARK CONCERNING THE BEHAVIOUR OF A POWER-SERIES
ON THE PERIPHERY OF ITS CONVERGENCE-CIRCLE

P. TURAN (Budapest)

1. Let f(2) be regular for {2|<1 and maps it onto a domain A.

If |2,| <1, then the map of |z2| <1 by the functions f( lz — % )is obvi-
_Zoz

ously again A. This gives a natural classification of the functions f(2)

regular in |2]|<<1; f,;(2) and f,(2) belong to the same class if £, (2)

is regular in |z| <1 and with a suitable |2,]| <1

(L.1) ma#(f;;y

The functions of a class are thus ,functiontheoretically equivalent“. It is
quite natural to raise the general question, whether or not the functions
of a class ,series-theoretically equivalent* are. This somewhat vaguely
raised question can clarified on many ways. One of the most natural
forms is to ask that if the power-series

(12) L@ = Sa 2
v=1
is convergent for 2=1, does it follow that the power-series
1.3 2)= z—_zo)=°° b, (2,) 2’
(1.3) hO=h(2y) = Zove

converges for the corresponding

1+Zo iy
= ——— (=€ ', real
143, ( Y real)
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point? In this note we are going to establish the fact that this is gene-
rally not the casel. More exactly we assert the following

THEOREM. Given any G, with 0 <|4,| <1 there is an

(1.4) fi* (2) =v§0 a* 2’

Qo
regular for |z| <1 with convergent > a,* such that the series
0

(15 b @=1 (7522 )-E o

diverges for the corresponding z= 1+ E"’ .

1+5,

This phenomenon is rather surprising, since the structure of values

of f,*(2) in the neighbourhood of an arbitrary peripherypoint z=2* is
*
onearly the same* as that of fy* (2) for z= 1:_2_:5”* and still the MacLau-
oz
rin series of f,* (2) converges for z=1 and that of f,*(2) diverges for

_1tbh

2 I+t One can discuss along similar lines e.g. the interesting ques-
. .
tion of (C, 1) -—summability of the series (1.3) for z= 11? if the series
2o

(1.2) is (C, 1) —summable for z=1; in 4. we shall show in a few lines
that the phenomenon described in the theorem does not occur for Abel-
summability. It would be more difficult to decide whether or not the func-
tion f,* (z) in our theorem can be continuous for the whole circle |z| < 1;

it would be interesting to decide whether or not the convergence of > |a,]
! ‘ S

that of 3 |b,(2,)| implies. To give a final sample of the many interesting
0

problems of this type I mention one due to Vera T. Sés; this asks

1) In the paper ,On some connections of the theories of functions and series.
Annuary vol. of the Edtvés Lordnd Univ. Budapest, 1952—1953, p. 5—13 (in Hungarlan),
I stated without proof the opposite theorem. Reviewed in Math. Rev. Vol. 17, Ne 6
(1956), p. 598.
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whether or not there is a function f,* (2) = 3 a2 with convergent Y, a;
0 0

such that for all ¥, with 0 < |{,]| <1 the series

hm—qlb) gm@w

diverges for z= ligi’ It is easy to prove that this holds for any denom-

]
brably infinite set of §,—values in 0 <C|%,]<1.? I intend to return to

some of these questions elsewhere.

2. Our theorem is in connection with certain results of Hardy-Lit-
tlewood® and Carleman®. The former authors proved that if for

@1) @)= oz

[
the series 2 a, converges and for an 0 <a <1
[

w=24a,
then for the function

fi (W)= fa (z+a)=fy (2) = 2 ¢, (a)z’

which is regular for | z| < 1—a, the series
2 Cy (“) (l - a)v
1}

necessarily converges. Carleman proved more generally that if we=g (2)
is regular for |z| <x,+&(>0) with >0 and ¢(x))=1 and maps

2) Generally given a denombrably infinite set of ,bad* Toeplitz-summation-matrices,
one can easily construct a convergent sequence not summable by any of the given summa-
tion-methods. Is this true for the case of a higher power of summation-methods?

8) ,Theorems concerning the summability of a serles by Borel’s exponential method*.
Rend. del Circolo Mat. di Palermo 41 (1916), p. 36—53, esp. p. 49—50.

4) ,Some theorems concerning the convergence of power-series on the circle of con-
vergence®, Arkiv fér Math. Astr. och Fys. 15 (1920), p. 1—13.
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|2| < x, onto a domain B lying in |w|<1 and touching it of the first

order at w=1 and having no other common point with |w|=1, then if the
series (2.1) of f, (2) converges for z=1 then the series

W) =f (@)=t (2)= go d, 2

=% and the condition

converges for z=x, too. In our case is ¢ (2) =
- 252

of first-order touching is obviously violated.

3. For the proof of the announced theorem we have to find the
connection between the partial-sums

(3.1) A, = E a
y=0
and
n 1+
(32) =P ae ()

for the series (1.2) and (1.3). We consider the function
(3.3) G(s) = 3 Basn,

y=0
which is regular for |s| <1 owing to (1.3).

We have for |s| <1

14-%e 1 14-L,
G )= E "“"')(Hgo) 1— f(1+so)
(3.4)
1+, _
1 148, r"’\ 1 fi((l+§o)s:!w(l+go)).
1—s 1-T, 1+Eos) =5 \(14+L)—=Le(14+Lo)s
145
For

(3.5) Fs)=3 A,s
v=0
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we have obviously for |s| <1
F(s)= -——f: (), fi(5)=(1-35) F(s),

i. e. from this and (3.4)

G =——{1-¢ +_go)s_—§o(1+'§o)) ((1+go>s go(1+go))
TTTSY T (vt —te(l+5) s’ W1 +5)—To(1+50)
(3.6)

o 140G ((1 +5o) S - Eo(1+r,9)\)
(1+5%) —Go (1 +%0) s (1+%0)—Lo (1 +%0) S

Hence for n=0,1, ... from (3.3) and (3.6)

F ((1 + %) s—5(1 +5o) )
g 16l | 1+t -L(+b)s) ds

" 2ni (4t —To(1+%) s sn+?

1

where [, runs in |s|< 1 around the origin.

Putting
148 s=w
145,
we get
" f "(5w) a
-1 0 ~LoW L
( ‘\“Eo) (1+'So) 1-Gow wnt 1
Putting
—w—:_—g"ﬁ—=w i. e. W=—="" _th
T-Tow 1+§o
we obtain
_ 14+%,\" 1 F(w) [14Le\"*™
3.7) B, (1+£.)(1+g0) o] 1100 ( w+§,o)

where I, runs in | w |< 1 enclosing the point w=—5,. We may obviously
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insert the series (3.5) in (3.7) and integrate termwise; this gives for n=0,1,...
(3.8) Ba= Ay en (Co)
y=0

where for v=0,1,2,... the representation

B9  ew (Bo).= 51; (1+5) ( 11 ii‘:):)f 1 +w£o ® ( l: Eo E‘: )"*‘ “

holds. (3.8) defines obviously a summation-process. Our problem can be
formulated in terms of this summation-process simply; we have to decide
whether or not this process permanent is. For the permanence is accor-
ding to the classical theorem of Toeplitz—1I. Schur necessary that

0

(3.10) Y lew (Go) | < C

=0

independently upon n. But one can verify that this is not the case if
0 <|&|<<1. Namely as G. Szeg o remarked in a letter®, writing

Go=1%0 | €™
one has from (3.9) at once for | x| <1

H(x)=3 (= 1) en (5,) e~V xr =
(3.11) =

(e pmiayn QG T x =[Gy [\ 1
(=em) 1+ (1-|Eolx)1“|Eolx.

He called in his letter my attention to the interesting paper of B. M.
BajSanski®, where it is proved among others (as a special case of his
theorem III) when

x—|Lo| - "
(Tois) = 2 et =,
5} From 4. Nov. 1957.

. 8) Sur. une classe générale de procédés de sommations du type d’Euler-Borel. Publ.
Inst. Math. Acad. Serbe Sci. X (1956), p. 131—153.
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then
hed L]
3 ®p=p

This cannot be applied directly to (3.11); however writing it in the form

€ao (Go) + §: (=7 e (80180l en-s () €)=

= - fa\n (1+go)n+1 x—!gof "
(=e"®) (1+ Lo (l—lgolx)
it follows from (3.12) J

(313)  lim [lews (o) 1+ 3 Lem (S0 +1 %0 €n v (50) | | =

But this contradicts already to (3.10), since from it one could derive

eno (o) + s:l | nv (Co) +1Co | €% €n,v- 1 (Go) | <
i v= :

§(1+|&o|)§:°|em<go)|<2c
qu. e. d. -

4. Finally we show that if f, (2) from (1.2) is Abel-summable for

!—i_—zi’. The hy-

z=1, then f, (2) from (1.3) is also Abel-summable for z= n
2o

pothesis means that

(4.1) limf,(nN=A4
r1
exists and is finite; we have to investigate
(4.2) lim 3o, (zo)(l+z°) .
v=0 2y
But this is owing to (1.3) the same as
)
:jz"r 2, 1—1“z°2(1—r)
(4.3) tim f, 22| <lim "1‘ o
rot 1_-5 -I—Z,, r1l 1+zo( +2,) (1- r)

14z, U 1zt
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As easy to see, for r+1 we have

1+2
1o °2(l—r) 2
1-]2| ISP RL L7 A=r) +0(Q—=r).
- 2
1+20(1 +zo)(1_r) 1 lz()l
1~]z[*

This shows owing to Stolz’s generalisation of Abel’s theorem that the
limes in (4.2) exists and equals A indeed.

(Received 25 december 1957)
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