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SUMMARY — The problem coasidered in this paper is the behaviour of
a uniformly loaded square plate attached to flexible beams along its edges.
A solution is obtained by constructing a form for the deflection which is gene-
ral — and hence involves an infinite number of parameters — and which sa-
tisfies the appropriate boundary conditlons. The paramelers are found by mini-
mising the fotal potential energy.

In the general case the accuracy of the method is indicated by the rate
at which the values for the deflection and bending moment converge as the
number of parameters taken into account isincreased. For the two special cases
in which the edge beams are non existent or completely rigid a direct com-
parison is possible with accurately known results. In general, agreement is
good.

1. INTRODUCTION

The behaviour of a normally loaded flat plate with various types of
edge support has been investigated theoretically and experimentally for a
long time. Summaries of the work done and the results obtained are given
in Refs. 1 (loading mainly hydrostatic) and 2.

For investigating such problems theoretically, two methods are avai-
lable. The first is to solve the equations of equilibrium; the second is to
evaluate the total potential energy of the system and express the fact that
it is stationary if there is equilibrium. When an exact solution can be found,
there is little to choose between the two methods, either as regards dif-
ficulty or amount of work. But when an exact solution is unobtainable,
‘the strain energy method has the merit of invariably providing an answer,
albeit only an approximate one.
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2. DESCRIPTION OF PROBLEM

The particular problem considered in this paper originated from road
bridge design, and is the behaviour of an initially flat panel, supported
by rows of equidistant columns and acted on by a uniform normal pres-

sure P. The heads of the columns form a

N .~ square mesh of side @, and are bridged by
identical elastic reinforcing beams such as
0OA, AB, BC, CO, which are assumed ri-

" gidly and continuously attached to the pa-
B nel (Fig. 1). It is also assumed (i) that the
overall dimensions of the panel are large
compared with a, (ii) that a is large com-

, pared with the cross-sectional dimensions
of the supporting columns or reinforcing
beams, (iii) that the weight of the panel
and reinforcing beams is negligible compa-
red with the total applied load, and (iv) that
Fig. 1 the neutral axes of the reinforcing beams

lie in the middle surface of the panel.

From these assumptions it follows that except near the boundary of
the panel the square elements into which the reinforcing beams divide it
will all deflect in an identical manner. In practice we may therefore con-
fine our attention to any one such element, e.g. OABC. For convenience
we shall call this element the plate OABC, and shall refer to O, A, B, C
as its vertices, and to OA, AB, BC, CO as its edge beams which, owing
to the symmetry, may bend but will not twist. Denoting the flexural rigi-
dity of the edge beams by E/, it follows that when E/ is infinite the
problem reduces to that of a square plate with edges clamped, and that
when E/ is zero it becomes a square plate supported only at its corners.
As solutions for these two special cases are known, the purpose of the
workdescribed in this paper is to link them together.

Investigating what happens to the square elements near the boundary
of the panel is a more difficult problem because symmetry considerations
no longer preclude twisting of the edge beams. The related problem in
which the edge beams can twist but not bend is considered in Ref. 3.
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3. METHOD OF SOLUTION

Obtaining the deflection of the square plate, OABC, is made up of
three stages. Stage 1 consists of finding an expression for the normal de-
flection w which is general — and hence involves the presence of an
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infinite number of unknown parameters — and which satisfies the appropriate
conditions on the boundary. Stage 2 consists of writing down a formal
expression for the total potential energy of the system in terms of w,
and then evaluating it in terms of the unknown parameters. Stage 3 con-
sists of finding the unknown parameters by expressing the fact that in an
equilibrium configuration the potential energy is stationary.

Stage 1 — Expression for w. C 8

Taking OA, OC as coordinate axes, the
edges of the plate are X=0,4a; Y=0, a. Since,
however, it is more convenient to use co-
ordinates which are non-dimensional, we intro-
duce x, y defined by x=nX/a, y==n Y/a, so
that the edges of the plate are x=0,%; y=0,n. ©
(Fig. 2). Fig. 2

The conditions which w must satisfy on the boundary are
w=0 at (0, 0), (0, =), (%, 0), (x, =),

%—?:0, when x=0, =, and 0y r,

m

x (1)
ow
~a——=0, when y=0,x, and 0 Cx <

y

Further, w must be general, and, having regard to stage 2, must, if an
infinite series, be differentiable term by term.

We shall begin by finding w for the edge beam OA. It will be a
function of x, and must, if represented by an infinite series, be general,

differentiable term by term, and such that
~¥_0,  when x=0, r. @)
dx

(3
Since on physical grounds -‘-;——lli is a well behaved function of x throughout
X

the range 0 << x <=, it can be expressed quite generally as a sine series
valid throughout this range in the form
d'w &

——2= 3, Cnsinmx
axt™ & “m
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where | Cn | < K/m, (Ref. 4) and K is a constant. Integrating this series
term by term four times, and using the boundary conditions to determine
the arbitrary constants of integration, a legitimate procedure since the
integrated series is valid in the range 0Cx ', We have

w= Y Lm sinmx—~mx+-’—"—{2+(—)m}x2—ﬁ{l+(—)"f‘}x3 . 3)
m=1 mt k13 7?
Since by symmetry w (x)=w (x—x), it follows that m is odd, and hence
that (3) can be put in the form

WwiBm(xm(x)

{m lodd)
where
sinmt  t(x—1f)

L (t) = e wm

. and | Ba|<K/m®.

Since the plate is square and the loading uniform, it follows that
the deflection of corresponding points on the four edge beams are equal,
and hence that for any of the edge beams

w= Bn {&m (x) +am (1)} C))
(m oldd)
The next step is to derive a comparable expression for the deflection

of the plate. To do this it will be found convenient to express w in the
form

we= 3 Bn{ay(x)+em ()} + W (5)
(m oxdd)
and find w'.

From (1) and (2) it follows that the conditions which w' must satisfy
on the boundary are

'
w'=91v- =0, x=0,m,

ox

14
w’=?~w~ =0, y=0, =.

oy

In addition, w' must be general and, if expressed in the form of an infinite
series, must be differentiable term by term. We now proceed in a very
similar manner to that by which we found w for the edge beams. On phy-
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p?

sical grounds is a well behaved function of x and y throughout
Oxt oyt
the domain 0 <<x<m, 0 <y<n and hence can be expressed as a

double sine series valid throughout this domain in the form

otw’ x X . ]
= Cn Sinn mx sin n
Sxioy 2 2 Y

where | C,, | < K'/mn, (Ref.4), and K’ is a constant. Integrating this series
four times with respect to x and four times with respect to y, and using
the boundary conditions to determine the arbitrary constants of integra-
tion, we have

we$  Trm[smmemet T (m - K X
X [+ 2 (- - S ] ©)

From symmetry considerations
wx,y)=w(E-xy)=w(x,t-y)=w(r—x, 1Y),

so that m and n are both odd, and (6) can be expressed in the form
¥y Y Ama, (x) an (¥) (7)
(m o!id) (n oldd)
where | Ann | < K'[m® n®.
From (5) and (7) it follows that a form for w satisfying all the re-
quired conditions is

w= 3 B {a (x) +a, (W)} + X Z Ammn 0 (X) @n(y). (8)
(r Jdd) (rnt)dd) (n odd)
Staée 2 — Expression for Total Potential Energy

Since the deflection of the plate is small, stretching of its middle
surface is negligible. The plate’s strain energy may therefore be considered
as entirely due to bending, and hence is

2155+ e 20 35 (e e
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where D is the flexural rigidity and v is Poisson’s ratio. The strain energy
of the edge member OA is also due only to bending, and hence is

2 2
2 0X2/y=0
Taking account of symmetry and noting that each edge beam is an edge
member of two plates, the strain energy of the four edge beams OA,

AB, BC CO is
Elf( . 2)
90X

The potential energy of the externally applied pressure P is

a a
—PffdedY.
00 .

Denoting by U/ the total potential energy of a plate and its edge beams
2 2 2 2 2w 2 2

o2 2 (2 (e

2at 0x% 0y* 0x2 0y \0x oy

2] foaar + 2 (2] o

After substituting for w from (1) and performing the integration

U:Eiii Am"APQE1 (ﬂl, p: n, (I) + i iBrBsEz(r;s)
mn p g r s
+3$ % A B Eq (1, m, r)+P‘[§ $ A Ey (m,n)+ 3 B, Es (r)],
m n r m n r

where the summations extend over all odd positive integers and

I +2l

E, (m, p, n, q)— (laflg + lwe " 8p PP)

2 2

EI\_Dr® s ET,
(1 + )_ pr ]“_8, where ¢ l+aD"
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Da?
Ey(m, n,r)==7 (1: I+, 1;";)
at m n
E4(m,ﬂ)= —?1(! Ia s
2a®
Es(N=—"51Ig,
and the I’s are given by
14
Smn T 4 1 1 Fe2d
mn= o a do = - mn _ (__ __) I
loa f w (9) an (9) do om®n®  mmn\m* nt/ 30mn’

0

4

x
mn T
IYY=J’Ym(q’)YN (®) d@=6mn7—mr
0

T
mn 8un T 4 (1 1 x
I =ofpm(q>) B (@) dp= St A (L L),

’

2mn  wmn \m*

4

m 2 n®
1, =f°‘m(‘l’) d9 = ——cm’
0
where

I -4
Bm ((P) - d({) i (‘P)’ Ym (q’) d(P Bm (‘P)’

and

1 m=n
) n= ’
" [0, m=n.

Stage 3 — Evaluation of Amp, B,
Since U is stationary in an equilibrium configuration

oU _ 0, U _ 0
0A,, 9 B,
whence
;:3 2"3 2 Amn E, (m,p,n,q) + ‘r‘: B, Es(p,q,r) + PEy(p, q)=0, (p, g 0odd)
© © ° )
> X Apn Es(m, n,s) + 2 2B, E, (s, r) + PE; (s)=0. (s odd)
m n r

From symmetry we note that An,=Apm.
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Since it is not practicable to solve for the An.'s and B,s directly,
we proceed by a method of successive approximation, that is, we solve
the finite set of equations given by retaining only a finite number of An,'s
and B,'s. In the general case the accuracy of this procedure is indicated
by the rate at which the values for the deflection and bending moment
converge to limiting values as the number of A’s and B’s taken into
account is increased. But for the two special cases in which the edge beams
are non existent (e=1) or completely rigid (e=o0) a direct comparison
is possible with accurately known results,

4. DISCUSSION OF RESULTS

The equations (9) have been solved for e=1, 1.5, 2, 5, 10. The Anmy's
and B,’s retained have been limited to those involving the suffices 1, 3,
5, 7 and give rise fo a set of 11 successive approximations for each value
of e. The particular A’s and B's included in each approximation are in
accordance with the following scheme,.

Ay, A Ay A
An, Aisp Ajs 11y 18 18 1w
Aﬂ Ail’ ASS’ A” ASS’ ASS' AS?» ASS
Assr Assr A55 A57 AW
|
B; 1st Approx. 3rd Approx. 5th Approx. 8t& Approx.
By, B; 2nd Approx. | 4th Approx. 6% Approx. 9tk Approx.
B,, B, Bs 7tk Approx. 10t% Approx.
By, By, B, By 117 Approx.
|

When e=-o0, all the B,’s are zero so that the number of approxi-
mations reduces to four. In this case the first, second, third and fourth
approximations involve A,y ; Ay, Ays, Ags; Asrs Ass, Agsy Ay, Agss Aggs
and Ay, Ay Ass, Ay, Ags, Ass, Asrr Agsy Agr, Ay respectively.

The results of the calculations are summarised in Tables 1—4, and
give the values of the plate deflection and bending moment (i) at ifs
centre, and (ii) at the mid-point of an edge.
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€
m 1 1.5 2 5 10 oo
1 - 5270 - 3214 - 2561 - 1714 - 1495 - 1300
2 - 5219 - 3179 - 2535 + 1703 - 1490 . 1222
3 - 5451 - 3229 - 2538 + 1652 - 1425 - 1234
4 - 5566 - 3226 - 2535 » 1651 - 1425 <1232
5 - 5436 - 3226 - 2541 + 1661 . 1435
6 - 5568 - 3226 - 2537 « 1660 + 1435
7 - 5604 - 3226 - 2537 + 1660 - 1435
8 - 5440 - 3227 - 2541 - 1659 - 1434
9 - 5569 - 3226 - 2537 - 1659 - 1434
10 - 5611 . 3226 2537 - 1659 - 1434
11 +« 5626 - 3226 - 2537 - 1659 - 1434
Timoshenko + 5655 | 1230
. Pa*
Table 1 — Values of b, giving central deflection D 4b'
14
€
\ 1 1.5 2 5 10 o0
Approx.
1 - 4033 - 1949 - 1280 - 0420 - 0198
2 - 4007 - 1926 - 1267 - 0415 - 0196
3 - 4103 - 1947 - 1276 - 0416 - 0196 )
4 - 4112 - 1929 - 1267 - 0416 + 0196 .
5 - 4107 . 1947 - 1276 - 0416 - 0196
§ - 4119 - 1929 - 1267 - 0415 - 0196 @
7 - 4205 - 1934 - 1269 - 0415 - 0196
8 - 4107 - 1947 - 1276 - 0416 - 0196
9 - 4120 .+ 1929 - 1267 - 0415 - 0196
10 - 4210 - 1934 - 1269 - 0415 - 0196
11 - 4210 - 1933 - 1268 - 0415 - 0195
Timoshenko 4242 Zero
Pat
Table 2 — Values of ¢, giving mid edge deilection E;c.
&
\ 1 1:5 2 5 10 o0
Approx,
1 - 0276 - 0283 - 0286 - 0289 - 0229 - 0290
2 - 0240 - 0259 - 0268 - 0281 - 0286 - 0215
3 - 0386 - 0299 - 0270 - 0233 - 0224 - 0233
4 - 0356 - 0293 - 0268 - 0233 - 0224 - 0227
5 » 0358 - 0293 - 0272 - 0246 - 0240
6 - 0362 -0293 | - 0272 - 0246 - 0240
7 - 0349 - 0291 l - 0272 - 0246 - 0240
8 - 0370 -0205 - 0271 - 0241 - 0234
9 - 0357 - 0292 - 0270 - 0242 - 0234
10 + 0363 - 0293 - 0270 - 0241 - 0233
11 - 0356 - 0292 - 0270 - 0241 - 0234
Timoshenko | - 0359 | - 0230

Table 3 — Values of d, giving central bending moment Patd.
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\\\\\\\\:i\ 1 1-5 2 5 10 .
Approx.
1 - 0162 - 0282 . 0319 - 0367 - 0379 - 0391
2 - 0217 - 0317 - 0346 - 0378 - 0385 - 0468
3 - 0036 - 0263 - 0334 - 0424 - 0447 - 0493
4 . 0222 - 0294 - 0346 - 0424 - 0447 - 0502
5 - 0000 - 0260 - 0340 - 0443 - 0470
6 - 0205 - 0293 © 0352 . 0444 . 0470
7 - 0089 - 0282 . 0349 - 0444 - 0470
8 — - 0020 - 0255 - 0338 - 0450 - 0478
9 - 0215 - 0292 - 0352 . 0450 . 0478
10 - 0091 - 0282 - 0349 - 0450 - 0478
1 - 0173 - 0286 - 0352 - 0450 . 0478
Timoshenko | . 0128 | g | | | 0513

Table 4 — Values of e, giving mid edge bending moment — Pa?e.

A comparison with the accurate results given by Timoshenko (Ref.
2) when e is 1 or oo shows satisfactory agreement except for the particular
case of the bending moment at the mid point of an edge when e is 1.
In this one case eleven approximations are clearly insufficient. In all other
cases the approximations converge to values which can be estimated to
within an error of not more than 5,
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