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By
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The aim of this paper is to prove the following theorems which
comprise all the generalizations of the fundamental lemma of the calculus

of variations. In the theorems % and ¢ denote Banach spaces, ¥* and 9"
their adjoint spaces of linear functionals.

THEOREM 1. Let A be a linear operator with domain ®, dense in %

and with range RCX. Lel xi,x3,..., xp denote linearly independent
functionals on ¥. If x* is a linear functional such that
x*(Ax) = 0 (1
for every x€9®, orthogonai to x1 ,x5,..., X5
xk(x) =0, k=12,...,n (2)

then x* € ®* and there exist n scalars Ay, Xy, ..., N\, Such that:
k=n
A XY =3 M xis (3)
k=t
THEOREM Il. Let A be a linear operator with domain ®, dense in %

ond with range RC Q. Lef yi, y3,..., y» denote linearly independent
functionals on %. If y* € Q* is a linear functional such that

' y*(Ax) =0, “)

for every x €9, satisfying
y;‘c(AX)*—O, k=112)'--’”’ (5)
then there exist a solution of A*2* = 0 and n scalars &y, Xy ,..., \, such that

X k= *
V=2 + 3 M Xk (6)
k=1
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THEOREM IIl. Let Ay, Ay, ..., A, denote linear operators with domains
D, Doy-.., D, dense in X and with ranges R, C %, with bounded and
comutative inverses A7Y, A7l,..., Azl Let x{ s X2,..., X% be linear func-
tionals such that

k==t
2 x;((Akx) =0r (7)
k=1
for every x € Q@k. Then there exist n functionals yi,ys,...,yx such that:
k=n

Y yi=0, yi€ONDia x-t,h41,...n, k=1,2,...,n 8)
k=1

and
(AT ... At Ak AR YE=xk, k=1,2,...,n1, )
(
(Df2,..,n denotes the domain of At Aj...A%).

Theorems I and I contain the lemma of du Bois-Reymond [l
and its generalizations [3, 5, 6, 7, 10]. They contain also the theorems of
Hilbert [2], Mason [4] and Kubota [8] on double integrals. Theo-
rem IIl contains Razmadzé’s formulation of the fundamental lemma [9]
and Haar’'s lemma for double integrals [11].

The second part of the paper gives another generalization of the
fundamental lemma.
PART I

LEMMA 1,1. Let x{, x},..., xp denote linearly independent functionals.
Then n elements x,, Xs,... Xn exist such that

Det xf (xg) # 0. (1,1

Proof It can easily be shown thatif the lemma were not {rue the
functionals would be linearly dependent, which contradicts our assumption.

LEMMA 1,2. Let xi, x%,..., xp denote linearly independent functionals.
Let x* €X* be a functional such that

x*(x) =0, (1,2)
for every element x € X such that
Xi(x)=0, k=1,2...,n. | (1,3)
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T, . . . *
Then x* is a linear combination of xg

k=u

Xt =3 A xk. (1,4)
k=1

Proof. First we consider a functional y* € &€* which satisfies the
conditions of the lemma and is orthogonal to elements with property
(1,1). Let y denote an arbitrary element of the Banach space % and let
Bys Bgs -+, 2o be the solution of the system ’

k=n

Epkx';(xk);‘x: 0, i=1,2,...,n, (1,5)
, k=1
where Det x} (x¢) # 0. Equations (1,5) can be written
k=n
x; (v— 3 e x) = 0. (1,6)
k=1

Now (1,2) implies y*(y — Z px x¢) = 0. Since y*(xg) =0 it follows that

y'=0
Now let x* denote a functional satisfying the conditions of the lemma.
Consider

k=n
yr=x*— Elkx,,*.
=1

We determine the coefficients A, so that y* (x¢) = 0, i. e. as the solutions
of the system

k=n
E e xk (x)=x"(x,) i=12,...,n.
k=t
Owing to (1,1) the solution exists. Thus y*=0 and (1,4) holds.

LEMMA 1,3. Let xi x3,..., x5 denote linearly independent functionals.
The set of elements with proprety (1,3) forms a subspace X'C %. The di-
mension of the factor space %/%'is n. Every element y € % can be written as

k=n

y=x+ 3 e X, (7
k=1

where x € X' and x'; belong to a given linear manifold, dense in %.
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Proof. If x €% is an element of a coset modulo %', we denote
the corresponding coset by X',. Let x be elements from 1,1. The cor-
responding coseta X'x, are linearly independent. Otherwise there are num-
bers vy, Vy,...,V, some at least of them different from zero such that

k=n
2 Ve X € %’,
i=t

or by definition of %'

k=n
3 vk (x)=0, i=12,...,n
k=1
Because of (1,1) this system has only the trivial solution v,—0 in
contradiction with our assumption.

On the other hand, every coset X', linearly depends on cosels X'x,.
Given an arbitrary y € € we can obtain the corresponding coefficients
Byy Pos-r s B from (1,5). Writing (1,5) in the form of (1,6) we see that

k=n
y—= e xe € X,
k=1

or
k==n

y=x+ ¥ Mk Xk, X € &%,
=1

which proves the first part of the lemma.

Now let us denote by ® a given lienear manifold, dense in %. Choose
the elements x' € ® in the neighbourhoods of x; so that Det xj(xx') #0.
Thus the cosets X'x, form a basis of %/%’ and this completes the proof.

LEMMA 1,4. Let ® be a given linear manifold, dense in X and let X
denote the subspace from lemma 1,3. Then ® NX' is dense in &'

Proof. We start by proving that the component x in (1,7) can be
estimated by

Ix1<Zellylh (1,8)

where p is a number which does not depend on y. The coefficients ps in
(1,7) are solutions of the system

k==

3 e X7 (x)=x5 (y)s i=12,...,n
k==1
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Solving this system we get
(b S 3 151 0)11DfD IS 1S 111D,

where D is the determinant Detx}(x') and D is the subdeterminant
of x%(x'x). Since D#0 there is a number o such that

Il <oyl
Now let us consider
k=n k=n
xS yll+ 3 leel | X1 < HNI(I +o 3l X'k II)-
k=1 k=1
Thus (1,8) holds.
Let now x be an arbitrary element of %'. Choose an y' € ® such that
[ x—y'lI<¢/p- (1.9)

Write y'=x'4+ 2y x's, where x’ € %'. Obviously x’ € 9, therefore x'€ ¥'ND.
Since

k=n
x—y'=x—x'— 3 P X,
k=1
we obtain from (1,8) and (1,9)

[x—xl<pllx—yl=e.
This completes the proof.

Proof of theorem I. We must show that there exists a functional
y* € &* such that

y(Ax)=y"(x), x€9. (1,10)

Suppose that y* exists. Then y*(x) =0 whenever x € DN K’ in virtue of
(1) and (2). But ® N %' is dense in ¥’ therefore y* (x) =0 for every x € &'.
By lemma 1,2 we have

k=n

}'* = E }"k X;.
k=1
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The coefficients A, 2;,..., A, must be determined in such a manner
that (1,10) is valid for every x € ®. Every x € ® can be represented by

i==n

x=x’+_§mx,’; x'€PD; x¥eDNHK.

it follows that
fe=n1  k=n i=n

o2 Mexk (x) =2, x* (Ax))
i=l k=1 i=1

must hold identically in p;. So A; must be solution of the system

k=n

Etkkx;(xi')=x* (Ax"); i=1,2,...,n.
k=

This system has an unique solution because of Det x; (x/)#0. The
corresponding y* =2 A xk is therefore uniquely determined. This y* has
all the properties required. By definition of the adjoint operator it is
y* = A*x* and the theorem follows.

Proof of theorem IL. First we note that y*(Ax) is a distributive
functional defined on ®. Assuming that yi(Ax) are linearly independent

we let , .
k=n

2=y =2 MeVi
k=1
Since lemma 1,2 evidently holds for distributive functionals on linear
spaces and ® is such a space, the coefficients ), can be determined so that
2" (Ax)=0,
for every x € ®. The theorem follows by definition of A*.

Evident generalizations of theorems I and II are the following theo-
rems which we get by replacing fhe space % by a cartesian product
EXEX... X%

THEOREM I’. Let A, ,, i,k=1,2,...,n be linear operators with domains
D and let the sels Q@,k be dense in X. Let xp,j=1,2,...,m, k=
=1,2,...,n be given linear functionals on ¥X. If a n-tuple of functionals
X € X* satisfies the condition

i=n k=n

> Y xi(Aux)=0, (1

i=1 k=1
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for every n-tuple of elements x; € Q Dy which possesses the property
k=n .
Y xe(xe) =0, j=1,2,...,m,
=1

then xi € D and there exist m scalars \; so that

k==n . J==m .
EAigxkazljxﬁ; i=12,...,n
k=1 j=1

THEOREM 1. Let Ay and xj denote operators and functionals defined
in I'. If an n-tuple of functionals x} satisfies the condition (1,11) for every
n-tuple of elements x; € QSD,k obeying

k=n l=n .
Y > xi(Aux)=0; j=12,...,m,
k=1 I=1

then there exist m scalars X; and a solution yi of the system
k=n
> ARyk=0; i=12,...,m,
k=1

so that

j=m
X5 =yk + lex}‘k, k=1,2,...,n.
=1

Proof of theorem II. The condition (7) must obviously hold for
every element x € % of the form

xw{IA.»“y,

where y denotes an arbitrary element of the space %. Replacing this into
the k-th therm on the left side of (7) and remembering that the inverse

operators A7! are comutative, we obtain the linear functional

Yk (y) = xk (igk AT y) '

which is obviously defined for each element y€ %. Let y€ ®n,,m#*k.
Replacing in the last relation y by A,y we see that

y;(A,,,y)=-xz( I1 A;“y),
i#km
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for every y€ ®,,. Therefore yi € - and
I1 Ai_‘y).
k,m

" Yk =x1’é(
m Vi (y) 1%
Thus we see that yi € Dia.. . 4—1,4+1,...,» and that (9) holds. From the
definition of y% and (7) we have T y; = 0. Therefore yi can be expressed
in terms of yf,i#k which belong all to ©%. It follows yi € Dt too. The
theorem is proved. As an special case we mention the case n=2.

' THEOREM 1. Let A, and A, denote two linear operators with domains

D, and D,, dense in %, and let the inverse operators ATY and A7 Y be boun-
ded and comutative. If the functionals xi and xi safisfy the condition

xT(Agx)+x3 (Ayx) =0,
for every x€®,ND,, a functional x* € Df N D} exists such that

xf = — A% x*, x3 = Af x*.

PART 11

From now on let % denote a reflexive Banach space. Let {x*}cC &%*
be a given set of functionals. Linear combinations of the functionals from
{x*} with positive coefficients and their accumulation points form a closed
semigroup in %*. Let us denote it by & {x*}. The set of elements x € &
satisfying N

x* (x)=0, 2y

for every x*€{x*} forms a subspace %’C %. The set of functionals x*€ ¥*
fulfilling (2.1) for every element x € X' forms a subspace %YC %"
Obviously {x*}c %* and & {x*}C %™. Let us prove ‘

LEMMA 2,1. The spaces X" and %/%X' are mutually adjoint.

.. Proof. Every x*€%* is a functional on %/%’, it has on all elements
of the coset X€%/%' the same value which we call the value of the func-
tional on the coset ¥. Conversely every functional y*€(%/%")* is also a
functional on the primary space, the value of the y* is the same on all
elements of the coset %. It follows that y* obeys (2,1) for every x€%".
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Thus y* belongs to ¥*’ and
(/%) = %",

On the other hand, every functional on %" can be extended into a
functional on %*. Since %* is reflexive, it follows that ¥ is homomorphic
to %**. Obviously %’ is the set of elements which are mapped into D€X**
by the homomorphism. Thus

K =%K/%'
and lemma is therefore established.

The semigroup & {x*} has in %/%’ adjoined a semigroup ®'. & con-
tains all the cosets of %/%’' which satisfy the condition

x* (X) =0,

for every x* € {x*} (also for every x* € & {x*}). It can easily be shown
that the semigroup R’ is a cone. Because the space % is reflexive the ad-
jointness of & {x*} and R’ is mutual [13].

THEOREM 1IV. Let xi be a continuous function of the parameter v on the
interval 0 <t < 1 and let at least one element x, and a positive number k
exist such that

Xt (xo0) >k, (2,2)

for every value of ‘the parameter . Every functional x* sﬁch that‘ o
x* (x) >0, (2.3)

for every element x with the propgrty o
x:(x)>0, 0t 1, : (24

can be expreseed by a Stielfjes’ integrai
ot
x* = f xt dy (x) 2,5)
0

where the integrator y(tv) is a bounded and increasing scalar function.

Proof. As the space % is reflexive it follows from (2,3), (2,4) and
and lemma 2,1 that x* € @ {x%, 0 <t <1}. Thus there exists a sequence
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of functionals xi, x$, x§,... converging to x* and such that
k=m
x; = E )\'nk x:nk ’
k=1

where the coeficients 2, are all positive. Let 0 < v, <1 <...<tm< 1
and let us define a step function vy, (x)

Y2 (0)=0,

k=i
Yn(t) == E )"nks Tm'<r§—-t”"+"
=

Then we can put

i
xXh = fx;dy,,(f).
0

The total variations of functions v, ()
k=m
\4 Yn (t) = Z Nk
k=t
are uniformly bounded. Indeed, we have

k=m .
¥ M X2, (X)) = X7t (Xo).
k=1

Because of (2,2) we can write

Az=m
k ’EM.&HHH-H Xo ll-
Hence )
Vya (< lxa -l xo ik S (1 x* [+l xo ll/k,
for all sufficiently large n. The increasing functions y,(z) being uniformly
bounded it follows, according to Helly’s principle, that we can select from
the sequence v, (), ys(3),... a subsequence
Y () Yag (2)s Yag (€)oo,
converging towards a monotonically increasing function y (¢). Then we have
1
x:?,,.,f xsd v (x).
. . o
Hence (2,4) holds and the theorem is proved.
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THEOREM V. Let xi be a continuous function of the parameter t on the
interval 0 <t = 1. Let there be an element x, and a positive number k such
that the condition (2,2) is fulfilled. Further let there be a functional x5 and
a positive number p so that

x6 (X)>p X, (2,:6)
for every XER'.

If a functional x* satisfies condition (2,1) for all x € X such that
x7 (x)=0, (2,7)

for every r, 0 <t <1, then x* can be represented by Stieltjs' integral (2,5),
where Yy (z) is a scalar function of bounded variation.

Proof (2,1) and (2,7) imply x*€ %*. Owing to (2,6) two functio-
nals xf € R {x;,05v<1} and x3 €8 {x7,0< <1} exist to that

x* = x{ — x3

[13]. Hence by theorem IV we get
1 i
= [xdvi@  xd- [ddne,
0 0

where integrators vy, (r) and y,(r) are bounded and increasing functions.
So (2,4) holds and Y {t) = y,(r) - y,(r) is a function of bounded total
variation. This proves the theorem.

(Received 9 May 1956)
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