ON THE APPLICATION OF SUCCESSIVE APPROXIMATIONS
TO MOTION STARTED IMPULSIVELY FROM REST IN
COMPRESSIBLE MEDIA

by
M. Z. KRZYWOBLOCKI (Urbana, 111.)

SUMMARY — The author proposes the application of the successive
approximation procedure to the calculation of the boundary layer growth on
a cylinder started. impulsively from rest in compressible media. The first two
approximations are discussed more in detail. The effect of the temperature is
taken into account which results in the necessity of treating the partial diffe-
rential system consisting of equations of momentum, continuity, state and energy.

INTRODUCTION

Blasius [1] was the first to treat analytically the boundary layer
growth on a body started impulsively from rest in an incompressible medium.
He calculated the first two approximations to the velocity distribution. The
third approximation to the velocity distribution in an incompressible medium
was calculated by Goldstein and Rosenhead [4]. Thorough repre-
sentations of the results of some attacks on this problem can be found in
[3, pp. 56—60, 163, 181—187] and in [6, Chapter 11, pp. 167—180].

This note represents an extension of this technique to the more general
case where compressibility and heat phenomena and effects are considered.
The most general forms of equations of momentum, continuity, state and
energy are used. Fundamentally, the used technique is a generalization of the
method proposed by Goldstein [2;3], Goldstein and Rosenhead
[4] and applied in the past by the author to several problems [5].

The flow of a compressible fluid about a body of cylindrical shape
is considered. The radius of the cylinder is large, therefore, the curvature
»k* is very small. The cylinder extends to >0 in the z direction so that
the flow is a two dimensional one.
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A system of cylindrical polar coordinates is assumed where i, denotes
the y - direction - this direction is perpendicular to the surface of the cylin-
der. The x - coordinate is measured along the y equal to a constant —
the direction is tangent to this family of lines (circumferential) and i, denotes
this x direction.

The velocities in the i; and i, direction are called « and v, respec-
tively.

The surface of the cylinder is assumed to be y — 0. At time f =1,
it is assumed that the cylinder begins to move. It moves impulsively from
rest, attains the velocity U, and thereafter the velocity does not change.
The problem is to obtain a method to determine the growth of the boun-
dary layer in any time interval (f - ¢,).

1. BASIC EQUATIONS

The coefficient of viscocity ,p“ and the coefficient of heat conduc-
tivity ,K” are assumed to be variable functions?. The equations of motion,
continuity, state, and energy become respectively:

o 1 -2 > o > ) L
(1.1) p[V,, + grad(g VZ) - Vx u)] =pF —gradp - ?grad pdivVy

> -+ 1 o ~»
+ 2 (gradp-y) V + grad p X m+—3—p,grad (div V) + p(v* V);

- >
where w = curl V;

_’
(1.2) o1+ div (p V) = 0;
(1.3) p=RpT;
> >
(1.4) Je,p(T, ¢+ V-grad T) + p(div V) =

= J{(grad K) - (grad T) + K div (grad T)] + &;
where &, the dissipation function, was written as:

- > > > - 2 9
(1.5) <1>=p.{2v[(V-v)V]+w2-2V-grad(divV)—E(dva)’}.

It is necessary to express these equations in the system used in this
problem. The general transformation formulae to be used are:

(L6)  div V= (eyeqe0) ™ [(eg eg)x + (v €5)y + (e, e2)];

1) The coefficients of viscosity and heat conducitivity are assumed to be power
series expansions in T with properly selected coefficlents for convergent series.
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- -+ -
(1.7) grad® = e i, +ex' Dyiy+ ez D, iy;

.

- -» >
(1.8) w=curl V=(eges)" ! [(eg W),y — (eav),.] iy +
+ (e e~ [(ey ) s (eg W)x) To + (€1 &)~ [(ea V).x — (€3 1),5] i3
(19) v —(e;e.e5)  [(eaesei' Px)x+ (eresex’ Py)y (10,63 D))

In the coordinate system adopted e, e,, g have the following values:

(1.10) e, ~ 1+ ky, where k is the curvature of the cylinder,
(1.11) e, =1,

and

(1.12) e, = 1.

In the transformation of these equations to represent the flow in the
boundary layer it is assumed that %, k*, ky, were of such magnitude that
they could be neglected.

2. TRANSFORMATIONS

Applying the transformation formulae to the above equations the
following results are obtained for the various terms in these equations.

For the equation of motion,

- + >
(2'1) p V" = p u,f ll + p v:‘ l’;

(22) pgrady V= o pgrad (u + ) =

> -+
=p (e,‘l uux + el"' vvx)iy+p(uy+ vy iy;

nd I
@23 Vv 1 (vE) + ip (- ul),
- > -
where o =§i +ni,+8i and L =etvy - uy~—etku, thus
—’
4

- >
(2.4) Xxw=(e'vvx-vuy—etkuv)i+

_’
+(uuy—etuvye + et ku?) i,

- -
(25) gradp=—elp i, +p,yis
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_}
(2.6) divV=ci'u, +e! e,yv +v,y;

finally the result:

2, _ — - _ —
2.7) —g(elzp,xu,x+e12p,xkv + el Px byt el Rl + Gk .

— > 2 _ _ -
+ e nv,x) iy — '3—(911}1,1' x + € Ry kv + Py Uy + €1 Bl

—2 —1 —2 o ~‘)
—e pkuxter pkvy- e wkiv+pvyy)i,;

-> -
(2.8) 2gradp-v) V = Qe pxux + 20y u,) i
_’
+ (2 e} BoxV,x + 21,y 0,y)is;
i _1 _1 ?
2.9) gradp x w =p.y (61 v,x -1y - e ku)i,
1, 4 >
—nxer (e1 vx - uy—etku)iy,

1 . 2 | S —2 -1 g

(2.10) 3}1 grad div V = 3 pler taxx +er kvy el v
1 —1 —2 —1 2,4 >
+§}1(e1 Uxy — €1 kux+e kvy— e kv +v,,,)i;

2 —2 ~1 I
(2.11) POV =pler tax+ e kuy + )i

’ >
—2 —1 .
".L P- (el V,xx + el k v,y -+ v’yy) 12.

As previously stated it is assumed that k is small since the radius of
the cylinder is very large. Furthemore when y is small, the term ky
becomes very small and is neglected.

> .
Collecting terms in the i, direction, the first equation of motion
becomes:

4 2 :
(2.12) Pl = Rly==—Px+ T lalst Rl = pUly

1 2 )
—pvuy — ‘3‘11V.xy iy ly — E‘P,x Vy+ P,y Vx.

Equation (2.12) was derived with the assumption that & is small and
ky~0. ‘ :
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_)
By a similar procedure the second equation of motion in the i,

direction:
(2.13) PV —PVyy=—PypVV,y —pUV,x — UV xx+ Pox V,x
-ipu - = Pylx+ Rl +—4— by — Ly
3 xy 3 L,y U x ,x U,y 3 By V,y 3 BV.yy.

The energy equation is transformed in a similar manner.
"For the energy equation the terms are as follows:

(2.14) T,y =T,
-> - - - -
(2.]5) V . grad T = (lI ii + v iz) . (81—1 T'x il + T,y iz) =

=e~'uT x+v Ty

>
(2.16) pdivVe=e~tpux+kv)+pv,y
(2.17) grad K-grad T=¢,"2 K x T x + K,y T y;
(2.18) divgrad T=e¢,"2 T xx+e " kT,y+ T,y
- -» '
(2.19) VIV-9)Vl=(@xP+ut xx+V,x U y+ VU x
+Uuy v x+uv g+, VY
> .o
(2.20) V gl‘ad le Vzuu'xx+uv’xy+vu,xy+vv’yy;
_)
(2.21) = (V0" - 2u,y v, 2+ (4,5)%
_4)
(2.22) (div V)2 =(u )+ 2u,x v,y + (v,y)

Collecting terms and making the usual assumptions concerning k, the

energy equation becomes:

(2.23) Je,pTy-JKT,yy=—Jeyp(uTx+vT,))-RpT(ux+v,y)

+J(K,x T.x+K,y T,y+ K Txx) + P,

where b =p {% [(u,)? = u,x v,y + (v.5)*] + (v,x + u,5)?*}.

For incompressible flow, the dissipation function, reduces to:

(2.24) @ =pn{2[(u,x)* + (v.y)*] + (u.y + v, 2)%
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For this type of flow the term V.x is of O (8) and therefore is
neglected. The final equation is

(2.25) b =p [—g— [u.x (u,x = v,,) + Wl +2u,, v+ (u,y)?}.

8. FIRST APPROXIMATIONS

The following method will be used to solve the set of differential
equations. The coefficients of the left hand side of equations of motion
and the equation of energy will be assumed constant so as to obtain ordi-
nary differential equations of the second order, On the right hand side
the results from preceding approximations will be used to obtain higher
approximations,

3.1. First Approximation to u
_)
In the first approximation to velocity component in the iy direction
the following assumptions are made concerning the flow:
(3.1.1) p=const; p=p,; v=0; p,=0; Uy = U xx = 0
PUL = Py Uty Plyy = Py Uy, yy.

In this approximation only terms 0 (£-!) are retained. Having made
the substitutions noted in (3.1.1) the following equation is obtained:

(3.1.2) Po Uyt — Py Uy, yy = 0.
The solution of this equation is given by Blasius, as
(3.1.3) Uy =UsetiN = U F (N), i. e, etf N = Fy (V).
The error function erf N is given its usual meaning:
N
(3.1.4) erf N = 2n-'i=fexp (— £)dt.

]
N is defined as a dimensionless quantity and is written as:
(3.1.5) N=[2(v, t)lg]-ty,
Thus N is dimensioniess.

»U,” is the function of x only which gives the velocity distribution
outside the boundary layer. It may be assumed to be the function that
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igves the velocity distribution in an irrotational motion. In applications of
this method U, = 2 V sin (x R—*) might be used (V is the free stream velo-
city — R is the radius of the cylinder).

The boundary conditions require that u equals 0 when N equals zefo
or y equals zero. Thus:

(3.1.6) ujo=1tyleg="UserfN|, ,=0.
The boundary condition at e requires that u is equal to U, at N — o0,

Since erf N|y3 00 =1, then the boundary condition is fulfilled and u is
equal to U, at N— oo.

3.2. First Approximation {o v

In the initial approximation, an incompressible flow is assumed. Thus
for the initial approximation to v it is sufficienl to satisfy the incompres-
sible equation of continuity:

(3.2-1) u,x + v,yt= O.

Thus on the ieft hand side of this continuity equation the substitu-
tion u = u;, v=v,, is made. Therefore:

(3.2.2) Uy,x+ V,y=0.
The solution of this equation is:
(3.2.3) vy == 2 (v )eUy {Netf N — n—"3[1 — exp (— N¥]} =
= — flev " Uy F, (N).

The boundary condition at y is equal to zero is satisfied since v, is
equal to zero at N equals zero. However, for N— oo, the boundary con-
dition is not satisfied since v, is not equal to zero at N--»oo. However,
at moderate values of N for which u is approximately equal to U,, v is
of the order 2(v 1)U, N [Blasius, p. 20—37].

3.3. First Approximation to Density
The continuity equation for compressible flow is written:

(3.3.1) o0 +div(p V) =0,

and this equation is transformed to the new system of coordinates. Thus
by equation (1.6):

(3.3.2) o+ el [(Pu)x + (e,pV),y] =0,
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or
(3.4.3) Pt el pxutei puxtpyv+pn,=0.

Finally the equation of continuity is written and is used in the form:
(3.3.4) Pe=—p(Ux+v,y)—upx—vp,.

For the first approximation to density p equal P is substituted on
the right hand side and p = p,, on the left hand side of (3.3.4).

The velocity fuuctions u and v assume their forms given by u, and
v,. With these substitutions equation (3.3.4) reduces to:

(3.3.5) 1, = Py (Ug,x + Vi,y) = U P,x — V3 Pe.y =0;
p; = const. = 0.

The final results will be presented in the form of a series. Thus
I=n

p = p, + § pi, where each p;, is a successive approximation. The first

approximation to density is represented by p = Pe + Py, therefore p = p_
everywhere. This result, that the density is constant, was expected since
the incompressible continuity equation was used to determine u, and v,.

3.4. First Approximation to Temperature Distribution

The temperature terms are determined from the energy equation.
The temperature is expanded in the same form as density, i e.,

(3.4.1) T=T; +1§; Ty,
where 7, is the temperature on the surface of the body.
The energy equation is written:
(3.4.2) Joyp T, ~JKT,yy=~Je,pT,x+vT,y)
~RoT(x+v,)) +J(K,xT.x +K,yT.y + KT, 1) + D,
where @ is given in the simpler form:

(3.4.3) o -y [-g- ) + 20,50y + (u,y)z] .

On the right hand side of equation the quantities
U=U; V=V P=py +01=pg; T=T,; K=K ; p=p,,

are substituted. On the left hand side the substitutions:

(3.4.9) T=Ti+T; K=K,; p=0py,

were made so that the equation could be reduced to ordinary differential
equation.
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In this first approximation only terms of the order (f~1) are retained*.
Equation (3.4.3) reduces to:

4
(3.4.5) Jp 1 (e P Tot = Ky Tyyy) = 3 (vi,y)* + 20y, 21y, + (ag,)*.

The constant coeifficients on the left hand side of (3.4.5) linearize
the partial differential equation. Retaining only the terms of order (t1)
equation (3.4.5) becomes:

(346)  Jugt (e pp Tiut = Ky Taopy) = ()" = U5 (v, )7 Gy (N).

T, = T, is substituted for T, and T, is made a function of a new
variable N. The following substitution is made:

(3.4.7) T,=T, A, U3 F; (N).
,A,” has units 2 /2 and N is defined as:
(8.4.8) N=A, N.

»Ay' is a dimensionless number. The constants A, and A, have the
following expression:

(3.4.9) Ay=(e, Ty Ay — (v, oy p, KU

The expression for T, equation (3.4.7), is substituted into equation
(3.4.6). In what follows is to be undetstood that the functions F, G, H, I,

etc., are functions of N and F, G, H, I, etc., are functions of N.

Thus,
(3-4-10) Ti,t=A1 Utz) Fs' N,t;
(3.4.11) Ty,yy = A, Us F" (N,)2,
are substituted:into (3.4.6) and the result is:
(3.4.12) Us (Fy"+2'N F) = U3 Gy; G,=—4G;.

The term G, is G, with the substitution N = A, N. The differential
equation:

(3.4.13) F" +2 N Fy =G,

determines the function F,.

*) 'The order of t preserved Is arbitrary, but one must be consistent.

Publications de I'Institut Mathématique 4
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Any constant is-a solution of the complementary equation of (3.4.13).

N
The second complementary solution is C, =s exp (—2%)dz = C, erf N.
0

Reducing the order of (3.4.13) the equation becomes:

(3.4.14) f+2Nf=03G,,

where

(3.4.14a) f=Fy and 7 =F,".

Equation (3.4.14) has the solution:

(3.4.15) f=1SG,(exp f 2NdN) dN] exp (- [2NdN) =

= [/ G, (exp N*) d N] (exp - ).
Therefore the function Fy, is given by:

N
(3.4.153) Fop = f [ f G, (expN?) dN] (exp — M) d W,
0

Fy, is the particular integral in this case. The solution of equation (3.4.13)
is given by the particular integral and the two complementary solutions.
Thus the general solution is:

(3.4.16) Fy=Fyp + CreriN + Cy,

where C, and C; are determined by the boundary conditions on T,. The
boundary conditions on T are as follows:

(3.4.17) y=0: N=N=0; T=T,;
y200: N=Nooo; T=T,.
Temperature is represerited by the binomial T = T, + 7,. The func-
tion equal to T, is substituted and the result is:
(34.18)  T=T,+ Ta A UiFy = T, + T A, U3 (F,, + C, ett N + Cy).

When y =0, N=N=0, and F,, is equal to zero. The value of T
becomes:
(3.4.19) T=T+ Te A, U3 Gy,
and it is evident that C, is equal to zero and T is equal to 7,, When y
approaches infinity, N and N approach infinity, equation (3.4.18) becomes:

(3.4.20) T=Ti+ To Ay U (Fip + C) | Fr @ -



On the application of successive approximations . . . 51

It is assumed that the integral representing Fg, has a finite value for
the limit co. Briefly, we restrict the calculation to large values of y, exclu-
ding y = oo, if this leads to indefinite integrals. The second boundary
condition is satisfied by determining C, sothat T = Tw = Ts + Te =constant.

3.5. First Approximation to Viscosity and K

Viscosity is represented by a power series in 7, where the coeffi-
cients are chosen so that the series is convergent. Thus,

_i=n
(3.5.1) }1=[12A1Tl, A,=a,b,c,...,i==l,2,...,
=0
where the A/ s are constants having dimensions 1/degree, 1/(degree)?,
etc.,. Then p, becomes:

(3.5.2) pe=p[l +a(Ts+T)+6(Ts + T +...],

and
(3.5.3) tr=pla+26(Ts +T)+3c(Ts+ T2 +...].

Assuming K to be expressed by K —=K,c,p, then it is possible
to write:
(3.5.4) K, =Kycp g,

as the first approximation to the coefficient of heat conductivity.

4. SECOND APPROXIMATIONS

4.1. Second Approximation to u

For the second approximation the values determined in the first
approximation are substituted into the right hand side of equation (2.12).
Thus the substitutions p = p,, u=u,, p = p,, v = v, are made on the right
hand side. On the left hand side of equation (2.12) the substitutions u = p,,
u.=u, +u, p=np,, are made. The coefficients on the left hand side are
made constant so that the resulting equation is linear. Thus equation (2.12)
becomes:

4.1.1) Po Ust = I Up,yy + Po Uzt — Pop Uzyy =~ R [P (Ts + Ty)]x

¢

4
+ 3 Prx g, x + "3—}"1 Ug,xx + 1,y Vix — Py Uy Ug,x

1 2
= P V1 U,y — 3 By Vyxy + P,y gy ~ 'é“}lbx Vi,y-

4%
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The final form is:
(4.1.2) Upt — Vo Ug,yy =~ Uyt + P Pyt y),y — RTyx +
+ 207! prxly,x + p5t (g Uyxx + Py Viox) = Uy Uy, x — Vg Uy, y.

In this approximation the terms of order (#°) are preserved. The
right hand side of equalion (4.1.2) contains terms composed of the product
of three quantities. The typical terms is composed of a first factor A,’u,
which is composed of physical constants or properties of the fluid. The
second factor in the product is one composed of the velocity U,, powers
of this velocity, and powers of the derivatives of this velocity. The extent to
which these factors (U,, U,, U,", etc.) enter would be determined by the
problem at hand. The last factor in the product is some function of N.
Thus using a summation convention on repeated scripts, the most general
form of such equation as is described above is:

(4-1.3) Ug,t ~ Ve U2,yy I - i}“A{'sq‘ . Ug U;)s qu'“(}j-

The scripts act as exponents and indicate powers of the velocity
terms. The function

(4.1.4) ty, = A§t Uy Ug Fyy p (N),
is introduced. The factor A} is dimensionless. F,, indicates the second

-» ->
approximation to the velocity component in the i; or i direction, i. e. the
tangent direction.

Substituting u,,; and u,,y, into equation (4.1.3) it is found that:
1 1

(4.1.5) AL [Uy Uy (Fagp— - N Fa1p) — LU U Fai,) =
= '}A;‘sq... U(';U(')S qu“ G};

or

(4.1.50) Uy Uy A% (F21p + 2N Py — 4 Fyyp) =

= A{Psq... US Uff qu”. Gj .

The method of finding the general solution of (4.1.5a) is to find the
particular integrals of each term on the right hand side. Terms of like
coefficients are grouped and particular integrals found for each term with
a distinct coefficient. Two complementary solutions of (4.1.5a) are known
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and consequently the general solution can be obtained. Since equation
(4.1.5a) is linear, solutions can be added. As an illustration consider:

(4.1.6) Uy Uy AR (Foipy + 2 N Faipg — 4 Fapy)
= Alyetyen U U®D g9V . ... G,

considered as a typical term. The factor A} is determined uniquely as:
(4.1.7) AR = Ay enay USD 7108 og ML

thus the equation becomes:

(4.1.8) Faipt + 2N Faip1 — 4 Faypy = Gjy -
The particular integral of this equation is written as:

N .
Faips = lf[qu(2N2+ l)(expNQ)dN](exp—Nz)(2N2+1)“dN} (2N?+1).
0

The complementary solutions are:
Foipp =2N2+1;

Faypy = —;—n"/ﬁ 2N+ 1) erf N+ =n-tN(exp -~ N?).

For the particular term Gj, then the solution is:

N
(4.19) Fap =[[[fa,1(21v2 + 1) (exp N2) d N] (exp — N2) (2N + l)dN]x

1
XN +1)+C, 2N+ 1)+ C, {;n—‘/-(2N2+1)erfN+n—‘N(exp—N’)}.

The second approximation to velocity is written as follows:
(4.1.10) ug = (t Uy Un) (AR Fupy ¢ AR Fopy + .o + A Fayyp).
The functions F,,,; are solutions of the set of differential equations:

(4.1.11) Faipy + 2N Faipy = 4 Fyypy = Gj 5

Fé’lpn + 2NF’21p!Z - 4F21P" = Gf"'
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The following factors A%, A% ..., A%" are uniquely determined by:
A=A USUS U . ..,

vy

. . v ey
pr _ Ain gt ‘s U”q
A4 == rsq UO UO 0 eaove

All A% are dimensionless and they are composed of physical con-
stants and derivatives of the velocities etc.

The boundary conditions are the same, that is, when N is equal to
zero, u must be equal to zero. When N approaches infinity, u must be
equal to U,.

Since u is equal to u, + u,, then when y is equal to zero N is equal
to zero and it is necessary that u equals zero. From the first approxima-
tion at y equal to zero u, is equal to zero; therefore, for y equal to zero,
u, must equal zero, and each F,,, must be equal to zero. For equation
(4.1.9) when N is equal to zero:

(4.1.12) Faipo = C, (2 N% + 1),
therefore the constant C, = 0.

When N approaches infinity it is necessary to assume that the
integral in F,,, remained finite and in such a case the expression for
Fay pi becomes:

N
(4.1.13) F,lp,Ing[f[...]] @N +1) + C, —;—n’/-(2N’+ 1)| ~e 0.
0

C, is determined from this expression since it is necessary that
(4.1.13) equals zero in order that u is equal U, when N approaches

infinity.
The second approximation to velocity becomes:
(4.1.14) u=U, etf N -t A Uy, Uy Fyyp.

4.2. Second approximation to y

For the second approximation to v the procedure is the same as
with second approximation to u. The following quantities are substituted
into the equation of motion normal {o the surface (equation (2.13)): on the
right hand side the quantities:

(4.2.1) P="Pp; B=1
(4.2.2) U=u +uy v=v; T=T,+ Ty K=K,,
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are substituted. On the left hand side the quantities:
(4.2.3) V="V + Vg P=Pu; B=pa;
are substituted. Equation (2.13) becomes:

(4.2.4) P Vot = Vg Y23y = = P Vist + Pt Vi,yy — Rpg Ty

1
~ P (Vi Vi,p + Uy Vi, x + Uy Vi,x) + g Vyxx — —3"l-‘1 Uy, xy

2
- E}’-t,'y Ug,x + Py, x Ug,y + P1,y Vi, p-

This equation is of the same form as equation (4.1.3) and is repre-
sented by the expression:

(4.2.5) Vot = Vg Vayy = B];sq Us Ug Up?*- "Hj.

In equation (4.2.5) terms of the order (#9) are preserved.
The procedure is identical as with u, and so the function:

(4.2.6) vy =t Uy Uy’ AS Fasp,

is defined. This function is substituted into equation (4.2.5) and the diffe-
rential equation:

(427) A5 (Fzp + 2N Figp — 4 Fapp) = Bhgg U5 US™ UGY.. . Hj,

is obtained. Again the solution of a set of differential equations:
) F;lzp1+2NF£>zp1 — 4Fy,p, = Hjy;

(4.2.8) ' ' ' '

ngprl + 2N FZ’ZPH — 4 Fyypn = Hjp,
determines the functions F,,p. The factors A§ are determined uniquely by
the system:
A =Bl U U UL,
(4.2.9) ) ) v

AP =B U U Uge ...
The expression for v, is identical with (4.1.10) and is written as:
(4.2.10) Vg = t Uy Up (A8 Faopt + A% Faogs + . . . AL" Fagpn).

By the identical line of reasoning used for u, the boundary condi-
tions for v, are satisfied at N is equal to zero, but are not satisfied as N
approaches infinity.
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The *entire solution for v is written as:
(4.2.11) V=~ 2 (v )2 Ug {Nerf N — =21 — (exp ~ NH +
+ tUo U A8 Fygp .

4.3. Second Approximation to Density

The continuity equation is written in the form given by equation
(3.3.4). On the right hand side of this equation the following substitutions
are made:

4.3.1) P=0pPo +py; U=+ V=1, +v,.

And on the left hand side p,, = p,,;. Preserving terms of the order (#°) the
result is:

(4.3.2) Pe,t =0, or p,=0.

Since it is not necessary to assume integer powers of f, fractional powers

such as 1%, %, etc., could have been used. As an illustration assume
that 7' terms are preserved.

Equation (3.3.4) with the substitutions (4.3.1)) becomes:

(4.3.3) Pt = = P Va,y =~ po (t Uy Ug AR Frop) (2 v¥a '),
The function p, is defined as:
(4.3.4) Py = 1'% U™ py, AR Fogp, -
(435)  pyy= -‘2. Ph U 0, AR Fygp — 5 U p_ AL % £ N Fap.

Substitute (4.3.5) into (4.3.3) and_the differential equation becomes:

(4.3.6) A§ (- N Fsp + 3Fy5,) = (Uy Upy™ AL Fpy .
This equation leads to a set of solutions of the form:

N
(43.7) Fogpi = ( f N=3Fpapi d N + C, )Ns,
]

and a set of constants determined uniquely by:
(4.3.8) AR = (U, Up)~"e v ABY

When N is equal to zero the boundary conditions require that C, equals
zero. It is not likely that the boundary condition as N approaches infinity
can be fulfilled since there is only one arbitrary constant.
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If one preserves terms of order (', £ etc.) one must be consis-
tent and preserve the same order terms in all equations. In this approxi-
mation (#°) is retained therefore:

(4.3.9) S P =Pp + P+ P = Py

4.4, Second Approximation to Temperature

The energy equation (2.23) and the general expression for @ is
used to determine 7. On the left hand side of (2.23) p=yp,, T=T; +
+ Ty + Ty, K = K, are substituted. And on the right hand side the sub-
stitutions p=p,, u=u + 1y, v=v,+ v, T=Ts+ Ty p=p, K=K,
are made. The terms of order (1°) are preserved and the resulting expres-
sion is of the form:

(4.4.1) JCypy Tost = J Ky Ty py = — %D’}sq_,, U Uy Up?... T,.

The D's are composed of physical constants, U, Uy, Us?, ..., are
velocity terms, and /I's are functions of N only. The following function
is defined:

(4.4.2.) Ty=T, Ag A5t U Fyyp,
(4.4.3) Ag = (Jeyp, T,) L.

Equation (4.4.2) is substituted into (4.4.1) and the result is:
(4.44)  AR(Uo)* (Fasp + 2N Fasp ~ 4 Fyyp) = Disg., Uy Ug Us?...T}.

The functions F,,, are determined from the equations:

(4.4.5) Fé";m--f- 27\7?24” - 4?2,“71 =7jl (l= 1,.-.,fl),
and the constants are determined uniquely from the equations:
(4.4.6) AR = Di,... Uy U2 Ug? (i=1,...,m).

Equation (4.4.5) is a linear differential equation and its solution is
of the form:

N
(4.4.7) Fyypt = {f[f?,, @N? + 1) (exp - N*) (2 N2 + 1)—1dN](27v‘2 F1)+
. .

+C N+ 1)+ C, [2 %) =1 (2 N? + 1) erf N + =~ N (exp - N?)).

The boundary conditions for this type of function were discussed
previously for u,. For N equal to zero it is necessary that C, equal zero.
When N approaches infinity the boundary condition is satisfied if the
integral is finite. Assuming that the integral is finite, then as N approaches
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infinity the constant C, is determined from the condition that:

N
(4.4.8) {f...}(ziv"z FD+CEMT QN+ 0.
4]

The entire expression for T becomes:
(4.4.9) T=Ti+ T +T,.
When y is equal to zero N equal N equal zero and T is equal to T;.
When p approaches infinity, T= T, + T, + T, and the constants for T,

are determined so that T= T, at N_,_ (see Section 3.4).

4.5. Second Approximation to p and K
The second approximation to p is written:

(45.1) pe=p{l +a(Te+ Ty + 1) + 0(Ts + Ty + TP +..].

As in the first approximation to K the following expression is given
for K,:
(4.5.2) . Ky, =Kc,p,. A

The extension of this method to higher derivatives is only a matter
of repetition.

The method presented above is adaptable to computing devices.

{Received 9-X1-1955)
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