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SUMMARY. — The problem of interaction between a viscous or dissipa-
tive flow near the surface of a solid body, or in its wake, and an ,outer®
isentropic or nearly isentropic stream became very important. The. author re-
modifies the Crocco-Lees approach [3] in order to include the rarefaction of
the gas, the vertical velocity component and the pressure gradient in the ver-
tical direction. The author uses Grad's equations based upon the kinetic theory
of monatomic gases and preserves all the equations of momentum and energy
in their full forms. A method, suitable for high speed computing machines, is
developed, enabling one to calculate the velocity; density, pressure and tempe-
rature distributions in the boundary layer, as well as the components of the
shearing stress tensor and heat flux vector. The convergence of the succes-
sive approximations process is proved; some remarks on the possible ex-
tension of the Crocco-Lees results in wakes to hypersonic flow regime
close the paper. o

INTRODUCTION

The problem of interaction between a viscous or dissipative flow
near the surface of a solid body, or in ‘its wake, and an youter« isentropic
or nearly isentropic stream became very important. A simplified dpproach
to this problem was proposed by Crocco and Lees [3]. By means of
a simplified theoretical model, their paper treats the general class of flow
‘problems characterized by this kind of interaction. The external flow is
taken to be a plane, steady supersonic flow, which makeés a small angle
with a plane surface or plane of symmetry. The internal dissipative flow
is regarded as quasi-one-dimensional and parallel to the sirface on the
average, with a properly defined mean velocity and mean temperature.
The nonuniformity of the actual velocity distribution is taken into account
only approximately by means of a relation between mean temperature and
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mean velocity. Mixing, or the transport of momentum from outer stream
to dissipative flow, is considered to be the fundamental physical process
determining the pressure rise that can be supported by the flow.*With"the
aid of this concept, a large number of flow problems is shown to be
basically similar, such as boundary-layer-shock-wave interaction, wake flow
behind blunt-based bodies (base pressure problem), flow separation in
overexpanded supersonic nozzles, separation on wings and bodies, efc.

In the Crocco and Lees approach the equations. of motion are
reduced to a single nonlinear ordinary differential equation that can be
integrated numerically. An important property of this equation is the exis-
tence of a ,critical point“ for supersonic wake flows, and, also, under
certain conditions, for supersonic flows directed toward a solid surface.
This critical point acts much like the ,throat“ of a nozzle in determining
the base pressure, for example, or in some cases the surface pressure
distribution in a boundary-layer-shock-wave interaction. One important
reason for the marked difference between laminar and turbulent flows is
the fact that the turbulent mixing rates are from five to ten times larger
than the laminar mixing rates.

By introducing several reasonable physical assumptions, a »simpli-
fied“ form of the mixing theory is developed particularly for separated
and reattaching flows and wake flows. Separating flows, as well as reat-
taching - flows, are found to be capable of supporting considerable pressure
increases at high velocities. When the Crocco-Lees mixing theory is
applied to the problem of determining the base pressure for a supersonic
airfoil with a blunt trailing edge, it gives the correct fluid-mechanical
explanation of the observed phenomena. Qualitative agreement is found
between the theoretical calculations of the curve of base pressure versus
Reynolds number and the data of Chapman and Bogdonoff
on bodies of revolution and Chapman’s data on blunt trailing-edge
airfoils. ‘

The results obtained in the base pressure problem for a supersonic
airfoil with a blunt trailing edge open the way for application of the
mixing theory to boundary-layer-shock-wave interactions, boundary layer
separation, and many other phenomena, However, the dependence of the
mixing rate and the mean velocity-mean temperature relation for the dis-
sipative flow region on the flow parameters must be carefully investigated
experimentally and theoretically, and the results incorporated into the
analysis.

In their approach, Crocco and Lees use only one momentum
equation and the energy equation in a simplified form. The second momen-
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tum equation and the vertical velocity component are neglected and the
frictional stress at the surface (if a surface is present) appears in a form
of a symbol. The correct form of the relation of the friction coefficient
upon the derivatives of the velocily components is not used. A certain
approximate relation is found between the friction coefficient along a flat
plate in a compressible fluid flow”and the corresponding friction coeffici-
ent along a flat plate in an incompressible fluid flow, using Stewartson’s
proposition [8a]. Thus, the whole approach is an approximate one and
can be used only in the low or at most the high supersonic region. But
some remarks are necessary when one approaches to the hypersonic regime.

Let the symbol ,/“ denote the mean free path and ,a“ a characte-
ristic dimension of an object moving with a certain speed in a fluid. Then,
the region where //a <<l is characterized as the one of ordinary gas
dynamics. In that region the system of Navier-Stokes equations of
motion (momentum), continuity and energy, derived fundamentally on the
basis of mechanics of continuum is assumed to be adequate enough to
describe the status of the motion. The associated boundary conditions are
well known. A particular solution of the system in question must satisfy
the following conditions:

(i) if the viscous, incompressible fluid extends to infinity, the value
of the velocity, density and temperature must be specified at infinity;

(ii) all of the fluid particles which are adjacent to any solid surface
have the same vector velocity and temperature as the corresponding ele-
ments of the solid boundary.

The second condition requires that there be no flow normal {o any
solid surface (unless there is suction or injection), and that there be no
slip between the fluid and the wall. Various experimental physicists
(Knudsen, Kundt, Warburg and others) have established that this
»non-slip“ condition is valid only if the mean free path of the gas is
completely negligible relative to the characteristic macroscopic dimension,
Hence, for a rarefied gas, the ,non-slip“ condition must be replaced by
some relation which specifies the slip velocity of the gas relative to the
solid wall. The region l/a <1 up to =21 or > 1, say, can be characterized
as that of slip flow and of hypersonics in rarefied gases. The phenomeno-
logical assumption of A. Basset specifies that the slip velocity at the sur-
face of a solid body be proportional to the shearing stress at the same
surface. Similarly, the experiments of von Smoluchowski have shown
that in a rarefied gas there exists a ,temperature jump” between the wall
temperature and the temperature of the gas layer immediately adjacent to
the wall, and, that, to a first approximation, this temperature jump is pro-
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portional to the temperature gradient (normal to the wall) which exists
in the gas at the vicinity of the wall

It is today generally assumed that in this region the Navier-
Stokes equations seem inadequate to describe the status of a motion of
a .body in a gas. The fundamental concepts of the kinetic theory of gases
must be used. As it is wellknown, for monatomic gases this takes form
of the Boltzmann equation. Due to the lack of an analogous adequate
equation for the polyatomic gases, the remarks below are restricted to
monatomic gases. Works on the Boltzmann equation by Hilbert,
Enskog, Chapman, Burnett and others are confined to the region
in which //a{<1, or at most [/Ja<1. Their procedure consists essentially
of expansion in powers of (//a). Hence these solutions are the thermody-
namic approximations starting from the Boltzmann equation. It is
expected that this procedure leads to an asymptotic solution. The first
approximation leads to the Euler equation for a compressible, inviscid,
non-heat conducting fluid flow; the second approximation yields the
Navier-Stokes equations and the third approximation yields the so-
called equations of slip flow or Burnett's equations. The polynomials
used in that approach are numerical multiplies of Sonine’s polynomials
which arise in the study of Bessel’s functions.

The most promising solution of the Boltzman equation was recent-
ly proposed by Grad [6] using Hermite polynomials. This solution may
be considered to be between the thermodynamic and the full use of the
Boltzman equation. It seems probable that the type of analysis proposed
by Grad is preferable to the Hilbert-Enskog method when consi-
dering rapidly changing flow, for example, the internal structure of a
shock wave. '

Tests show that in the range in which the kinetic theory should be
accepted as the fundamental concept of the phenomenon, the boundary
layer is thick and the pressure gradient in the normal direction is no
any longer small. Hence, the normal velocity component is of a non-
negligible magnitude and consequently the second equation of momentum
must be preserved. The thickness of the boundary layer in this regime
may be of the order of the representative length dimension of the solid body.

In general, the structure of the boundary layer may be affected by
the following characteristic features of the phenomenon in question: (i)
rarefaction of the gas; (ii) interaction between boundary layer and the
adjacent external stream; (iii) interaction between the boundary layer and
front shock; (iv) boundary layer and/or body curvature; (v) gas imper-
fections. In the latter group one may distinguish three subgroups;
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(a) conditions outside the molecule which can be taken into account by adop-
ting a more complicated equation of state in place of the perfect gas
equation; (b) changes inside the molecule, i. e., in addition to the energies
of translation and rotation, énergy can also be absorbed in vibration of
the atoms in the molecules; this causes the variation of specific heats; the
process is still more complicated by the phenomenon known as heat ca-
pacity lag or relaxation time; as the temperature increases with the increa-
sing speed, the phenomenon of dissociation becomes apparent; (c) chan-
ges inside the atom indicator: there exists the possibility of ionization of
the atoms of the gas at the highest velocities.

In the present paper the author re-modifies the Crocco-Lees
approach in order to include the rarefaction of the gas, the vertical velo-
city component and the pressure gradient in the vertical direction. Briefly,
the first two points from the five ones mentioned above are taken into
account. This is accomplished by using Grad’s proposition and preserving
all the equations of motion (momentum and ehergy) in their full forms
without any simplifyng assumptions. A method, suitable for high speed
computing machines, is developed, enabling one to calculate the velocity,
density, pressure and temperature distributions in the boundary layer, as
well as the components of the shearing stress tensor and heat flux vector.
The obtained system of ordinary differential equations may be solved by
some iteration method or by successive approximations. Analogous func-
tions to those derived by Crocco and Lees are proposed; the system
of four differential equations is reduced to three by means of some con-
sideration of the algebraic nature. As the initial values for each of those
systems one can use the values from the compressible flow regime obtain-
able by means of the Crocco-Lees procedure. Some remarks on the
possible extension of the Crocco-Lees results in wakes to hypersonic
flow regime close the paper. '

The author presumes that the reader is well acquainted with the
Crocco-Lees paper; consequently, in the text below only a few items
from that paper will be cited.

I. FUNDAMENTAL HYDRODYNAMIC EQUATIONS

1.1. Hydrodynamic Egquations

If a body moves in a gas, it exercises an important influence on the
whole character of the motion of the gas molecu1e§. The hydrodynamic
expressions for the ‘fact that the conditions of motion of the gas are
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changed by the presence of the body consist of the appearance of a
system of hydrodynamic stresses and heat flow. The fundamental equa-
tions of hydrodynamics are the following: equation of motion:

(1.1.2) up oy up P+ P ) = 05
equations of continuity and state of a perfect gas:
(1.1.2) Pt (") n=0; p"=Rp T;

equation of energy

* D * d * % * . 1 *
(1.1.3) P 5—;_—(gT)+p Uy w + Py Uy + 5 ST =0,
where the symbol D/Dt* donotes the operator:
(1.1.3a) D/Dt* = o/ot* + uj 0/dx};

various forms of the equations for the stress tensor, py, and heat flux

vector, s;, were proposed by Navier-Stokes (continuum), Burnett and
Grad (kinetic theory, see [2], [6]). They are given in the Appendix (1.1.4;
1.1.5; 1.1.6). In the systems, presented above, a standard tensor notation
is used. A subscript with comma denotes a partial differentiation. The
asterisk means that the physical quantity in question has proper physical
dimensions. Notice, that in the case of a steady motion, the first two terms

in the energy equation can be presented in the form (with Cy = Cp — R'):
(1.L.7) Z=p' g (¢ T)n +p U =

P U (S T )ee — 0" Uy (R* T%), 00 + p* 1]
adding the expression (p*u}),» R* T* = 0, gives the result - (p* u}),» and:
(1.1.8) Z=p"uj(c;T")e — Pl i}
Not cited here is the system proposed by Truesdell [9]. This is due
to the fact that the coefficients (analogous to p* and X*) in Truesdell’s

expansion are unknown, as yet, and possibly must be determined by some
experiments.

1.2. Dimensionless Magnitudes
Introduce the magnitudes in a steady, uniform motion of the fluid in
question:  Ug; pg; pg; Tos 1o X, and a representative length L*. This en-
ables one to introduce the dimensionless quantities:

LJPCTE SN

g =x]L1(i=1,23); w=uUy"; p=0p"p "
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T=T'Ty s R=R Ry =1, p=p*pi~'; p=p*pst;
= £ USL b=

ThTh N = Rywgs
(1.2.1)  Pu =005 so =57y U™ pp U2 py™ =& = yo M2,
MG = U ay2; a2 = Yo Ry 155

Y e __ ¥ a* . LI & I N . A
Y_cpcp _Yo_‘cpocvo ’ L PoUoPo I—RG‘_ B:

X = ¢ R
Notice, that the symbol o denotes the speed of sound in isentropic gas

conditions, M, the Mach number, R, the Reynolds number. To obtain
the dimensionless forms of equations multiply the original system of
equations by the following expressions:

conservation of momentum by L* (pj Ug?)~*;

continuity by (py Ui

state by Pyt = (Rgpg Tyt
energy by L* (pa UpD—1;

stress tensor by L* (py Ug)—;

heat flux vector by L* (py U1

1.3. Two Dimensional Steady Motion

Grad’s system of equations in this case has the following dimen-
sionless form:

(1.3.1) pau x+vuy) +a~t(p o+ Pex,x + Pry,y) = 0;
(1.3.2) p(uv, + vy ) +at(p,, + Pyx,x + Pyy,y) = 0;
(1.3.3) (pu),x+ (ov),y,=0; p=RpT=pT;

(1.3.4) Xelep T) x4+ (o T),y V] = p,xl =P,y V+Pexll,y

1
Py (u,y+v)+pyv,, + ?(sx.x + 8y,y) =0.

Equations for p,, p.y, Pyy, Sk, Sy, are given in the Appendix (1.3.5) to
(1.3.9). Adding the expressions u (pu),;=0(=1,2) and v (pu,), ;=0
to equations (1.3.1,2), respectively, gives the following forms of these
equations:

(1.3.1q) (p uz).x + (p uv),y + a7 (P, x + Pex,x + pxy.y) =0;
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(1.3.20) (Pv?),y + (Puv) x + at P,y + Pyx,x + Pyy,y) =0,

Adding the expression x ¢, T (pu,),; = 0 (i =1,2) to the energy equation,
gives the following form of that equation:

(1.3.40) (Xer Tou) x+ (Xcp TpV),y - up,x ~vp,, +

+ —;'(sx,x+sy,y) -+ b = O;

(1.3.40) D = pyct, x + pyy (uy+v,)+pyv,,.

The above system is applied to a flow along a flat plate located along
the x-axis. ‘

1.4. Transformation of Fundamental Equations
Let 8 = 8 (x) denote the variable finile thickness of the boundary layer
along a flat plate. The following boundary conditions are assumed with
X¢r Tpu=hy, XCp Tpv=nh,:
(1.4.1) y = 0: continuum: u=0; v =0 (no suction); vx0 (suction);
slip flow: u = u,; v =0 (no suction); vx0 (suction);
P=rpw; T=Ty; p=py;
(1.4.2) y =28: u=u,;' V="V,; P=20¢; p=pPe; T = Te;
Pxx = Psxe = Pxy = Pxye = Pyy = Pyye = 0;
Sx=Sxe =8, =8, =0; hy=hx; h,=h,.
In continuum with no suction the boundary conditions are very simple:
u, =v, =0. In the slip tlow regime and/or with suction, when u, %0,

v, #0, these values must be given as linear or nonlinear boundary condi-
tions thus furnishing linear or nonlinear boundary value problems.

The rate at which the mass m, is transported from the external stream
to the internal flow, i.e., to the boundary layer region, is equal to:

(1.4.3) . i_r?z,_, = P, (ue@ - ve) = P Ue (d_& - tan 0),
x dax dx

with the positive value of u, pointing in the direction of increasing 6 and
positive value of v, directed upward, and ¢ denoting the local angle between
the external streamline at y =8 and the x-axis. Iniroduce the notion of

the mass flux m, in the internal flow in the horizontal direction and of the
momentum flux .in. both horizontal :and vertical directions, I, and Ay s
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respectively:
3 5 )
(1.4.4) Eu=fpudy; 1,,=f.pu2dy; Ly = fpuvdy.
0 0 0

Similarly, the flux H,. of enthalpy per unit volume xc,p T is:
5

(1.4.5) XeppuT =hy; XcppvT=hy; fhxdyr-H,.
o]

Integrate all the equations (1.3.1. to 4) with respect to y between the limits
0 and & with the use of the formula:

b b
d covdx = [0 f(x:
Fc—ff(x,c)dx focf(x,c)dx+
(1.4.6) ‘ ‘
40 ada
+ f(b;0) P f(a,C)dc-

The following system is obtained:

3
d d — d
ik vl KL
0
(1.4.7 a)
dd
~Pe— — pxyw] + fw Uy Vs
dx
5
(l47b)—fi-—1 =v—d—E—a‘1—d—f dy + pe — (py + Y]+ pw Vb
o X dx xy e dx € dx pyx Y Pe w pyyw Pw Vuw™
0
d — d —
147 c —My= ——Me + P, V'
( ) dx dx ¢ ¥ Py
d d 1 d 2 1
(470 Mg ey T o [ocdy b + oog,
0
; Dp D d
_f( __E)dy; Z oy S (i=1,2).
Dt Dt bx,

0
Introduce the following new variables:
(14.80a) 4y = Iyemy—1; v, = Ly my—; Ty =py 11, 8 = p uy 8 Ty~ 3;

Publications de I’Institut Mathématique 2
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(1.4.8 b) He=xcp8p 1y Ty = x€p Ty 1y

Here formally p, = p; T,, but basically, only the magnitude p, is defined
in terms of m,, u, and 8.

Some useful expressions are introduced under the assumption that
all the characteristic quantities on the edge of the boundary layer, (i. e.,

for y = 8) of the external flow, p,, u,, etc., are independent of y and depend
only on x:

d
(1.4.9) 5 = f [1 - pu(peu)=t]dy = 8—m, (p. )™
0
d
(1.4.10) 8 = f (P ) (pe )= (1 — wat, "t dy = 8 = 8, — Ly (pe )~
0
d
(1411) &= f [1 - pu(peve)="] dy = 8 — My (pe ve)=";
[+]

)
(1412) &= f(p 1) (pe ve) = (1 = v =) dy = 8 — 8% — Iy (e te ve)~ L,
0

From these equations one can derive the expressions:

(1.4.13) My = pe it (8 — ) = p, Ve (8 — 8,);

(1.4.14) Ly =p.u2(8 — 8, - 87"); Ly =petteve (8 — 8, - &%),

and with the use of (1.4.8):

(1.4.150) wpug =k = (8 - 8 — 8,) (B = 8y) ! = Ly (My 1)~
(1L4158)  vyug =k = (8 = 8y — 8,) (8 ~ 83) % = Ly, (my )" ;
(1.4.15¢c) 1P =Py Te (pe T = k2kz' hy=8(5 - 81 - 8,).

1.5. Isentropic Flow Relations
Introduce the dimensionless functions:
(15.0)  w=ugl; z=val; W= Vg l=wi+d al=yT,

with the subscript ,s” denoting the stagnation conditions and ,a“ the local
velocity of sound. The following equations are valid for the flow of the
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isentropic gas outside the boundary layer:

1
(1.5.2) ) Vet (Y =)y To=vy(y - 1)t Ty;
or with the relation p, = p. T,:
1
(1.5.3) Pe = Pe Ts[l - ?(y -1 WE].

From the fundamental equation p,V.dV, + dp, =0, with the use of eq.
(1.5.3) one gets:

_ _ 1
(1.5.4) P dW.=— p.'dp; ¢ = [l - E(Y -1) Wf] (y W)™ =

=T, (Y W, Ts)_l;

or
(1,5.5) ‘Pe_l Pe=pe Veas; pe VE == cl’e—l pe We.
1.6. Second Transformation of Equations
Introduce the symbols:
(1.6.1a) My = M, ds;
(1.6.1b) My =1, 05 =p; 8 1" =Lex Wi w =1, a3’
(1.6.1¢) o =Ty (Y Tsw)™4

5
(1.6.1d) Hx=xcpfpquy=xcp6p,u1Tl=xcpTlﬁ,,.
0

The last relation determines the value of 7, and consequently, using p,,
the value of p,. The system (1.4.7) jointly with equations (1.4.4) and (1.6.15)
is associated with the system (1.6.2):

3
d dm d
—(mywy) = w £ —a-l] — d
(1.6.2 a) dx( u 1) e dx a I:dxf(p+pxx) y
0

ds
“Pea - nyw]"'agpw Wy Zys
d d d ¢
me -
(1.6.2 b) E(muzt)we el 1[Efpyxdy
0

+ P - (pw + pyyw)] + ag Pw ztzv;

2%
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dm, dm,

(1.6.2¢) T i + a2 pw Zw;
(1.6.2d) dme _ Pe @2 €OS © (fi—s - tan 6);
dx dx
(1.6.2 e) my =p, 8 cpl_l;
d dm, 1
E(ch Tymy) =X ¢p Te_d-x_ + as[(hyw+ —2~Syw)
(1.6.2 )

8 5
Dp 1 d
+ ———<I>d-———fsxd .
f(Dt )'v 2 dx y]
0 0

The following magnitudes are given:

(a) at the surface of the body:
(i) continuum regime: w,, = 0; z, = 0 (no suction), = a (given when there
is suction); p,,, Ty, Pw given;
(i) slip flow regime: wy,, 2y, p., Tw, Pw are given in form of numbers
or specified by means of some equations involving the unknown func-
tions w, z, p, T, p; this latter case leads to a nonlinear boundary value
problem.

(b) at the outer edge of the boundary layer:
(i) and (ii): p., g, T, and 0 are given..

The unknowns are: m., my, 8, W., w,, 2,, Ty. Since p, = p,(W,)
T, = Te(W.), and 6 =6(W,) are known from the Prandtl-Meyer’
relations, the above system furnishes 6 relations for 7 unknowns. As in
[3], an additional relation between these variables is introduced by means
of an assumption regarding the mixing rate dm./dx. This will be discus-
sed below. Assume that

8 3
f (P + pxx) dy;  Pxyw; f Pyxdy; (Pw + Pyyw);
[¢] 0

) )
f(Dp/Dt—<I>)dy and fsxdy
0 0

can be expressed in terms of the seven unknowns; then, in general, the
above system can be solved by means of some iteration process.
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1.7. Iteration Process

We shall show below, that, in general, one can prove the existence of a
solution of the system (1.6.2) obtained by means of a method of successive
approximations. We consider this system subject to the initial conditions.
To prove the convergence, let us generalize the proof used by Hamel
[7, p. 11] for the solution of Volterra’s kind of equation. Assume a system
of ordinary differential equations

(1.7.1) D x) Gi=1,2.n 00,
dx

or

(1.7.2) y,=ff,.(y,-,x)dx+c, G,i=1,2...,0),

with C;(i=1,...,n) denoting the constants of integration chosen with
reference to the initial conditions. Let the symbols ), Viays«-«s Vitnys
denote the values obtained in successive approximations. As the given
approximation yyo) we may assume the values from the domain of the
compressible fluid flow, i. e., those obtained by the method of Crocco
and Lees [3]. This assures a greater rate of convergence of the process
of successive approximations. Then one has:

(1.7.9 v = | fiw Gon 21 + €

Vi) =fx fiw (ym),x) dx + Cy;

Yimy = fx fimmpy Win—p, x) dx +Cy,

where the symbol X denotes the interval of integration. Construct the
differences:

(1.7.4) Yicng1) = Vin) sfx (fiew = fim—p) dx.
The ratio:
(1.7.5) f”") - fi(n—i) - af“: ’

Vi — Yin—n) 0y
where f;r denotes a value of f; located between y,(,_,y and y ().
Let
(17.6)  max | 2fir

Vi

= Ni; max|N|=N (i=1,...,n);
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then:
(1.7.7) [fieny = finpy | SN Yimy = Vienny|s
and from (1.7.4):
(1.7.8) [Vignao) - yl(n)!éfo | Vi = Yien—y | dx.
Let the functions f’s be bounded and let:
(1.7.9) max |fi| =M,
in the region considered. Then, with the assumptions:
(1.7.10 0) Yi(ey = const. = C;;
(1.7.10 8) i = ol = [ fio de<mx;
for n=1;

Vi — yt(nlél\’fxlytm = Vi |dx
(1.7.10 ¢)

sMNf X dx=MN——x2,
= x 21
for n =2:
1
A7100)  yiw = nwl SN[ |yiw = i | dx SMA2 3 X5 ete
X
1

(1.7.10 e) Iy, (n) — .Vi(n—-l)l_S_MN"—l_n—l‘X"-

Consider the infinite series:

(1.7.11) Vi + Giewy ~ Vi) + oo+ Giemy = Vinep) + -« 1,

whose sums to n terms are y;u_y. By force of the formulas (1.7.10) these
series are dominated by the series:

(1.7.12) C,-+MX+2LIMNX2+...+—II—MN"_1X"+...,
n

which can be presented in the forms:

(1.7.13) Ci + MN~'[exp (N X) - 1].

These are exponential series which converge for all finite values of X.
Hence, put:

(1.7.14)  yi=Ci+ (icy — Vo)) + - - - =,£ljg [Ci + iy = Yicn—-y))]

= lim Yiqms
n9yw
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the functions y/s are continuous since they are the limits of uniformly
convergent sequences of continuous functions. Due to the continuity and
uniform convergence, it is possible to take limits under the integral signs
in equations (1.7.3), thus obtaining:

(1.7.15) lim yim = yi ==f lim fin—yy (Vjen-1), x) dx + Cy-
n-yw X n-yoo

=fxft(y;,x)dX+C:;

this differentiated, furnishes the formula:
(1.7.16) dy,ldx = f, (¥, x),

which proves that y/s fulfill the original system of equations.
To prove the uniqueness of the solution suppose that there are two

solutions: yP£y?. Setting w; =y — yP yields the inequality:

a1 jml=lf (0 - yari<n [0 -y ax,
X X

which furnishes the inequality:

(1.7.18) max|w; | <NX max|w,|.

Since it is assumed that max|w,|%#0, this implies that 1 <N X. One
obtains immediately a contradiction if N X <1, which means that the proof
refers to a sufficiently small interval X. By repetition and continuation of
the proof it is not too difficult to prove the uniqueness in a larger inter-
val [7]. The above discussion gives the length of the interval X in which
the process of successive approximations converges. Knowing the values
of M (1.7.9) and of N (1.7.6) and the values of the n—th and (n — 1)-th
approximation one must find such a magnitude of the interval of integra-
tion X (1.7.3) with the use of whose the inequality (1.7.10¢) is satisfied.
One may also use the results of Whyburn [11]. These are: Assume a
system of ordinary, first order differential equations:

D[u]:dyi(x)/dx = fi (x;y1(x}s -+ -, ¥n)

j=n

+21A,j(x; YU-"’yn)y! (i=1,...,n),
=

(1.7.18 a)

where between others the following conditions are imposed:
(i) There exists a function M (x) such that for all x and for all (y,, y2,...,¥s):

[Ai], | fi| S M (x), Gi=1,...,n).
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(ii) There exists a function L (x) such that for each x and for every
1sev0ryn) and (24,...,20):
(1.7.18[7) {IAU (X; Vis ooy yﬂ) - Al] (X; Ry e "z")l]é

Ifl(X; yl:'--:yﬂ) - fi(X; Z‘,...,Zn)]

r=n

LG Xy - zls (hi=1,...,n),

Let N(x) be the function that is equal to the greater of M (x) and L (x)
for each x. If x = ¢ is any point and «,, «,,..., 0, are arbitrarily assig-
ned constants, then Whyburn had shown that there exists a unique solu-
tion of the above system satisfying the conditions:

(1.7.18 C) Vi (C) == 0.

Moreover, if [a, b], a < x<b, denotes a certain interval in which the func-
tions f; and A, are continous in (y,,...,y,), then Whyburn had shown
that the following process of successive approximations y® (k=10,1,...)
converges to the proper limit:

(1.7.18 @) WE=a (i=1,2...,n1);

b
(1.7.18¢) W) = + f [fi (¢, y—1)

j=n

+ ,Z,A” (t yE0, pE0 L ) Y (] at

(i=12,...,n), (k=1,2,3,..)),
provided that the following conditions are fulfilled:
(i) Let a constant K be chosen greater than unity and so that

b
i=n
(1.7.18f) K>2;[a,| +fM(t) dt;
=
a
(ii) Let the constant G be calculated:
b
(1.7.18 g) G =Kexp [nfM(t) dt];
a

(iii) the following inequality must be fulfilled:

b
(1.7.18 h) P (x)| <K[(1*G + 2n)]|f1v(t) dt|]¥/k!.
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The length of the interval [a, b] must be chosen so as to satisfy all the
above conditions.

The next problem is the determination of the functions describing
the velocity —, temperature distributions, etc. As an example, assume,

that the value of the function m, is known and given by means of the
process of successive approximations, discussed above. Two schemes will
be proposed: (a) expamsion in Taylor series (valid near the origin; and
(b) Fourier series (valid in a certain interval).

(a) Taylor series.

Let:

8
(1.7.19) My = fp udy = 9 (x) = f® (0) + _ll_le(z)/ (0)
0

1 2 £(2)
+ "0 +...,
Y x% f&"(0)
and
pu=fb(x,y)=f»(0,0) + ——11! x ffi’(O, 0) + _lll y ff}) 0, 0)

(1.7.20)
1 1
+ ixﬂf}},’,(o,O) +—2xyf% 0,0+ —y2 90,0 +...,
21 21 21
which implies that
5

1 1
1721)  [eudy=fO 0,08+ 1 x 20,08+ x*% (0,008
0

F o 0,08 4 o x (Y 0,08 + = £3,0,008 + ...
2! 21 31

But: |
(1.7.22) 6==8(x)=6(0)+%x8'(0)+§!—x’8"(0)+... ,
Inserting the expansion (1.7.22) into the expansion (1.7.21), one gets:

3

1 1

(17.23)  [eudy=O0BO + 1 x80) + 5 #8(O) +..]

0

1w 1 Ry
+ T fx (0,0) x[8(0) + T x&(0) + le §”(0).. ]
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+2L!f,(lx)x(0’0)xz[8(0)+,,,]+._.

F oIS OQOBO + .

Comparison of equal powers in x in the expansions (1.7.19) and (1.7.23)
furnishes a system of simultaneous algebraic equations:

(17.24a)  f®(0) = f9(0,0)8(0) + 2% 19(0,0) 8 (0)

+—;—!f.“y’y(0,0)a=(0)+...;

(1.7.24 b) f®" (0) = f® (0, 0) & (0) + £%' (0, 0) 8 (0)

" 2llff¥y(o,0)s'(0> T
(17.240) %f@w © = 59 (0,0)8"(0) + —ll—l 19 (0,0) 8 (0)

+%f,(i’x(0,0)5(0)+2ilf,“y’(0.0) 80 +... .

Preserving the sufficient number of terms in the system (1.7.24) enab-
les one to calculate approximately the values of f®(0,0), /¥ (0, 0),

f3(0,0), etc. This gives the approximate value of the function pu.
Application of the procedure to the calculation of the velocity compo-
nents, density, pressure and temperature from the system (1.6.2) fur-
nishes a set of systems of the kind of system (1.7.24), which set of systems
should be solved simultancously. This task may be achieved by means of
high speed computing devices.

(b) Fourier series.

The functions f® (x) and 8(x) being known functions can be expressed
in terms of a Fourier series:

(2)

(1.7.250) f® (x) = % a® + o cos x + 6®Psinx + ... + a?

mecosmx 4+ ...,
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(1.7.25b) 8(x)=-21—6,, +8,cosx+8 sinx+...4+8,cosmx
+0,sinmx +...;

here, the coefficients a2, 4@, 8,, 9,, should be found by means of the
known formulas. '

Let the function f®(x, y) be gwen in form of a double trigonometric
series:

. 1
(1.7.26)  fO(x,y)=— 5 o0 + 2 E [a'D, cos m x cos (nmy 8~Y)

m=0 n=0

+ b, sin m x sin (nxy 81)

+ ¢ cos mx sin (nmy8~) + d%, sin m x cos (n =y 8~1)],

with:
3
(1.7.26 a) fcos (nnyd-1)dy=0;
0
5

fsin (anydYHdy=—(x1-1)8(mn)t.

0

Representing in all the series the trigonometric terms by means of power
series in x, which series, as it is well known, are couvergent for all finite
values of x, and comparing the equal powers of x enables one to find the
approximate values of the coefficients alty, 6%, cix and diu.
The following procedure may be adopted:

from m, we find pu;

from I = uy, my, we find p u?;

from I,, = v, m, we find puv;

from Hy we find h, and 7.
This procedure enables one to find the approximate expressions for the
following funclions: u, v, p, T; using these expressions one can find the
values of p, pxx, Pxy, Pyy etc., from equations (1.3.5 to 1.3.9) satisfying
the boundary conditions at y =0 and y =8 by the method described
in 8]

As mentioned above, to begin the successive approximations, one

can use the values of the compressible fluid flow, derived by Crocco and
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Lees [3, p. 653]:
u, pudy—[3,eq. (2. 10a)]; 8-+[3,eq.(2.14)];

T, T3+ [3,eq. (2. 17)];  k (=k)—=[3, eq. (2.16)].

1.8. The f-and F-functions.

In the approach of Crocco and Lees, the function f [3, p. 654,
eq. (2.18)] plays an important role:

(1.8.1) f=(8~8 - 88 (5 - 82,

and the relation f=f(k) (the function ¥ in Crocco-Lees paper cot-
responds to the function k; in the present work). The subscript i denotes
the incompressible flow to which the corresponding compressible flow
may be reduced by means of Stewartson’s method, [3, p. 653]. Below, we
shall derive the expression for the generalized form of the function f, cor-
responding to eq. (1.8.1).

From eq. (1.4.15c) with the use of eq. (1.5.3) one easily obtains:

(1.8.2) N TR =l - DR R b W

or 7
(18.24) T, T = f - _;-(y — 1) p py 2 ey w2 cos=2 6,
with

(1.8.25) | f=p:'p Bk

This is an analogy to eq. (2.17) in [3]. In each of successive approxima-
tions one can calculate the functions f, k,, k,, p,, p. and thus have the
relation f = f(k,; k,) in hypersonic region corresponding to the Crocco-
Lees function f= f(k) in the supersonic regime. It seems possible, that
many characteristic features of the boundary layer flow, discussed by
Crocco and Lees, such as: the behaviour of and the conditions in the
boundary layer in the vicinity of the separation point, the reattachment
point, wakes, ect, can be generalized to the regime of the hypersonic
flow by means of the formula (1.8.2) and the process of successive appro-
ximations,

It proves to he more convenient later to work with the quantity F,
which is related to f by: N

(1.8.3) F=fki®-p py,
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or .

(1.8.3 a) F=p"'p, 6s + 8;) (5— 8; — 8,)1,

or )

(1.83 b) F=pe'py(Bhky— 1) = Ty pd™ " (1 - k72477,

1.9. Mixing Rate

As it is known, Blasius’ consideration [1] leads to the result that
in an incompressible fluid:

(1.9.1) 8 ~C, x(Rex)~"; 8] ~ Cyx(Rex)";
which implies that:
(1.9.2) 61 - 8; ~ (C Po X Pa_l u:llrzcom)‘/’-

On the base of this consideration, Crocco and Lees have shown thal in
the boundary layer in a compressible fiuid:

(1.9.3) dmjdx = kp,u.; k= Cp,m™1,

where p, denotes the value of the coefficient of viscosity at the outer
edge of the boundary layer. In the general case, one should consider not
a constant ¢ but a function ¢ =c (k). In the present case we preserve
this form of relation and we put:

(1.9.4) dmydx = kp. Ve; k =p.mz' C(ky),

where the parametric function ¢ (k,) supposed to be given. A comparison
of equations (1.4.3) and (1.9.4) furnishes the expression:

(1.9.5) k = (d8/dx — tan 9) cos 9,
or
(1.9.5a) kcos— 0 + tan 0 = d 8/dx.

2. REDUCTION OF THE SYSTEM OF EQUATIONS

2.1, Transformation of the System

With the aid of eqs. (1.4.154), (1.8.2) and (1.8.3) equation (1.6.2¢) is
rewritten in the form:

@.1.1) M ki{mp:‘pl [1—%k2(v— 1) wﬁ]]=

xplanezpleWgCOSQ.
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This corresponds to eq. (2.27) in [3, p. 658]. Perform the following ope-
rations:

(a) differentiate eq. (2.1.1) with respect to x, divide the so obtain-
ed expression by dm,/dx in form of eqs. (1.6.2c and d), using egs.
(1.6.2¢) and (1.9.5);

(b) divide eq. (1.6.2a) by d m./dx, using eqgs. (1.6.2¢) and (1.9.5);

(c) apply similar procedure to eqs. (1.6.2b and f).

In all the equations so obtained, eliminate the pressure p, by means
of eq. (1.4.15¢) with T, =p, p;", p. = pi¥, etc., thus obtaining:

(2.1.2) pr = pY Ty k% ks,

with

) 1 5 TYHY—D
(2.1.3) Pe = ps|l - 2 (v - 1) W .

The so obtained system of four equations (2.1.4 — 10) is given in
Appendix.
2.2. Algebraic Systems

Consider the system (2.1.4 — 10) to be an algebraic system of equa-
tions in four unknowns:

2.2.1) __f.i_k_l__ = Xy; _d..’gﬂm = Xg} ﬂ‘_ = Xg; _ﬂl_ = X,;
dinm, dinmy dinm, dinm,
n—=4
(2.2.2) Ela,,,,. Xn=">b, (m=1,23,4).
n=

The values of the coefficients a,, and b, are given in Appendix.
Using matrix representation the system (2.2.2) is given by:
(2.2.3) A x =B,

[ ay O G35 Gy |

g, 0 a, O
(2.2.4) A= ;
Qg Qg Gy O

10 0 0 gt

_x1 . —bl —
Xz h b2

(2.2.5) X = H B= ’
Xg by
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x and B being column vectors. One can easily verify the value of the
fundamental determinant:

(2.2.6) D [Al=D = a;; 044 (35 83y ~ Gy 034),
or .
(2.2.6a) D=xcokyWecos*0{y A+ F)J1 - %(Y - 1) W31

S AGr- Dl - 0y = 1) WI) W - (4F +24).

Since, in general, D £0, except possibly at a finite set of points, the
system (2.1.4 to 10) has a solution. The remaining four determinants are:

(2.2.7) Dy = - Gy (a5 (a4 by — 414 b)) — @15 844 b.);

(2.2.8) Dy = 014 a4y (853 b3 — 035 bg) — 2y gg (004 by — @y, by);
(2.2.9) Dy = — gy [ay, 044 by + 031 (a4 by — 0,4 b)));

(2.2.10) Dy = ~ a4 b, (043 a5 — 0453 03y),

and

(2.2.11) . x3=D"D, (i=1,2,3,4).

Since, in general, the x/'s (i=1,2,3,4) are determined, except possibly
at a finite set of points, one can write:

(2.2.12) d/dinm, =(dW./dlnm,)d/dW, =xsd/d W.;
(2.2.13) d/dW,=(dF/dW.)d|dF.

This implies:

(2.2.14) dF/dW, = D,D3"dF/dky;

(2.2.15) dky/d W, = Dy D3

(2.2.16) dTy/dW, = Dy D5

This corresponds to eq. (2.30) in [3]. Other values for these derivatives
are given in the Appendix (eqs. 2.2.16 to 18). In all the expressions for
the coefficients a,/s and b/'s, the differentiation with respect to In m, is
achieved by means of eq. (2.2.12); the value of k, may be calculated
after other functions are known; the value of 6§ may be calculated by
means of a modified eq. (1.9.50):

(2.2.17) d8/d W, = [k (cos §)~1 + tan 8] (d W, /dx)*.

To calculate the derivative d W,/dx, the following procedure is applied:
(2.2.18) dW./dx = (d W./dInm,) (dInmy/dx) = Xy mg' d m,/dx;

with the use of formulas (1.6.2¢, d), (1.9.5), (2.1.1), (2.1.2) and (2.1.3) one gets:
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(2.2.19) "d’z" = K by (F + A) M {k p,[l -

1 y—1)
"E(Y*I)Wz] Ywe""pwzwag}:

with A given by (2.1.8) (Appendix), F by (1.8.3b) as F = F(W,) and M
by (2.2.20):

Hy—1)
(2.2.20) M=T,p sy W, cos e[z - %(y -1) wi] .

Since k, F = F(k,) are presumed to be known and 0 = 9 (W,) is given
by the Prandtl-Meyer relation or by any other relation, the system
(2.2.14, 15, 16) is integrable by some numerical methods.

2.3. Summary
Fundamentally, the above system furnishes the following functions:
my = my (W,); F=F(W,); kig = kg (We); Ty =T, (We), ki =k (W),

with 8 = 8 (W.) or W, = W, (6) being known. Hence one may calculate:
uy from eq. (1.4.1540);
v, from eq. (1.4.158);
p, from eq. (1.4.15¢) or from (1.4.8a);
Py, T, from eq. (1.8.3b).

Next, one can apply the procedure explained in Section 1.7. to find
the values of u, v, p, T, p, which inserted into the set of initial equa-
tions (1.3.5 to 9) jointly with the boundary conditions furnish the values
of the functions p,y, psy, Pyy» S, Sy. As the initial values for u, v, p, etc.,
one can use the values from the compressible flow regime obtainable by
means of the Crocco-Lees procedure. The process of successive appro-
ximations may be carried on to the required degree of accuracy.

3. PARTICULAR CASES
3.1. Wakes. Critical Point

In wakes the values of the components of the shearing stress tensor
at the wall and the values of the components of the heat flux vector at
the wall are equal to zero. Crocco and Lees [3] assume that in the
wake the value of the coefficient k(=k,) is constant but this may be
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subject to some objections. Without this assumption but with the know-
ledge of the value of the function F = F (k,), the above system furnishes
the values of the functions in question in the wake.

When D =0, all D/s (i=1,2,3,4) must vanish. This furnishes a
system of 5 equations in 5 unknown functions and as the additional infor-
mation furnished one can assume 0,. The singular point obtained in this
way, is a critical point, which probably will have the same meaning as
that one in the original approach of Crocco and Lees, i. e., ,throat¢
of the wake. It seems obvious that the conclusions derived by Crocco
and Lees in the present approach certainly are valid to ,the first appro-
ximations“. Due to the complexity of the equations it is improssible to
derive general conclusions from the systems, presented above; certain
number of particular, numerical examples may help enormously in the
extension of the Crocco-Lees results from the regime of the super-
sonic flow to the regime of the hypersonic flow.

3.2. Final Remarks

A similar procedure as the one explained above, can be applied to
ali the other phenomena, discussed in [3]: base pressure problem, sepa-
rated and reattaching flows, recompression in wakes, etc. Using the results
given in [3] all these problems can be reproduced and extended to the
hypersonic flow regime. The slip-flow regime can also be treated; the
corresponding boundary conditions will complicate the problem enormous-
ly; but the previous papers of the author on some problems of the ana-
logous character [8] have shown that there is possible to obtain an appro-
ximate solution.

APPENDIX
Section 1.1.
Navier-Stokes:
* * * * V 2 * ¥
(1.1-4 a) Pij = — [p (ll],,'* + ll,',"*) — 773— 32 lli’[*..slj];
N 1 * * * ]
(1.1.4 b} ?Sl =q = -k T,

Publications de VInstitut Mathématique 3



34 M. Z. Krzywoblockl

Burnett (with the coefficients corrected according to [10]):

(1.1.5 a) pi=-2 w e;, + Ky w2p ™ g pe e;;-

* * * * *
+ Ko p2p*=i[ = (0" 'p,jo), i — i, in k0 = 2 @i Uk, jv]

X

+ Kop2 (0 T*) ™  Toojr + Kp'2 (0 0" T) ' p,n T

FKp 2 (0 T 1T T + Ko 2 p ™ el ety

where the used symbols denote:
(1.1.56) K, = —~(— T pfr.>; Ky=2, K, =3;
Ky=0; Ki=3T ' 'wre Ke=8;
* 1 * L4 1 *
(1150) €= —2—(u1,]’* + uj, jt) - -5- Ug, k* Sij;
A, —i(A + A )-lA 83
if 2 if H 3 kk Oif
(1.1.5d) Gi=-NTut+0,p2@ T upTn
* * 3 2 X * * : 4
+ 0% (" T )"‘[—3-(7 Uy ), o+ 20, T,i*]

+ [0 n2 @ PP + 0,00 0/3
+ 002 (0" T)~t Tip] e

15/7 N 45 45
1.1.5 o= 2(L _r =2k, - 22,
( e) fl 4(2 | P,T) 16 ! 2 3
135 * ok
0==3; 0,=3 6=3( +Tw ‘m.);
Grad:
s k2 - l * * 2 *
(11.6(1) Py, e+ (Pll ll,)_,-* + -5—(31,,* + §j 0+ ~ ES,—, r* 8,])

* * * * 2 * -
+ Dir Uj, o> + Pjr Uy, > ~ 3 Prslr, s+ 5:‘]

* * 2 «
Y g+ e = i e By) PR Py =05
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*

* * x 7 « » 2 «
S, ¢ + (Si Ur),r* + ‘g‘sr Uy, + gsr Ur, 1«

2 « = * ke ¥ * * *
+—5—31 Ur,ro + 2R T* pir,re + Tpir(R* T*), s

— 20" pir (Prs -~ " 8u)osr + 50T (R TY), 0 + "Z‘ R* p* 2=t sy = 0.

Section 1.3.

(1.3.5)

(1.3.6)

(1.3.7)

(1.3.8)

2
(Pxxtt),x + (Pxx V), y + 1—5(2 Sx,x = Sy, y)

2
+ 3‘(2Pxx“.x + 2pxyll,y =~ Pyx V,x — Pyy V,y)

2
+ gp(‘w.x — V) +a i BpT ppe = 0;

1
(pxy u),x + (ny V),y + “s—(sx,y + Sy, x) + Pxx V.x

+ Pxy (U,x + V) + pyytty + p U,y +v,)
+ a~ ' Bp~! ppxy = 0;

2
(pyy 1), x + (Pyy V), » +i;)(2 Sy,y — Sx,x)
2
+'3"(2 PyyV,y+ 2Py V,x — Pxy U,y — Prx U, x)
2 _
+Ts—p(2v,y—u,,‘)+m‘1 Bu-tppy=0;

11 2
(sxu),x+(sxv),y + gsxu_x+-g—sx v_y+%syu,y

2
+ —5‘3y V,x + 2a7 RT (pxx,x + Pxy,y) + 70! [pxx (RT) «

+Pxy (RT),y] = 2a= p™* {pux [(Pxx + D), x + Pxy,5)
+ Pxy [Pyx,x + (0 + Pyy) 3]} + 5”1 p (RT)

Bt R sm

3*

35
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2 7 2
(1.3.9) (Syu),x +(syv),y + SAsxu,nyr gsx v, x+ Esy u x

+ %I‘Sy v,y + 207 RT (pyx,x + Pyy,y)

+ 7 a7 pyx (RT),x + pyy (RT) 4]

=207t p~  {pyx [(p + Pxx)sx + Pxy,y) + Dyy [Pyx,x

+ (4ol + 50t pRT) 5+ @ BA~ Rpsy - 0.
Section 2.1 |

@14) L[k (F 4 A) = (F 1 A)—T—x
dinm

u dln my
X {lnps! Ty (1 ';“ (v - 1) W AHa=D k1~2 ks~ W, cos 6]} =
=(1 + k~1sin8) p{ VN T AT k3 {1 + py 24 ai[l - %(Y—I)WEJX
1 L JVI—1 —1y-1
XYps(l—g(Y—l)We kW, } -k (F+ A);

(2.1.5) d

(ky W.cos8) + k; (F + A) (ay g.cos8)~*X

u

3

anW. . | , ( L Z)Y/(Y—l) .

X““{h’{ﬁu‘“ ki k3 B [df(p + Pxx) dY = Ps 1—§(Y—1) We dd|/d W, =
0 L

= Wecos (1 —k,~9. 0,2, 85CY) + e (a7 Pryy + Py Wy 2, 83) C%;

(2.1.6) (kyy We cOS 8) + k, (F + A) (¢ e €08 0)~1X

.8 :
d III Wg 2 _71 -—
X Gim B kB dfp,y dyjd W, =

0

dinm,

= We sin @ (1 “‘kx = Pe Pw 2y ai C——l) + . {a-l.[pw +'P.vyw

1 P\ V=D 2 a2
—p,(l —?(Y-— l)We> ]+pwzwas}C‘1;‘
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5
din W, dﬁfsxdy
dinm, dW,

A6 T) Lo (Ft A) ( g0 B cos ) -

(2.1.7) dlnm. 5

=Xcp Te(1 ~ Pepyy 2,05 C~Y)
5
1 D
—XCPT1+as(Pe[§syw +hy~+f<5§—~¢’)dy]c—l;
) s .

-1
(218 A=p{™""T, [1 - % (y -1 W§] er[k;* - %(r -1 Wi];
1 2-Y) (Y ~1)

(2.1.9) . B=6yp§’YT1W¢[I -7(Y—1)W3] ;

1 2 YHY—1)
(21100  C=kpi|1 - o (v -~ )W

+ 9 py 2y G5 .

Section 2.2.
a;, = (BF+ A); a,=0;

1
03 =k We(YA +F)| —?(Y_ 1) Wﬁ]—l
A _;—(Y = 1) Wt - ko (F+ A) W'y

4= - ky F T
by = (1 + k=1 sin 8) p 0=V T, k=2 k,~' {1 +

+ou 2y 0l [1 ‘% (y = 1) WA -y ps k W)™

~ ks (F+ A) (I +tan 6 d 0/d [n m,) ~ k d FJd in m,

kT AT~ (= 1) WA - (P4 A
ay, = W, cos 0; a,,=0; das =~ kycos0; a,=0;

b2 = We COoSs 0 (1 - k1 - q)e pw Zw 082 C—l)

. do
+ P (@7 Pryw + P W 2 a%) C71 4+ &y W, sin 6
din my,
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-k (F+ A)(a y 9. cos 9)~! k2 k, (W, B)"1X
? i
X {d f(p + Pxx) dy = ps [1- 5 (y - 1) W2it'=1 d 8}/d In m,;
0
agl - O; 032 == We COS 6; (133 = kiz COs 9; a" = 0;

by = Wesin 0 (1 — ky — epy 2 62C7Y) + @, {a™ [Py + Pyye

sin &

1
- (1= 0 - D W sz et iy WL 00

)
~ ki (F + A) (9. Y €0S 8)~* k2 ky (W, B)-' d fpxy dy/d In my;
0

a3 = 0; a4y = 0; ag=0; Q44 = X Cp,

by = x¢p Te(l - ‘PePwaaicq)—ch T

5
+ ag cpe[—;- Sy + hy, + _[(—ID)—% - )dy]C-—x
0

5
- -é—ask?k,(F+ A) (y 9. BW,cos 9)"1dfsxdy/d1nmu;
0

(2.2.16) dFld W, = [ag3 (a4e by - a14 bg) — ay5 a4 by] X
X[agy (@34 b5 — ayq b)) + ayy a b1
(2.2.17) dkis/d W, = [ay, agy (agg by ~ ag4 by)
+ 8oy U35 (014 by — a4, b)) — 059 [0, (314 b, — a4y by) + a4, a4 b,]);
(2.2.18) dT\/dWe = b,(8y; Gy — ay5 03;) [az (@14 by — 844 b)) + ay, a,, b, -1

The subscript w denotes the values at the surface of the solid body
(wall of the flat plate).

(Recetved 9-XI-1955)
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