REMARK ON FATOU-RIESZ'S THEOREM

by

VOJISLAV G. AVAKUMOVIĆ (Novi Sad)

1. INTRODUCTION. Let A(u) be for $u \ge 0$ of bounded variation over every finite segment and

$$L(s) = \int_{0}^{\infty} e^{-su} d\{A(u)\}$$

convergent for $\Re(s) > 0$.

Let L(s) satisfy the following assumptions:

I) Within $|\Im(s)| \leq 2T$, $\Re(s) > 0$ with a fixed T we have

$$|L(s)| \leq M$$

so that

$$\lim_{\sigma = +0} L(\sigma + it) = Q(t) \text{ for nearly all } |t| \leq 2T$$

exists.

II) $H(y) = \frac{1}{\pi} \int_{-2T}^{+2T} \frac{\sin yt}{t} Q(t) dt \rightarrow Q, \quad y \rightarrow \infty.$

M. Riesz has proved the following fundamental theorem:

THEOREM 1. From I), II) and

(1.1)
$$A(u') - A(u) \to 0 \quad \text{for all} \quad u \leqslant u' \leqslant u + h, \ u \to \infty$$

follows

$$A(u) \to Q, \quad u \to \infty.$$

On the other side, A. E. Ingham [3] and J. Karamata [4] have proved, in connection with the method introduced by N. Wiener [5] and S. Ikehara [2] that the Riesz's Theorem may be proved on the basis of the following two theorems:

THEOREM A. From I), II) and

$$A(u) = O(u)$$

follows that

(1.4)
$$\int_{0}^{\infty} A(u) du \frac{T}{\pi} \int_{u-y}^{u+y} \left(\frac{\sin Tt}{Tt}\right)^{4} dt = Q + o(1), \quad y \to \infty.$$

THEOREM B. From (1.1) and (1.4) it follows (1.2).

From Theorems A and B follows the Riesz's Theorem 1 whilst again it will be shown that (1.3) is an elementary consequence of (1.1) and $L(s) \rightarrow Q$, $s \rightarrow 0$.

In what follows I will replace 1) the in (1.4) appearing $\left(\frac{\sin x}{x}\right)^4$ by an as general as possible k(x) and 2) the in (1.3) behind the sign O figuring u by an as great as possible $A^*(u)$. In order to state briefly the Theorem which is to be proved, let us define three classes of functions x, x_1 and α as follows:

DEFINITION. 1. $k(x) \in x$ if

a)
$$k(x) \geqslant 0$$
 for $-\infty < x < \infty$,

b)
$$k(x) \in L^{1}, 1$$

c)
$$\int_{-\infty}^{+\infty} \frac{|\lg K(x)|}{1+x^2} dx < \infty \text{ with } K(x) = \int_{x}^{\infty} k(\tau) d\tau$$

and

d)
$$\sqrt{K(x)} \in L^2$$
.

¹⁾ $g(x) \in L^p(p > 0)$ means: $|g(x)|^p$ is over $(-\infty, +\infty)$ integrable.

DEFINITION 2. $k(x) \in x_1$ if

a)
$$k(x) \in x$$
,

b)
$$\sqrt{K(x)} \in L^1$$
,

and

c)
$$K(x) \lg (1 + |x|) \in L^1$$
.

DEFINITION 3. $A(x) \in \alpha$ if

a) a such $A^*(x) \ge 0$ exists that $A(x) + A^*(x) \ge 0$,

and

b)
$$A^*(u) \int_{u-v}^{u+y} k(\tau) d\tau \in L^1$$
 for every y .

Besides $A^*(u) \equiv 0$ for u < 0.

Then we have the following generalisation of Karamata's [4] Theorem A.

THEOREM 1. From I), $A(x) \in \alpha$ and $k(x) \in x$ it follows: There exists a $h_1^*(t) \in L^1$ with $h_1^*(t) \equiv 0$ for $|t| \geqslant 2T$ such that

$$H_{1}(y) = \frac{1}{\pi} \int_{-2T}^{+2T} \frac{\sin y t}{t} h_{1}^{*}(t) Q(t) dt = \int_{0}^{\infty} A(u) du \int_{u-y}^{u+y} k(\tau) d\tau.$$

B) Moreover, provided that II) holds and $k(x) \in x_1$ then we have $H_1(y) = Q + o(1), y \to \infty$.

It is easy to verify that the Theorem I implies the Theorem A as a special case.

The proof of Theorem I is based on the following

LEMMA (Wiener-Paley [5]). Let, for $-\infty < x < \infty$, $f(x) \ge 0$ and $f(x) \in L^2$.

In order that, for every T > 0 could be found such a h(t) with $h(t) \equiv 0$ for $|t| \geqslant T$ that

$$H(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} h(t) e^{-ixt} dt,$$

should satisfy the condition

$$|H(x)| = f(x)$$

it is necessary and sufficient that

$$\int_{-\infty}^{+\infty} \frac{|\lg f(x)|}{1+x^2} dx < \infty.$$

For the present purpose, we shall not use but a half of Wiener-Paley's Lemma (sufficiently).

2. LEMMAS. Let C_1, C_2, \ldots be fixed numbers resp. functions of variables appearing within the brackets.

Moreover, let us for brevity sake put

(2.1)
$$h_1(t) = \int_{-T}^{+T} \overline{h}(-u) h(t-u) du$$

so that

$$h_1(t) \equiv 0$$
 for $|t| \geqslant 2T$.

LEMMA 1. Provided that the significance of f(x) and h(x) be that, as explained in Wiener-Paley's Lemma and $h_1(t)$ be defined by (2.1), then we have

$$\frac{i}{\pi} \int_{-2T}^{+2T} e^{-iut} h_1(t) \sin yt \, dt = -\int_{u-v}^{u+y} \frac{d}{d\xi} \{f^2(\xi)\} d\xi.$$

Proof: As

(2.2)
$$\overline{H}(x) = \frac{1}{\sqrt{2\pi}} \int_{-T}^{+T} \overline{h}(-t) e^{-ixt} dt$$

so then, while $h(t) \in L^1$,

$$|H(x)|^{2} = H(x)\overline{H}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ixt} dt \int_{-T}^{+T} \overline{h}(-u) h(t-u) du =$$

$$= \frac{1}{2\pi} \int_{-2T}^{+2T} e^{-i(u+y)t} h_{1}(t) dt =$$

$$= \pi |H(u-y)|^{2} - \pi |H(u+y)|^{2}.$$

But as |H(x)| = f(x), the assertion is so proved.

LEMMA 2. Let f(x) have the significance assigned to in Wiener-Paley's Lemma and $h_1(t)$ be defined by (2.1). Moreover, let $f(x) \in L^1$ and $f^2(x) \lg (1 + |x|) \in L^1$. Then $h_1(t)$ satisfies the condition

$$\int_{-2T}^{+2T} \left| \frac{h_1(t+\varepsilon) - h_1(t)}{t} \right| d\varepsilon < C_{\mathfrak{g}}(T).$$

Proof. Since

$$|H(x+\varepsilon)-H(x)| \leqslant \frac{1}{\sqrt{2\pi}} \int_{-T}^{+T} |h(t)| |1-e^{-i\varepsilon t}| dt \to 0, \quad \varepsilon \to 0,$$

H(x) is continuous in x. Besides $H(x) \in L^1$ because $f(x) \in L^1$. Therefore ([1], p. 51)

$$h(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} H(t) e^{ixt} dt$$

for every x. Consequently

$$h_{1}(t+\varepsilon)-h_{1}(t)=\int_{-T}^{+T}\overline{h}(-u)\left\{h\left(t+\varepsilon-u\right)-h\left(t-u\right)\right\}du=$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-T}^{+T}\overline{h}\left(-u\right)du\int_{-\infty}^{+\infty}H\left(\tau\right)\left\{e^{i(t+\varepsilon-u)\tau}-e^{i(t-u)\tau}\right\}d\tau,$$

Further, since $|H(x)| \in L^1$ and (2.2), we have

$$h_{1}(t+\varepsilon) - h_{1}(t) = \int_{-\infty}^{+\infty} H(\tau) \left\{ e^{i(t+\varepsilon)\tau} - e^{it\tau} \right\} \frac{d\tau}{\sqrt{2\pi}} \int_{-T}^{+T} \overline{h}(-u) e^{-iu\tau} du =$$

$$= \int_{-\infty}^{+\infty} |H(\tau)|^{2} \left\{ e^{i(t+\varepsilon)\tau} - e^{it\tau} \right\} d\tau =$$

$$= 2 \int_{-\infty}^{+\infty} |H(\tau)|^{2} \left\{ \sin\left(t + \frac{\varepsilon}{2}\right)\tau + i\cos\left(t + \frac{\varepsilon}{2}\right) \right\} \sin\frac{\varepsilon\tau}{2} d\tau$$

and also

$$|h_1(t+\varepsilon)-h_1(t)| \leq 4 \int_{-\infty}^{+\infty} |H(\tau)|^2 |\sin \frac{\varepsilon \tau}{2}| d\tau.$$

Hence

$$\int_{-2T}^{+2T} \left| \frac{h_1(t+\varepsilon) - h_1(t)}{\varepsilon} \right| d\varepsilon \leqslant 4 \int_{-\infty}^{+\infty} f^2(\tau) d\tau \int_{-T\tau}^{+T\tau} \left| \frac{\sin u}{u} \right| du$$

$$\leqslant C_2(T) \int_{-\infty}^{+\infty} f^2(\tau) d\tau + \int_{-\infty}^{+\infty} f^2(\tau) \lg(1+|\tau|) d\tau = C_3(T).$$

3. PROOF OF THEOREM 1. According to the definition $1 \sqrt{K(x)}$ fulfils the same assumption as f(x) of Wiener-Paley's Lemma. We put

$$K(x) = |H(x)|^2 = f(x)$$

and have to prove the Theorem I with

$$h_1^*(x) = h_1(x)$$
 and $k(x) = -\frac{d}{dx}(|H(x)|^2)$.

A. a) Without restraining the assumptions let A(0) = 0. Then we have (integration by parts)

$$L(s) = s \int_{0}^{\infty} e^{-su} A(u) du \quad \text{for} \quad \Re(s) > 0.$$

b) For $|t| \leqslant 2T$ and $\sigma > 0$ we have

$$\left|\frac{\sin y t}{\sigma + it} h_1(t) L(\sigma + it)\right| = \left|\frac{\sin y t}{t} \frac{t}{\sigma + it} h_1(t) L(\sigma + it)\right|$$

$$\leqslant C_4(y) M = C_5(y).$$

So we have

(3.1)
$$\left| \frac{i}{\pi} \int_{-2T}^{+2T} \frac{\sin y t}{\sigma + i t} h_1(t) L \left(\sigma + i t \right) dt \right| \leqslant C_6(y, T)$$

and (Lebesgue's Theorem)

$$H_{1}(y) = \lim_{\sigma \to +0} \frac{i}{\pi} \int_{-2T}^{2T} \frac{\sin yt}{\sigma + it} h_{1}(t) L(\sigma + it) dt = \frac{1}{\pi} \int_{-2T}^{2T} \frac{\sin yt}{t} h_{1}(t) Q(t) dt.$$

c) From the convergence of L(s) for $\Re(s) > 0$ we have

$$A(u) \exp[-\sigma u] \in L^1$$
 (with $A(u) \equiv 0$ for $u < 0$)

and therefore

$$\frac{i}{\pi} \int_{-2T}^{+2T} \frac{\sin yt}{\sigma + it} h_1(t) L(\sigma + it) dt = \int_0^\infty A(u) e^{-\sigma u} du \frac{i}{\pi} \int_{-2T}^{2T} e^{-tut} h_1(t) \sin yt dt$$

so that

$$= \int_{0}^{\infty} A(u) e^{-\sigma u} du \int_{u-v}^{u+y} k(\tau) d\tau$$

according to Lemma 1.

d) On account of the definition 3

$$\left|\frac{1}{\pi}\int_{0}^{\infty}A^{*}(u)e^{-\sigma u}du\int_{u-v}^{u+y}k(\tau)d\tau\right|\leqslant C_{7}$$

and besides uniformly in $\sigma \geqslant 0$, so that on account of (3.1)

$$\psi_{\sigma}(y) = \int_{0}^{\infty} e^{-\sigma u} \left(A(u) + A^{*}(u) \right) du \int_{u-y}^{u+y} k(\tau) d\tau$$

fulfils the inequality

$$|\psi_{\sigma}(y)| \leqslant C_{6}(y,T) + C_{7}.$$

But, since $A(u) + A^*(u) \geqslant 0$, $\psi_{\sigma}(y) \uparrow$ if $\sigma \downarrow 0$ there exists

$$\psi(y) = \lim_{\sigma = +0} \psi_{\sigma}(y).$$

Hence

$$\int_{0}^{\infty} (A(u) + A^{*}(u)) du \int_{u-y}^{u+y} k(\tau) d\tau$$

is converging and yields the value

$$H_1(y) + \int_0^\infty A^*(u) du \int_{n-y}^{u+y} k(\tau) d\tau.$$

It follows then

(3.2)
$$H_1(y) = \int_0^\infty A(u) du \int_{u-v}^{u+y} k(\tau) d\tau$$

and so the first part of Theorem 1 is proved.

B. I have still to prove that: When $f(x) \in L^1$, $f^2(x) \lg (1 + |x| \in L^1)$ and $H(y) \to Q$, $y \to \infty$, then we have

$$H_1(y) = \frac{1}{\pi} \int_{-2T}^{+2T} \frac{\sin yt}{t} h_1(t) Q(t) dt \to Q \int_{-\infty}^{+\infty} f^2(x) dx.$$

On account of Lemma 2 and $|Q(t)| \leq M$

$$\frac{h_1(t)-h_1(0)}{t}Q(t)$$

is absolutely integrable over (-2T, +2T). Therefore (Dini's Theorem)

$$H_1(y) - h_1(0) H(y) = \frac{1}{\pi} \int_{-2T}^{+2T} \frac{h_1(t) - h_1(0)}{t} Q(t) \sin yt \, dt \to 0, \quad y \to \infty.$$

Hence, the second part of Theorem I is also proved, since (Plancherel's Theorem)

$$h_1(0) = \int_{-T}^{+T} h(-u)\overline{h}(-u) du = \int_{-\infty}^{+\infty} |H(x)|^2 dx$$

(Received 21 October 1955)

REFERENCES

- [1] Bochner S. Vorlesungen über Fouriersche Integrale, Leipzig (1932).
- [2] I ke har a S. An extension of Landau's theorem in the analytic theory of numbers. Journ. of Math. & Phys., Mass. Inst. of Techn., 10 (1930), 1—12.
- [3] Ingham, A. E. On Wiener's method in Tauberian theorems. Proc. London Math. Soc., 38 (1935), 458—480.
- [4] Karamata, J. Ein Konvergenzsatz für trigonometrische Integrale. Journ. für die reine und angewandte Math., 178 (1937), 23-33.
- [5] Wiener, N. and Paley, R. Fourier Transforms in the complex domain, (1931).