ON THE DENSITY OF CERTAIN SEQUENCES OF INTEGERS
by
ALFRED RENYI (Budapest)

In this paper we will consider the number-theoretical function
€)) An)=V@-U@m @w=1,2..),

where U (n) is the number of different prime factors and V (n) is the num-
ber of all prime factors of n. In other words, if n=p{t p;2... p7 7, where

Pys Pay--., pr are different primes and «; =1 (i=1,2,...,r) we set
U()=r
(2) Vin)=a, + oy +.... + a,

An)=(a; - 1)+ (ag—1) +.... + (a = 1).

We shall calculate the density of the sequence of those integers n, for
which A (n) = k, where k is an arbitrary fixed non-negative integer. The
density of a sequence n, <n,<<...<n <... of positive integers is
defined as follows:

If N(x) = X 1 is the number of those elements of the sequence n;

nizx
which do not exceed x, further, if the limit lim N(x)
X - o X

= d, exists, we say
that d is the density of the sequence n;.

We will show that the sequence of those integers n for which
A(n) = k, has a density, which we will call d, and that the generating
function of the sequence di is given by the following identity:

3) g:dkzk=ﬁ(l+i)(l+ ! )

k=0 p=0 p p - 2
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where, in the infinite product in the right hand member p runs over the
sequence of all primes; (3) is valid for |z|<<2.

(3) can also be written in the following equivalent forms:

it 6 = 2
(3) dezt = 2 n(1+———).
/Eo 7,2 P+ Dip—2)
m l+p ’
n k -
(3) Edkz —2 1— y
=21l 4 ——
p—1
or
1— b4
@) $dea =S | —2F]),
k=0 n? p=2 1 — i
p

Substituting 2 = 0 into (3’), we obtain the special case

(4) dy = —

which is well known, since d, is the density of square-free integers. Sub-
stituting z = 1 into (3”) we obtain

®) N4 =1

k=0

which shows that the numbers d; can be considered as elements of a pro-
bability distribution.

The values of d,,d,,... can be calculated from (3). For example,
we have
6 & 1
®) dy=— 3 —,
a2 PP+ 1)

where p again runs over all primes. For large values of k, the following
asymptotic formula can be deduced from (3):

)
(7 d ~ o
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where

1 = (p-1)
8 s=——q a1
© : 4»2?(1?—2)

(7) follows from the fact that the function Do dp 2 is regular in every
point of the circle |z| = 2, except in z = 2, where it has a simple pole.

It should be mentioned that the existence of the densities dy, follows
from a general theorem on additive number-theoretical functions, stated
by P. Erddés [1]. We shall give a straightforward elementary proof for
the existence of the densities dy, which gives at the same time, equation
(3); the proof is essentially the same as the well known proof of (4) (see
e. g. (2] p. 269.)

The idea of the proof is as follows: every positive integer n can be
written in the form

(9) n="P.Q,

where Q is square-free, and P is of the form P =pPt pf2... pPs, where
Dy, Ps, - - - » s are different primes and 8, >2, (i = 1,2,...,s) and furthermore,
P and Q are relatively prime; the representation of n in the form (9) is
unique. We shall call Q the square-free part of n and P the first power-free
part of n. Next, we shall call the set (8,,B,,...,B;s), the signature of n.
We shall show that the sequence of integers which have the same given
first power-free part P, has a density for every such P, and that the
sequence of integers with a prescribed signature (8,8, ...,8s) =B has a
density; as the sequence of integers n for which A (n) = k is the union of
those disjoint sequences which have such signatures (By,8,,...,8s) that

Bi+Bet+...+B=s+k,

it follows that this sequence also has a density; the proof, incidentally,
gives the equation (39, i. e. (3).

We shall use the following notation:

Let N(x,P) be the number of integers n<<x with the prescribed
first power-free part P; N (x,B), the number of inlegers n = x with the
prescribed signature B; m(x), the number of primes equal to, or greater
than x; [y], the integral part of the positive number y, and s(n) the signa-
ture of the integer n; clearly, if n = P-Q is the representation of n as a
product of a square-free and a first power-free number, we have
s{n) = s(P).
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Now, we prove the following relation:

10 N B) = SN P)+0|—2—_),

(10) (8= 3 NP + ((]gx)wb)
P<Vigx

where

B:(Bliﬁ2)",83) and b = max Bi.
I<k<s

As a matter of fact, if n<Cx, s(n) =8 and n = PQ, where
P=pitple... pPs >Yigx,

then n is divisible by (p, p,...ps)? and p, p,...ps > PYo > (Ig x)12 ; thus,
the number of such integers does not exceed

X R
x_, )
m> % x)irze M ((lg x)\ee
which proves (10).

Let us call N*(x,P), the number of those integers n<{x which are
of the form n - PQ where (P,Q)=1 and Q is not divisible by the
square of any prime which is less than Ig x. Clearly, then, we have

an N P) = N (5 P) + O[]

because the number of those integers n<{x which are divisible by the
square ol a prime > lgx can not exceed

3, 5mol)

p>1g x P lgx

Now, N*(x, P) can be calculated by the well known sieving method

12 AT W I S HE N DA ) JUE. S
(12) (x, P) [P] E[Ph,] léj Phy hj
where h;, h;,... run over the primes PisPe2y-+, Ps and over the num-

bers p? where p is a prime which is different from p,,p,,..., p, and
p<lg=x

It P<Jigx, then p,<<JIgx <lgx, (i=1,2,...,s) and thus the
number of terms in the right hand member of (12) is 270es, Thus, if we
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delete all brackets in the right hand member of (12), the error committed
thereby will not exceed 27¢¢%, Thus, taking into account that

clgx
In(gx) = O (elg g x) ;

where ¢, is an absolute constant, it follows that

(13) wen-S0(1-4 o (1- 1) 0f&8)
X _ - gig x
(x, P) P o 7 I + e )
plgx
P*Pl (t“ln-'vs)

where in the second product in the right hand member p runs over ail
primes p <lgx except p;,py,...,ps. It follows from (11) and (13) that

‘ 1 -1/p?
14 N(x,P)z pl:llgx( /P) +O(—-1-).
(14) x (p + DY (ps + 1) pis™ Ig x

Thus we obtain the result, that the sequence of those integers which have
the given first power-free part P = p, p,...p has the densitly

6 1
15 d(Py =— = =
(15) *) 2 (py + 1) pftt . (ps + 1) pfst

It also follows from (10) and (14) that

____“N’ix,ﬁ)?ggx(l_#) ) ((p,+1)pf1"..1.(ps+1)1958"‘)+

(16) pfl..pfs < yigx

+ O (1/(lg x)\2e),

Thus, we see that the sequence of integers which have the prescribed
signature 8 = (B, B;,...,Bs) has the density

1
(P + M7 (e 1) pfeT

1

an JORRS

where the summation is to be extended over all s-tuples (p,, ps,...,ps) of
different primes.
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If B is the empty set, the sum in the right hand member of 17)
has to be replaced by 1.

As, clearly,
(18) de= 2 d(B)

BytByt - +Bg—s=k

we obtain

© 6 = 1 z 22
19) deze =2 n(1+———<—+—+---)>
( kgok =2\ p+1\p  p?

and (19) is clearly equivalent to (3') or (3").
Equation (3) and (3”) can be obtained from (3) by using the identity

ﬁ (1-1/p®=6/n2. It can be seen from (3") that N2, dx 2* is a meromorphic
p=2

function with simple poles at z=p, where p is a prime # 3, and simple
zeros at z=p + 1, where p is a prime # 2.

It should be added that the existence of 4 (P) follows from the men-
tioned theorem of Erdds, by applying it to the additive number-theoretical
function f(n) =1g P, where P is the first power-free part of n; on the
other hand, the existence of 8(B) is nof a consequence of the existence
of d(P) for any P, because the sequence of integers with a prescribed
signature @ is the union of an infinile set of sequences, each of which
consists of the integers which have a prescribed first power-free part P
for which s(P)=8. It would be, however, possible to state a general
theorem, from which the existence of & (8) follows. We hope to do this
in another paper.

(Received 21 december 1055)
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