REMARK ON FATOU-RIESZ’S THEOREM
by

VOJISLAV G. AVAKUMOVIC (Novi Sad)

1. INTRODUCTION. Let A (u) be for u >0 of bounded variation over
every finite segment and

L) = [ e d{Aw)
0
convergent for R (s) > 0.
Let L (s) satisfy the following assumptions:

I) Within |3 (s)|<C27, R(s) >0 with a fixed T we have

IL()I<M
so that
lim L(c+ if)=Q(f) for nearly all |#|< 2T
e=+0
exists.
)
. +2T )
sin
Ho)== [ ZLowd+Q yro.
® t

—27

M. Riesz has proved the following fundamental theorem:

THEOREM 1. From 1), ll) and
(1.1) AW)y—-A@->0 foral u<u<Lu+h u->oo
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follows
(1.2) A()>Q, u-oo,

On the other side, A. E. Ingham (3] and J. Karamata [4] have
proved, in connection with the method introduced by N. Wiener [5] and

S. Ikehara [2] that the Riesz’s Theorem may be proved on the basis of
the following two theorems:

THEOREM A. From 1), 11) and
(1.3) A(u) =0 @)
follows that

u—

(1.4) fA(u)d - f(s‘”‘) t=Q+0(l), yooo.
y

THEOREM B. From (1.1) and (1.4) it follows (1.2).

From Theorems A and B follows the Riesz’s Theorem 1 whilst again
it will be shown that (1.3) is an elementary consequence of (1.1) and
L(s)»Q, s~0.

1 4
In what follows I will replace 1) the in (1.4) appearing(smx) by
X
an as general as possible k(x) ard 2) the in (1.3) behind the sign O figu-

ring u by an as great as possible A*(u). In order to state briefly the
Theorem which is to be proved, let us define three classes of functions x,
%, and o as follows:
DEFINITION. 1. k(x) € = if
a) k(x)>0 for —o<x< o,
b) k(x)€ LV

+o ©
) —lllg:{_——(;)l—dx<oo with K(x):fk(t)dr

and
d) YK (x) € L2

1 g(x) € LP (p>0) means: | g (x)|P is over (— oo, + o) integrable.
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DEFINITION 2. k (x) € w, if
a) k(x)€x,
b) VK (x) € LY,
and
) K(x)lg(1 +]x|) €L

DEFINITION 3. A (x) € a if

a) a such A*(x) >0 exists that A (x) + A*(x}) >0,
and

u+y
b) A*(u) f k(r)dr €L for every y.
u—y

Besides A* (u)=0 for u << 0.

Then we have the following generalisation of Karamata’s [4]
Theorem A.

THEOREM 1. From 1), A(x) € a and k(x) €x it follows: There exists a
ht (t) € L* with hi (f)=0 for |t|>2T such that

1 iyt - i
Ht(y)=;zfr =L i0e@d= [Awd [kEdx.
. ; 2

B) Moreover, provided that 1I) holds and k(x) € %, then we have
H () =Q+o(l), y»oo.

It is easy to verify that the Theorem I implies the Theorem A as a
special case.

The proof of Theorem I is based on the following

LEMMA (Wiener-Paley [5]). Lef, for — oo <x<oo, f(x)=>0
and f(x) € L%

In order that, for every T >0 could be found such a h(t) with h(f)=0
for |t| >T that

400
H(x)=—v%t f h(f) e=ixt dt,

should satisfy the condition

[H(x)| = f(x)
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it is necessary and sufﬁcient that

f Hef )] 4y oo
1 + x2

For the present purpose, we shall not use but a half of Wiener-Paley’s
Lemma (sufficiently).

2. LEMMAS. Let Cy,C,,... be fixed numbers resp. functions of variables
appearing within the brackets.
Moreover, let us for brevity sake put
+T

1) hy(f) = f (- u)h(t - u)du

so that
hi()=0  for |t)>2T.

LEMMA 1. Provided that the significance of f(x) and h(x) be that, as
explained in Wiener-Paley’s Lemma and hy(f) be defined by (2.1), then
we have

. 2T u+y
—[ emm@snpa— - [ Lip@)a
T dg
—27T u—y
Proof: As
, tT
©.9) ()= o= f ~ f)e-ixt gt
-7
so then, while #(f) € L?,
1 4+ + 7T
|H(x)|2=H(x)ﬁ(x)=§Efei"'dtfh(—u)h(t"”)d"=
—® — T
+2T
- if e+t b (f) dt =
2r
-2T

=n|H@-y)-=|H@u+yl.
But as |H(x)| = f(x), the assertion is so proved.
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LEMMA 2. Let f(x) have the significance assigned to in Wiener-Paley’s
Lemma and h,(f) be defined by (2.1). Moreover, let f(x)€ L' and
f2(x)lg (1 + [x]) € LY. Then h,(t) satisfies the condition

+27

-2T

hy(t+ €) —

hl(’)i de < Co(T) .

Proof. Since
1 +7T
[H x4 8) = HJ < oo f{lz(t)l]l—e—"“]dtao, £ 0,
1
-7

H(x) is continuous in x. Besides H(x) € L' because f(x) € L. There-
fore ({1], p. 51)

~+o
h(x)=V—%fH(t)ef’“dt

for every x. Consequently

4T
hy (t + €) = hy (f) = f F(=u)lh(t+e—u)—h(t—u)du=

—T

. +T +oo
=V f h(~ u)du f H(t) {efttte—ar _ plt—u)T} gr
—-T —

Further, since |H(x)| € L* and (2.2), we have
+ +T
Byt +€) — hy(t) = f H(x) (elt+or - girr) \%: f R(- u)e= du =
— ~T
+o
[ 1H@ P tewror - etryar

—c0

i

+o
=2 f |H(7)|? {Siﬂ(t+-;—)r+ icos<t+%)]sin%dt

-=0
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and also
+o0
Lhy (t+€) — hy ()] <C 4 f |H(z) |2 sini;- dr.
Hence
+2T 4 +Tr
f 'h,(t+e)—h1(t) de<4ff2(r)drf sin u du
€ u
—® —TT

2T

+ o +o
<;ca(T).[ F2 (x) dv + j'f=colg(1—+zr|)dr==cs(T»

3. PROOF OF THEOREM 1. According to the definition 1 VK (x) fulfils
the same assumption as f(x) of Wiener-Paley’s Lemma. We put

K(x)=IH(x)?=f(x)
and have to prove the Theorem I with

B = k() and k()= = = (1H©)P).

A. a) Without restraining the assumptions let A (0)=0. Then we
have (integration by parts)

L(s)=sfe‘5“A(u)du for R(s)>0.
0
b) For [#|< 2T and ¢ >0 we have
sin yt
o+it

sinyt t
t o+t

hi(t)L(c+it)l=

he ()L (6 +i1)

SCOIM=C(y).

So we have
. 2T
i f smythl(t)L(c+ if)dtl<ce (7

T o+t
—aT

(3.1)
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and (Lebesgue s Theorem)

H,(y) = lim — f s“””h ("L (o th)dt_m f Smythl(z‘)Q(t)dt.
c=+40 70 G -
—2T s
¢) From the convergence of L (s) for R(s) >0 we have
A(u)exp[— oul € L (with A{u)=0 for u<C0)

and therefore

+27 e
— f smyt h (L (o + itydt = fA(u) e~ % du -—f et f (f)sin ytdt
es " o7
so that
a+y
f A (1) e—ou du f k (<) d
u—y

according to Lemma 1.
d) On account of the definition 3

uty
|
f A% () =5t du f k(x) de | <G,
u—y
and besides uniformly in ¢>>0, so that on account of (3.1)
L] uty
Vo) = [eo(a@rar@a [ k@)
0 u—y

fulfils the inequality
[V < Ce (v, T) + C;.
But, since A (u) + A*(u) >0, Yo(y)+ if ol 0 there exists

V() = lim ¥ ().
o=-+0

Hence
u+y
f(A (u) + A*(w) du f k (z) de
u—y
is converging and yields the value
u+ty

H, (y) + fA*(u)du f k(x)dr.

n—y
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It follows then
u+-y

(3.2) H, () = f A (u) du f k(x) de
u—y

and so the first part of Theorem 1 is proved.

B. I have still to prove that: When f(x) € L}, fA(x)lg(l +|x|€ L}
and H(y)» Q, y- oo, then we have
+2T

H:(}’)_“’“ f

~2T

sin yt

h(HQ () dt»>Q f £ (x) dx.

On account of Lemma 2 and | Q(H){<C

hy () — 1, (0)
— Q)

is absolutely integrable over (— 2T, + 27). Therefore (Dini’s Theorem)

+27
H,(y)—izl(O)H(y)-——-%» f MQ(i)Sinytdi»O, y - oo,

—2T

Hence, the second part of Theorem I is also proved, since (Plancherel’s
Theorem)
+7 +e0

hy (0) = f h(~ u)h (— u)du = f |H (x) |? dx
T —e0
(Received 21 October 1955)
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