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GENERALIZED ABSOLUTE

MATRIX SUMMABILITY FACTORS

Hikmet Seyhan Özarslan and Bağdagül Kartal Erdoğan

Abstract. We generalize a theorem dealing with absolute summability
factors of an infinite series to absolute matrix summability under weaker
conditions by using an almost increasing sequence.

1. Introduction

Let (pn) be a sequence of positive numbers such that Pn =
∑n

v=0 pv → ∞ as
n → ∞, (P−i = p−i = 0, i > 1). Let

∑

an be a given infinite series with the partial
sums (sn) and A = (anv) be a normal matrix, i.e., a lower triangular matrix of non-
zero diagonal entries. Then A defines the sequence-to-sequence transformation,
mapping the sequence s = (sn) to As = (An(s)), where An(s) =

∑n

v=0 anvsv,
n = 0, 1, . . . Let (ϕn) be any sequence of positive real numbers. The series

∑

an is
said to be summable ϕ − |A; δ|k, k > 1 and δ > 0, if (see [11])

∞
∑

n=1

ϕδk+k−1
n |An(s) − An−1(s)|k < ∞.

If we take δ = 0 and ϕn = Pn

pn

, then ϕ − |A; δ|k summability reduces to |A, pn|k
summability [18]. If we take ϕn = n for all values of n, then ϕ−|A; δ|k summability
reduces to |A; δ|k summability [10]. Also, if we take δ = 0, ϕn = Pn

pn

and anv = pv

Pn

,

then we get |N̄ , pn|k summability [2]. Furthermore, if we take δ = 0, ϕn = n,
anv = pv

Pn

and pn = 1 for all values of n, then ϕ − |A; δ|k summability reduces to

|C, 1|k summability [4].

2. Known result

In [3], Bor has proved the following theorem dealing with absolute Riesz summa-
bility of an infinite series.
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Theorem 2.1. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n → ∞.

If (Xn) is a positive monotonic non-decreasing sequence such that

|λm|Xm = O(1) as m → ∞,(2.1)
m

∑

n=1

nXn|∆2λn| = O(1) as m → ∞(2.2)

m
∑

n=1

pn

Pn

|tn|k = O(Xm) as m → ∞,

where ∆2λn = ∆(∆λn), ∆λn = λn − λn+1 and tn = 1
n+1

∑n

v=1 vav, then the series
∑

anλn is summable |N̄ , pn|k, k > 1.

3. Main result

Some different works on absolute matrix summability methods have been done
[5–7, 12–15, 17]. The purpose of this article is to generalize Theorem 2.1 by us-
ing an almost increasing sequence instead of a positive monotonic non-decreasing
sequence. Before giving general theorem, let us mention the definition of almost
increasing sequence and some further notations. A positive sequence (bn) is said
to be almost increasing if there exist a positive increasing sequence (cn) and two
positive constants K and M such that Kcn 6 bn 6 Mcn [1].

Let A = (anv) be a normal matrix, two lower semimatrices Ā = (ānv) and

Â = (ânv) as follows:

ānv =
n

∑

i=v

ani, n, v = 0, 1, . . . ,(3.1)

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . . ,(3.2)

An(s) =

n
∑

v=0

anvsv =

n
∑

v=0

ānvav, ∆̄An(s) =

n
∑

v=0

ânvav.(3.3)

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0, 1, . . . ,(3.4)

an−1,v > anv, for n > v + 1,(3.5)

ann = O
( pn

Pn

)

,(3.6)

|ân,v+1| = O(v|∆v(ânv)|),(3.7)

m+1
∑

n=v+1

ϕδk
n |∆v(ânv)| = O(ϕδk−1

v ) as m → ∞,(3.8)
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where ∆v(ânv) = ânv − ân,v+1. Let (Xn) be an almost increasing sequence and

ϕnpn = O(Pn). If conditions (2.1), (2.2) of Theorem 2.1 and

(3.9)
m

∑

n=1

ϕδk−1
n |tn|k = O(Xm) as m → ∞

are satisfied, then the series
∑

anλn is summable ϕ−|A; δ|k, k > 1 and 0 6 δ < 1/k.

Lemma 3.1. [9] If (Xn) is an almost increasing sequence, then under the con-

ditions (2.1) and (2.2), we have

nXn | ∆λn |= O(1) as n → ∞,(3.10)
∞

∑

n=1

Xn | ∆λn |< ∞.(3.11)

Proof of Theorem 3.1. Let (Tn) denotes A-transform of the series
∑

anλn.

Then, by (3.3), we have ∆̄Tn =
∑n

v=0 ânvavλv =
∑n

v=1
ânvλv

v
vav. Applying Abel’s

transformation, we have

∆̄Tn =

n−1
∑

v=1

∆v

( ânvλv

v

)

v
∑

r=1

rar +
ânnλn

n

n
∑

r=1

rar

=
n + 1

n
annλntn +

n−1
∑

v=1

v + 1

v
∆v(ânv)λvtv

+

n−1
∑

v=1

v + 1

v
ân,v+1∆λvtv +

n−1
∑

v=1

ân,v+1λv+1
tv

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

For the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show
that

∑

∞

n=1 ϕδk+k−1
n | Tn,i |k< ∞, for i = 1, 2, 3, 4. First, using (3.6), we get

m
∑

n=1

ϕδk+k−1
n |Tn,1|k = O(1)

m
∑

n=1

ϕδk+k−1
n ak

nn|λn|k|tn|k

= O(1)
m

∑

n=1

ϕδk+k−1
n

( pn

Pn

)k

|λn|k−1|λn||tn|k.

Now, using condition (2.1) and the fact that (Xn) is an almost increasing sequence,
we obtain that |λn|k−1 = O(1). Also, using Abel’s transformation, we have

m
∑

n=1

ϕδk+k−1
n |Tn,1|k = O(1)

m
∑

n=1

ϕδk−1
n |λn||tn|k

= O(1)

m−1
∑

n=1

∆|λn|

n
∑

v=1

ϕδk−1
v |tv|k + O(1)|λm|

m
∑

n=1

ϕδk−1
n |tn|k.
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Thus, we get

m
∑

n=1

ϕδk+k−1
n |Tn,1|k = O(1)

m−1
∑

n=1

|∆λn|Xn + O(1)|λm|Xm = O(1) as m → ∞,

by (3.9), (3.11), (2.1).

Applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k

+ 1
k

′

= 1,
we get

m+1
∑

n=2

ϕδk+k−1
n |Tn,2|k = O(1)

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

|∆v(ânv)||λv|k|tv|k
)( n−1

∑

v=1

|∆v(ânv)|

)k−1

.

Here, we have

∆v(ânv) = ânv − ân,v+1

= ānv − ān−1,v − ān,v+1 + ān−1,v+1

= anv − an−1,v,

by (3.2) and (3.1). Thus (3.5), (3.1) and (3.4) imply

(3.12)

n−1
∑

v=1

|∆v(ânv)| =

n−1
∑

v=1

(an−1,v − anv) 6 ann.

Hence, using (3.12), (3.6) and (3.8), we get

m+1
∑

n=2

ϕδk+k−1
n |Tn,2|k = O(1)

m+1
∑

n=2

ϕδk
n

n−1
∑

v=1

|∆v(ânv)||λv |k|t
v
|k

= O(1)
m

∑

v=1

|λv|k|tv|k
m+1
∑

n=v+1

ϕδk
n |∆v(ânv)|

= O(1)

m
∑

v=1

ϕδk−1
v |λv||tv|k.

Then, as in Tn,1, we get
∑m+1

n=2 ϕδk+k−1
n |Tn,2|k = O(1) as m → ∞. Now, using

condition (3.7) and Hölder’s inequality, we get

m+1
∑

n=2

ϕδk+k−1
n |Tn,3|k= O(1)

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

v|∆v(ânv)||∆λv||tv|

)k

= O(1)

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

(v|∆λv |)k|tv|k|∆v(ânv)|

)( n−1
∑

v=1

|∆v(ânv)|

)k−1

.

Then,

m+1
∑

n=2

ϕδk+k−1
n |Tn,3|k = O(1)

m+1
∑

n=2

ϕδk
n

n−1
∑

v=1

(v|∆λv|)k|tv|k|∆v(ânv)|

= O(1)

m
∑

v=1

(v|∆λv |)k|tv|k
m+1
∑

n=v+1

ϕδk
n |∆v(ânv)|
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by using (3.12), (3.6).
Now, again using the fact that (Xn) is an almost increasing sequence and the

condition (3.10), we have (v|∆λv |)k−1 = O(1), and also using (3.8), we obtain

m+1
∑

n=2

ϕδk+k−1
n |Tn,3|k = O(1)

m
∑

v=1

ϕδk−1
v v|∆λv||tv|k.

Here, using Abel’s transformation, we have

m+1
∑

n=2

ϕδk+k−1
n |Tn,3|k = O(1)

m−1
∑

v=1

∆(v|∆λv |)

v
∑

r=1

ϕδk−1
r |tr|k + O(1)m|∆λm|

m
∑

v=1

ϕδk−1
v |tv|k.

Then, we get

m+1
∑

n=2

ϕδk+k−1
n |Tn,3|k = O(1)

m−1
∑

v=1

vXv|∆2λv| + O(1)
m−1
∑

v=1

|∆λv|Xv + O(1)m|∆λm|Xm

= O(1) as m → ∞,

by (3.9), (2.2), (3.11), (3.10).
Finally, again using Hölder’s inequality, and conditions (3.7), (3.12) and (3.6),

we get

m+1
∑

n=2

ϕδk+k−1
n |Tn,4|k= O(1)

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

|∆v(ânv)||λv+1||tv|

)k

= O(1)

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

|∆v(ânv)||λv+1|k|tv|k
)( n−1

∑

v=1

|∆v(ânv)|

)k−1

= O(1)

m+1
∑

n=2

ϕδk
n

n−1
∑

v=1

|∆v(ânv)||λv+1|k|tv|k.

Then,

m+1
∑

n=2

ϕδk+k−1
n |Tn,4|k = O(1)

m
∑

v=1

|λv+1||tv|k
m+1
∑

n=v+1

ϕδk
n |∆v(ânv)|

= O(1)
m

∑

v=1

ϕδk−1
v |λv+1||tv|k

by using (3.8).
Then, as in Tn,1, we have

m+1
∑

n=2

ϕδk+k−1
n |Tn,4|k = O(1) as m → ∞.

Hence, the proof of Theorem 3.1 is completed. �
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4. Conclusions

In the special case, when we take (Xn) as a positive monotonic non-decreasing
sequence, δ = 0 and ϕn = Pn

pn

, then we get a theorem dealing with |A, pn|k summa-

bility (see [16]). If we take (Xn) as a positive monotonic non-decreasing sequence,
δ = 0, ϕn = Pn

pn

and anv = pv

Pn

, then we get Theorem 2.1. Also, if we take (Xn) as a

positive monotonic non-decreasing sequence, δ = 0, ϕn = n, anv = pv

Pn

and pn = 1

for all values of n, then we get a theorem about |C, 1|k summability of an infinite
series (see [8]).
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