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A NOTE ON
FIBONACCI–HERMITE POLYNOMIALS

Ugur Duran and Mehmet Acikgoz

Abstract. We first review and analyze the golden integral and its definitions
and some properties. Then we introduce a new generalization of the Hermite
polynomials via the golden exponential function (called Fibonacci–Hermite
polynomials) and investigate several properties and relations. We derive some
explicit and implicit summation formulas for mentioned polynomials. Then,
we analyze derivative properties and provide a higher-order difference equation
of the Fibonacci–Hermite polynomials. Moreover, we examine a recurrence
relation and integral representation. In addition, we obtain some properties of
Fibonacci-Bernstein polynomials. Lastly, we obtain a correlation between the
Fibonacci–Hermite polynomials and the Fibonacci–Bernstein polynomials.

1. Introduction

Throughout the paper, let N, N0, and R denote, respectively, the set of all
natural numbers, the set of all nonnegative integers, and the set of all real numbers.

The golden ratio is frequently used in many branches of science as well as
mathematics. Interestingly, this mysterious number also appears in architecture
and art. Miscellaneous properties of golden calculus (or F -calculus) have been
introduced and investigated in detail by Nalci and Pashaev [12,15], which are the
key references for golden calculus. Also, for more information, readers can refer to
the references [2,5,6,8,10–12,14–17,20]. Here, we mention some definitions and
properties related to golden calculus.

The Fibonacci sequence, taking its name from Leonardo Fibonacci (1170–
1250), is defined, for n > 2, by the recurrence relation Fn+1 = Fn + Fn−1 with
initial values F0 = 0 and F1 = 1. The first few terms of this sequence are
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . (cf. [2, 5, 6, 8–17, 20–22]). The Binet formula
of the Fibonacci sequence is

(1.1) Fn =
αn − βn

α − β
,
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92 DURAN AND ACIKGOZ

where α = 1+
√

5
2 ≈ 1.618033 . . . called as the golden ratio and β = 1−

√
5

2 ≈
−0.618033 . . . called as the silver ratio. Also, it is known that limn→∞

Fn+1

Fn

= α.

Fibonomials (golden binomial coefficients) are defined, for 1 6 k 6 n, by

(1.2)

(

n

k

)

F

=
Fn!

Fk!Fn−k!
,

where F -factorial (or say, golden factorial) is given as

Fn! := FnFn−1Fn−2 . . . F2F1,

with F0! := 1. Here
(

n
0

)

F
= 1 and

(

n
k

)

F
= 0 for k > n. Many properties of

(

n
k

)

F

are listed in [17].
F -analog of (x + y)n (golden binomial theorem) is provided, for n ∈ N, by

(cf. [12,15])

(x + y)n
F =

n
∑

k=0

(

n

k

)

F

(−1)(
k

2)xkyn−k

with (x + y)0
F := 1. Also, it is denoted that (x + y)F := (x + y)1

F .
The F -analogs of the usual exponential function (say, also the golden exponen-

tial functions) are defined by (cf. [2,5,6,8,11,14–17,20])

et
F =

∞
∑

n=0

tn

Fn!
,(1.3)

Et
F =

∞
∑

n=0

(−1)(
n

2) tn

Fn!
.(1.4)

It is noted that ext
F Eyt

F = e
(x+y)F t

F and ext
F eyt

F = e
(x+F y)t

F , where (cf. [20])

(x +F y)n =

n
∑

k=0

(

n

k

)

F

xn−kyk =

n
∑

k=0

(

n

k

)

F

xkyn−k.

The golden F -derivative operator is defined, for f(x) being any function, by
(cf. [2,8,12,14–17,20])

(1.5) Dx
F [f(x)] =

f(αx) − f(βx)

x(α − β)
,

which is linear, namely it satisfies Dx
F [af(x) + bg(x)] = aDx

F [f(x)] + bDx
F [g(x)], for

a, b being two scaler and f(x), g(x) being any functions. It can be readily seen from
(1.3) and (1.5) that

(1.6) Dx
F [xn] = Fnxn−1, Dx

F [ext
F ] = text

F and Dx
F [Ext

F ] = tE−xt
F .

Also, the multiplication rule and quotient rule, for f(x) and g(x), of the golden
derivative are given as

Dx
F [f(x)g(x)] = g(αx)Dx

F [f(x)] + f(βx)Dx
F [g(x)],(1.7)

Dx
F

[f(x)

g(x)

]

=
g(αx)Dx

F [f(x)] − f(βx)Dx
F [g(x)]

g(αx)g(βx)
.(1.8)
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The golden trigonometric functions, Fibonacci sine, and cosine functions are
defined as follows

(1.9) sinF (t) =

∞
∑

n=0

(−1)n t2n+1

F2n+1!
, cosF (t) =

∞
∑

n=0

(−1)n t2n

F2n!
,

respectively. It can be observed from (1.5), (1.9) that

Dx
F [sinF (xt)] = t cosF (xt) and Dx

F [cosF (xt)] = −t sinF (xt).

The fibonomial convolution of two sequences is defined by Krot [10] as follows

cn = an ∗ bn =

n
∑

k=0

(

n

k

)

F

akbn−k,

where an and bn are two sequences provided by

AF (t) =

∞
∑

n=0

an

tn

Fn!
and BF (t) =

∞
∑

n=0

bn

tn

Fn!
.

Therefore, it can be written that

CF (t) = AF (t)BF (t) =

∞
∑

n=0

cn

tn

Fn!
,

which resembles the golden form of the usual Cauchy product.
Using (1.3), Pashaev et al. [16] defined the Bernoulli–Fibonacci polynomials

and related numbers. Then the Euler–Fibonacci numbers and polynomials and
the Apostol–Bernoulli–Fibonacci and Apostol–Euler–Fibonacci of order α were in-
troduced in [6, 8, 11, 20, 21], and also some identities and matrix representations
for Bernoulli–Fibonacci polynomials and Euler–Fibonacci polynomials were pro-
vided. The Fibonacci–Bernoulli polynomials and Fibonacci–Euler polynomials are
defined by

(1.10)

∞
∑

n=0

Bn,F (x)
tn

Fn!
=

text
F

(et
F − 1)

,

∞
∑

n=0

En,F (x)
tn

Fn!
=

2ext
F

(et
F + 1)

.

The numbers of Bn,F (x) and En,F (x) are determined as Bn,F (0) := Bn,F and
En,F (0) := En,F , respectively. Several properties and relations of the polynomials
in (1.10) have been investigated and analyzed in the papers [2,6,8,11,16,20,21],
also see the references cited therein.

The classical Hermite polynomials are defined by the following exponential
generating function to be (see [3,4,7,12])

∞
∑

n=0

Hn(x)
tn

n!
= e2xt−t2

.

For a long time, the Hermite polynomials and their various generalizations have
been extensively studied and investigated by many mathematicians and physicists
(see [3,4,7,12,19] and cited references therein).
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2. A Review for golden Integral (F -Integral)

In this section, we focus on the golden integral to review and investigate its
definition and some of its properties by the (p, q)-integral (or say, post quantum

integral). By substituting p → α = 1+
√

5
2 and q → β = 1−

√
5

2 in the definitions
and formulas of (p, q)-calculus (or say, post quantum calculus) from [18], we now
subsequently define some corresponding definitions and terms of golden calculus as
follows.

The function G(x) is a golden antiderivative of g(x) if DF G(x) = g(x). It is de-
noted by

∫

g(x) dF (x) or
∫

g(x) dα,β(x). Note that we say “a” golden antiderivative
instead of “the” golden antiderivative, because, as in ordinary calculus, an antideriv-
ative is not unique. In ordinary calculus, the uniqueness is up to a constant since
the derivative of a function vanishes if and only if it is a constant. The situation
in the golden calculus is more subtle. DF g(x)=0 if and only if g(αx) = g(βx),
which does not necessarily imply g a constant. If we require g to be a formal power
series, the condition g(αx) = g(βx) implies αncn = βncn for each n, where cn is
the coefficient of xn. It is possible only when cn = 0 for any n > 1, that is, g is
constant.

For f being an arbitrary function, the (p, q)-integral of f is defined as follows
(cf. [18]):

(2.1)

∫

f(x) dp,q(x) = (p − q)x

∞
∑

n=0

qn

pn+1 f
( qn

pn+1 x
)

.

Let f(x) =
∑∞

k=0 akxk be a formal power series. Applying (p, q)-integral to both
sides of f(x) yields

(2.2)

∫

f(x) dp,qx =

∞
∑

k=0

ak

xk+1

[k + 1]p,q

+ C,

where C is constant and [k]p,q := pk−qk

p−q
(cf. [18]).

Let f be an arbitrary function and let a and b be two natural numbers such
that a < b. Thereafter, see [18], we note that the definite (p, q)-integral is provided
by

∫ b

0
f(x) dp,qx = (p − q)b

∞
∑

k=0

qk

pk+1 f
( qk

pk+1 b
)

if
∣

∣

∣

q

p

∣

∣

∣
< 1,(2.3)

∫ b

a

f(x) dp,qx =

∫ b

0
f
(x

p

)

dp,qx −
∫ a

0
f
(x

p

)

dp,qx.(2.4)

Also, the more general formula for the definite (p, q)-integral is provided by
∫ b

0
f(x)Dp,qg(x) dp,qx =

∫ b

0
f(x) dp,qg(x)(2.5)

=

∞
∑

k=0

f
( qk

pk+1 b
)

(

g
(qk

pk
b
)

− g
(qk+1

pk+1 b
)

)

,
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where Dp,q is the (p, q)-derivative operator defined by

Dp,q;xf(x) := Dp,qf(x) =
f(px) − f(qx)

(p − q)x
, x 6= 0,

and (Dp,qf)(0) = f ′(0), provided that f is differentiable at 0.
Tuglu et al. [20] considered golden integral (F -integral) by choosing p → α =

1+
√

5
2 and q → β = 1−

√
5

2 in (2.1) as follows

(2.6)

∫

f(x) dα,β(x) :=

∫

f(x) dF (x) = (α − β)x
∞
∑

n=0

βn

αn+1 f
( βn

αn+1 x
)

.

We note that this is a formal definition since we do not care about the convergence
of the right hand side of (2.6). As the same motivation of constructing the golden
integral in (2.6), using (2.4), the definite golden integral of f(x) is defined as

(2.7)

∫ b

0
f(x) dF (x) = (α − β)b

∞
∑

n=0

βn

αn+1 f
( βn

αn+1 b
)

,

which is always convergent because of
∣

∣

β
α

∣

∣ < 1. Utilizing (2.5), the definite golden
integral satisfies the following property

∫ b

a

f(x) dF (x) =

∫ b

0
f(x) dF (x) −

∫ a

0
f(x) dF (x),

for a,b ∈ R with a < b. For example, by (2.7), we see that
∫ 1

0 xndF (x) = 1
Fn+1

. The

golden analog of (2.5) can be given as
∫ b

0
f(x)Dx

F g(x) dF x =

∫ b

0
f(x) dF g(x)

=

∞
∑

k=0

f
( βk

αk+1 b
)

(

g
(βk

αk
b
)

− g
(βk+1

αk+1 b
)

)

.

For f being an arbitrary function and b being a nonnegative real number, the
improper golden integral of f(x) is defined to be

∫ ∞

b

f(x) dF (x) = (α − β)b

∞
∑

n=0

β−n

α−(n+1)
f
( β−n

α−(n+1)
b
)

,

which is always convergent because of
∣

∣

β

α

∣

∣ < 1. Similarly to the ordinary and
(p, q) cases, we have the following fundamental theorem or golden Newton–Leibniz
formula. Moreover, we can also give the fundamental theorem of the golden calculus
as follows.

Theorem 2.1 (Fundamental theorem of golden calculus). If G(x) is a golden

antiderivative of g(x) and G(x) is continuous at x = 0, we have
∫ b

a

g(x) dF (x) = G(b) − G(a),

where 0 6 a 6 b 6 ∞.
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Also, if g(x) exists in a neighborhood of x = 0 and is continuous at x = 0,
where g′(x) denotes the ordinary derivative of g(x), we have

(2.8)

∫ b

a

Dx
F [g(x)] dF (x) = g(b) − g(a).

As the (p, q)-integral, an important difference between the golden integral and its
ordinary counterpart is that even if we are integrating a function on an interval
like [3, 4], we have to care about the behavior at x = 0. This has to do with the
definition of the definite golden integral and the condition for the convergence of
the golden integral.

Let f(x) and g(x) are two functions whose ordinary derivatives exists in a
neighborhood of x = 0. Using the product rule (1.7), it is seen from (2.2) that
∫ b

a

f(αx)Dx
F [g(x)] dF (x) = f(b)g(b) − f(a)g(a) −

∫ b

a

g(βx)Dx
F [f(x)] dF (x),

that is the formula of golden integration by part. Note that b = ∞ is allowed.

3. On the Fibonacci–Hermite Polynomials

In this part, we aim to define F -extension of the Hermite polynomials and to
derive some of their properties and relations.

We introduce F -extension of the Hermite polynomials via the golden exponen-
tial function as follows:

(3.1)
∞
∑

n=0

Hn,F (x)
tn

Fn!
= e2tx

F e−t2

F .

Now we give a fundamental property (known also as explicit formula) of the
Fibonacci–Hermite polynomials Hn,F (x) by the following theorem.

Theorem 3.1. The explicit formula for Hn,F (x) is given by:

(3.2) Hn,F (x) = Fn!

⌊ n

2
⌋

∑

k=0

(2x)n−2k(−1)k

Fn−2k!Fk!
,

where ⌊·⌋ means the greatest integer function.

Proof. Using (cf. [4])

(3.3)

∞
∑

n=0

∞
∑

m=0

A(m, n) =

∞
∑

n=0

⌊ n

2
⌋

∑

m=0

A(m, n − 2m)

and (3.1), we get
∞
∑

n=0

Hn,F (x)
tn

Fn!
= e2tx

F e−t2

F =

( ∞
∑

n=0

(2x)n tn

Fn!

)( ∞
∑

n=0

(−1)n t2n

Fn!

)

=

∞
∑

n=0

(

Fn!

⌊ n

2
⌋

∑

k=0

(2x)n−2k(−1)k

Fn−2k!Fk!

)

tn

Fn!
,
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which gives the asserted formula (3.2) by comparing the coefficients tn/Fn! of both
sides above. �

The first few Fibonacci–Hermite polynomials are listed via (3.2) below:

H0,F (x) = 1,

H1,F (x) = 2x,

H2,F (x) = 4x
2

− 1,

H3,F (x) = 8x
3

− 4x,

H4,F (x) = 16x
4

− 12x
2 + 1,

H5,F (x) = 32x
5

− 120x
3 + 60!x,

H6,F (x) = 64x
6

− 480x
4 + 960x

2
− 120,

H7,F (x) = 128x
7

− 3328x
5 + 12480x

3
− 3120x,

H8,F (x) = 256x
8

− 17472x
6 + 174720x

4
− 131040x

2 + 10920,

H9,F (x) = 512x
9

− 91392x
7 + 2376192x

5
− 4455360x

3 + 742560x,

H10,F (x) = 1024x
10

− 478720x
8 + 32672640x

6
− 163363200x

4 + 81681600x
2

− 4084080.

From (3.2), we get the following corollary.

Corollary 3.1. For n ∈ N0, we have

H2n,F (0) = (−1)n F2n!

Fn!
and H2n+1,F (0) = 0.

The following formula is a symmetric property for Hn,F (x).

Theorem 3.2. For n ∈ N0, we have

(3.4) Hn,F (−x) = (−1)nHn,F (x).

Proof. We readily obtain that
∞
∑

n=0

Hn,F (−x)
tn

Fn!
= e

2t(−x)
F e−t2

F = e
2(−t)x

F e
−(−t)2

F =

∞
∑

n=0

(−1)nHn,F (x)
tn

Fn!
,

which yields (3.4). �

Theorem 3.3. We have

(3.5) Hn,F (x1 + x2) =
n
∑

k=0

(

n

k

)

F

Hn−k,F (x1)(x2)k.

Proof. It is readily seen from (3.1) that

∞
∑

n=0

Hn,F (x1 + x2)
tn

Fn!
= e

2t(x1+x2)
F e−t2

F = e2tx2

F e2tx1

F e−t2

F

=

∞
∑

n=0

Hn,F (x)
tn

Fn!

∞
∑

n=0

(2x2)n tn

Fn!
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=

∞
∑

n=0

n
∑

k=0

(

n

k

)

F

Hn−k,F (x)(2x2)k tn

Fn!
,

which gives (3.5). �

Now we research some behaviors of Hn,F (x) by applying the golden derivative
operator with respect to x and t, respectively.

Theorem 3.4. We have

(3.6) Dx
F [Hn,F (x)] = 2FnHn−1,F (x).

Proof. Applying the golden derivative operator Dx
F (1.5) to both sides of

(3.1) with respect to x and using (1.2), we acquire
∞
∑

n=0

Dx
F [Hn,F (x)]

tn

Fn!
= Dx

F [e2tx
F e−t2

F ] = Dx
F [e2tx

F ]e−t2

F = 2te2tx
F e−t2

F .

By comparing the coefficients tn

Fn! of both sides above, we get (3.6). �

The immediate results of (3.6) are stated below:

Dx
F [H2n,F (0)] = 0 and Dx

F [H2n+1,F (x)] = 2(−1)n F2n+1!

Fn!
.

Another result of (3.6) is given for m < n as follows:

(3.7) D
x,(m)
F [Hn,F (x)] =

2mFn!

Fn−m!
Hn−m,F (x),

where the notation D
x,(m)
F shows the golden derivative operator of order m as

D
x,(m)
F = D

x,(m−1)
F Dx

F .

Theorem 3.5. We give the higher-order differential equation of the Fibonacci–

Hermite polynomials:

yn

Fn!
D

x,(n)
F [Hn,F (x)] +

yn−1

Fn−1!
D

x,(n−1)
F [Hn,F (x)](3.8)

+
yn−2

Fn−2!
D

x,(n−2)
F [Hn,F (x)] + · · · + y2D

x,(2)
F [Hn,F (x)]

+ yDx
F [Hn,F (x)] + Hn,F (x) − Hn,F (x + y) = 0.

Proof. Using (3.7) as

Hn−k,F (x) =
Fn−k!

2kFn!
D

x,(k)
F [Hn,F (x)],

it can be observed from (3.5) that

Hn,F (x + y) =

n
∑

k=0

(

n

k

)

F

Hn−k,F (x)(2y)k =

n
∑

k=0

(

n

k

)

F

(2y)k Fn−k!

2kFn!
D

x,(k)
F [Hn,F (x)].

Thus, we get (3.8). �

In order to state Theorem 3.6, we need the following lemma.
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Lemma 3.1. We have

(3.9) Dt
F [e−t2

F ] = −t(αe−αt2

F + βe−βt2

F ).

Proof. We observe from (1.1), (1.3) and (1.6) that

Dt
F [e−t2

F ] =

∞
∑

n=0

(−1)n Dt
F [t2n]

Fn!
=

∞
∑

n=1

(−1)n F2nt2n−1

Fn!

= −
∞
∑

n=0

(−1)n t2n+1

Fn!

F2n+2

Fn+1
= −t

∞
∑

n=0

(−1)n t2n

Fn!
(αn+1 + βn+1)

= −αt

∞
∑

n=0

(−1)n (t
√

α)2n

Fn!
− tβ

∞
∑

n=0

(−1)n (t
√

β)2n

Fn!

= −αte−αt2

F − βte−βt2

F . �

Now, we give the following relation for the Fibonacci–Hermite polynomials.

Theorem 3.6. We have

(3.10)

Hn+1,F (x) = 2xαnHn,F

(x

α

)

− α
n+2

2 FnHn−1,F

( xβ√
α

)

− β
n+2

2 FnHn−1,F

(

x
√

β
)

.

Proof. Applying (1.5) to the both sides of (3.1), we obtain

LHS =
∞
∑

n=0

Hn,F (x)
Dt

F [tn]

Fn!
=

∞
∑

n=1

Hn,F (x)
tn−1

Fn−1!
=

∞
∑

n=0

Hn+1,F (x)
tn

Fn!

and, by using (1.7) and (3.9),

RHS = Dt
F [e2tx

F e−t2

F ]

= e
−(αt)2

F 2xe2tx
F + e2βtx

F (−tαe−αt2

F − tβe−βt2

F )

= 2xe
−(αt)2

F e2tx
F − tαe2βtx

F e−αt2

F − tβe2βtx
F e−βt2

F

= 2x

∞
∑

n=0

Hn,F

(x

α

)αntn

Fn!
− αt

∞
∑

n=0

Hn,F

( xβ√
α

)(
√

α)ntn

Fn!

− βt

∞
∑

n=0

Hn,F (x
√

β)
(
√

β)ntn

Fn!
.

Comparing LHS and RHS gives (3.10). �

As a result of (3.6) and (3.10), we give the following differential equation for
the Fibonacci–Hermite polynomials.

Corollary 3.2. We have

Hn+1,F (x) = 2xαnHn,F

(x

α

)

− α
n+3

2

2β
Dx

F

[

Hn,F

( xβ√
α

)]

− β
n+3

2

2
Dx

F

[

Hn,F

(

x
√

β
)]

.
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The golden integral representation of the Fibonacci–Hermite polynomials is
given by the following theorem.

Theorem 3.7. We have
∫ b

a

Hn,F (x) dF (x) =
Hn+1,F (b) − Hn+1,F (a)

2Fn+1
.

Proof. By (2.8) and (3.6), we obtain
∫ b

a

Hn,F (x) dF (x) =
1

2Fn+1

∫ b

a

Dx
F [Hn+1,F (x)] dF (x) =

Hn+1,F (b) − Hn+1,F (a)

2Fn+1
.

Therefore, we complete the proof of this theorem. �

We note that the following series manipulation formulas hold:

∞
∑

N=0

f(N)
(x1 + x2)N

FN !
=

∞
∑

n,m=0

f(n + m)
xn

1

Fn!

xm
2

Fm!
(3.11)

∞
∑

k,l=0

A(l, k) =

∞
∑

k=0

k
∑

l=0

A(l, k − l).(3.12)

We give the following theorem.

Theorem 3.8. The following implicit summation formula

(3.13) Hk+l,F (x) =

k,l
∑

n,m=0

(

k

n

)

F

(

l

m

)

F

Hk+l−n−m,F (z)(−2)n+m(x − z)n+m

holds.

Proof. Upon setting t by t + u in (3.1), we derive

e
−(t+u)2

F = e
−2(t+u)z

F

∞
∑

n=0

Hk+l,F (z)
tk

Fk!

ul

Fl!
.

Again replacing z by x in the last equation, and using (3.11), we get

e
−(t+u)2

F = e
−2(t+u)x

F

∞
∑

n=0

Hk+l,F (x)
tk

Fk!

ul

Fl!
.

By the last two equations, we obtain

∞
∑

n=0

Hk+l,F (x)
tk

Fk!

ul

Fl!
= e

−2(t+u)(x−z)
F

∞
∑

n=0

Hk+l,F (z)
tk

Fk!

ul

Fl!
,

which yields

∞
∑

n=0

Hk+l,F (x)
tk

Fk!

ul

Fl!
=

∞
∑

n,m=0

(2z − 2x)n+m tn

Fn!

um

Fm!

∞
∑

n=0

Hk+l,F (z)
tk

Fk!

ul

Fl!
.
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Utilizing (3.12), we acquire

∞
∑

n=0

Hk+l,F (x)
tk

Fk!

ul

Fl!
=

∞
∑

k,l=0

k,l
∑

n,m=0

(−2)n+m(x − z)n+mHk+l−n−m,F (z)

Fn!Fm!Fk−n!Fl−m!
tkul,

which implies (3.13). �

Corollary 3.3. Letting k = 0 in (3.13), the following implicit summation

formula holds:

(3.14) Hl,F (x) =

l
∑

m=0

(

l

m

)

F

Hl−m,F (z)(−2)m(x − z)m.

Corollary 3.4. Upon setting k = 0 and replacing x by x + z in (3.14), we

attain

Hl,F (x + z) =

l
∑

m=0

(

l

m

)

F

Hl−m,F (z)(−2)mxm.

Now, we give the following theorem.

Theorem 3.9. The following identity

(3.15) Hn,F

( x

m

)

= Fn!

⌊ n

2
⌋

∑

k=0

(2x)n−2k(−1)k

Fn−2k!Fk!
m2k−n

holds for a, b ∈ R and n ∈ N0.

Proof. We observe from (3.3) that
∞
∑

n=0

Hn,F

( x

m

) (mt)n

Fn!
= e

2mt( x

m
)

F e
−(mt)2

F = e2tx
F e

−m2(t)2

F

=
∞
∑

n=0

(2x)n tn

Fn!

∞
∑

n=0

(−m2)n t2n

Fn!

=

∞
∑

n=0

(

Fn!

⌊ n

2
⌋

∑

k=0

(2x)n−2k(−m2)k

Fn−2k!Fk!

)

tn

Fn!
,

which gives (3.15). �

4. Further Remarks

The Fibonacci–Bernstein polynomial of degree n is defined by (cf. [5])

(4.1) BF
k,n(x) =

(

n

k

)

F

xk (1 − x)
n−k

(n, k ∈ N with 0 < k ≦ n).

By (4.1), the generating function of the Fibonacci–Bernstein polynomials is given
by (cf. [5])

(4.2)

∞
∑

n=k

BF
k,n(x)

tn

Fn!
=

(tx)k

Fk!
e

(1−x)t

F .
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The generating function in (4.2) is obtained by inspired the derivation of the gen-
erating function of the classical Bernstein polynomials [1].

From (4.1) and (4.2), some formulas for the Fibonacci–Bernstein polynomials
are presented by (cf. [2,5])

BF
k,n(1 − x) =

(

n

k

)

F

(1 − x)kxn−k,(4.3)

BF
k,n(x) =

Fn−k+1

Fk

x

1 − x
BF

k−1,n(x),(4.4)

BF
k,n(x) = (1 − x)Fk−1BF

k,n−1(x) + xFn−kBF
k−1,n−1(x).(4.5)

Theorem 4.1. The following identity holds for x ∈ [0, 1] and k, n ∈ N with

k ≦ n:

(4.6) BF
n+k,2n+k(x) =

F2n+k!Fk!

Fn+k!Fn+k!
xnBF

k,n+k(x).

Proof. From (4.1), we calculate that

BF
n+k,2n+k(x) =

(

2n + k

n + k

)

F

xn+k(1 − x)n =
F2n+k!Fk!Fn!

Fn!Fn+k!Fn+k!
xn Fn+k!

Fn!Fk!
xk(1 − x)n,

which gives (4.6). �

Two types of golden hyperbolic sine and cosine functions are defined by (see
[12])

sinhF (x) =
ex

F − e−x
F

2
and coshF (x) =

ex
F + e−x

F

2
,

SINHF x =
Ex

F − E−x
F

2
and COSHF x =

Ex
F + E−x

F

2
.

Theorem 4.2. We have for x ∈ (0, 1]

sinhF (t(1 − x)) =
1

2xk

∞
∑

n=0

(1 − (−1)n)
(

n+k

k

)

F

BF
k,n+k(x)

tn

Fn!
,(4.7)

coshF (t(1 − x)) =
1

2xk

∞
∑

n=0

(1 + (−1)n)
(

n+k

k

)

F

BF
k,n+k(x)

tn

Fn!
.

Proof. Since

sinhF (t(1 − x)) =
e

t(1−x)
F − e

−t(1−x)
F

2

=
( tkxke

t(1−x)
F − tkxke

−t(1−x)
F

Fk!

) Fk!

2tkxk

=
Fk!

2tkxk

( ∞
∑

n=k

BF
k,n(x)

tn

Fn!
−

∞
∑

n=k

(−1)n−kBF
k,n(x)

tn

Fn!

)

=
Fk!

2tkxk

∞
∑

n=k

(1 − (−1)n−k)BF
k,n(x)

tn

Fn!
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=
Fk!

2xk

∞
∑

n=0

(1 − (−1)n)BF
k,n+k(x)

tn

Fn+k!

=
1

2xk

∞
∑

n=0

(1 − (−1)n)
(

n+k
k

)

F

BF
k,n+k(x)

tn

Fn!
,

we get the desired result (4.7). The other can be shown similarly. �

As a last result, we give a correlation between Fibonacci–Hermite polynomials
and Fibonacci–Bernstein polynomials.

Theorem 4.3. The following correlation is valid for x ∈ [0, 1)

Hn,F (x) =

⌊ n

2
⌋

∑

k=0

F2k!2n−2k(−1)k

Fk!(1 − x)2k
BF

2k,n(1 − x).

Proof. The proof of this theorem follows from (3.2) and (4.3) as

Hn,F (x) =

⌊ n

2
⌋

∑

k=0

F2k!2n−2k(−1)k

Fk!(1 − x)2k

(

n

2k

)

F

(1 − x)2kxn−2k

=

⌊ n

2
⌋

∑

k=0

F2k!2n−2k(−1)k

Fk!(1 − x)2k
BF

2k,n(1 − x). �
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