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FAMILIES OF Prym VARIETIES OF ABELIAN

COVERINGS AND SHIMURA VARIETIES

Abolfazl Mohajer

Abstract. Under the condition that the Prym map is injective in character-
istic p, we prove that the special subvarieties in the moduli space of abelian
varieties of dimension l and polarization type D, Al,D, arising from families
of abelian covers of P1 are of a very restrictive nature. In other words, if the
family is one-dimensional or if it contains an eigenspace of certain type for the
group action on the cohomology of fibers, then the Shimura varieties arising
from such families can only be constructed by the group action of the family.

1. Introduction

We continue the studies of several authors in [4, 5, 8, 9] concerning families
of Prym varieties and the resulting moduli varieties in Al,D, the moduli space of
complex abelian varieties of dimension l with polarization of type D. The present
work is specially motivated by Frediani [8]. In particular, we prove that such a
moduli variety is only very rarely a totally geodesic subvariety with respect to the
Siegel metric.

Let H be a finite group with n = |H |. Suppose C is a compact Riemann
surface of genus g. Let t := {t1, . . . , tr} be an s-tuple of distinct points in C.
Set Ut := C r {t1, . . . , tr}. The fundamental group π1(Ut, t0) has a presentation
〈α1, β1, . . . , αg, βg, γ1, . . . , γr |

∏s
1 γi

∏g
1[αj , βj ] = 1〉. Here α1, β1, . . . , αg, βg are

simple loops in Ut which only intersect in t0, and their homology classes in H1(C,Z)
form a symplectic basis.

If f : C̃ → C is a ramified H-Galois cover with branch locus t, set V = f−1(Ut).
Then f |V : V → Ut is an unramified Galois covering. Then there is an epimor-
phism θ : π1(Ut, t0) → H . Conversely, such an epimorphism determines a ramified
Galois covering of C with branch locus t. The order mi of θ(γi) is called the
local monodromy datum of the branch point ti. Let m = (m1, . . . ,mr). The col-
lection (m,H, θ) is called a datum. The Riemann–Hurwitz formula implies that

the genus g̃ of the curve C̃ is equal to 2g̃ − 2 = |H |
(
2g − 2 +

∑r
i=1

(
1 − 1

mi

))
.
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We introduce the stack R(H, g, r): the objects of R(H, g, r) are couples of the form

((C, x1, . . . , xr), f : C̃ → C) such that

(1) (C, x1, . . . , xr) is a smooth projective r-pointed curve of genus g.

(2) f : C̃ → C is a finite cover, H acts on C̃ and f is H-invariant.
(3) the restriction fgen : f−1(Cr{x1, . . . , xr}) → Cr{x1, . . . , xr} is an étale

H-torsor.

Sometimes, for simplicity, we denote an element ((C, x1, . . . , xr), f : C̃ → C) of
R(H, g, r) just by (C, f). Note that r = 0 is also possible which amounts to say

that the covers C̃ → C are unramified. Moreover since our problem is insensitive
to level structures, we may actually consider R(H, g, r) as a coarse moduli space.
As a result, we omit any assumptions on the automorphism group of the base curve
C whose non-triviality can be remedied either by considering the moduli stack or
by imposing level structures.

To each element ((C, x1, . . . , xr), f : C̃ → C), we associate a Prym variety

P (C̃/C) and obtain a Prym map P : R(H, g, r) → Al,D, where Al,D denotes the
moduli space of abelian varieties of dimension l and polarization type D. Then

we consider the following situation: Let C̃ → T be a family such that each C̃t is

an abelian G̃-cover of P1. Let H ⊆ G̃ be a normal subgroup. Then the quotients

C̃t → Ct give rise to a subvariety Z ⊆ R(H, g, r). On the other hand, the Prym

variety P (C̃/C) can be defined as mentioned above and we are interested in the
Zariski closure of the image P(Z) as a subvariety of Al,D. Inspired by the results
of Frediani [8] about special subvarieties arising from families of abelian covers on
the one hand and the results of Naranjo and Ortega [16], which assert that the
Prym map P (Z2, g, r) is an embedding for g > 0 and r > 6, on the other hand, we
prove that if the reduction of the Prym map P to characteristic p is injective, then
the assumption that the above subvariety is special is very restrictive, i.e., they can

only be of the form P (G̃) which is a special subvariety constructed using the group
action of the family, see Section 5 for more precise statements. This is in analogy
with the similar problem for the Torelli locus which has been treated for example
in [10,13,14].

2. The Prym locus and abelian covers

Let us denote the Jacobians of the curves C̃ and C respectively by J̃ and J .
Note that by definition, if R is a Riemann surface,

J(R) = Jac(R) = H0(R,ωR)∗/H1(R,Z).

Since the finite group H acts on C̃ it also acts on the space of differential 1-forms

H0(C̃, ω
C̃

) and H1(C̃,Z) and hence on the Jacobian J̃ . In particular, we denote by

J̃H the subgroup of fixed points of J̃ under the action of H . The following theorem
is proven in [18, repectively, Theorem 2.5 and Proposition 3.1].

Theorem 2.1. (1) f∗J = (J̃H)0.

(2) The map f induces an isogeny J × P (C̃/C) ∼ J̃ .
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We note that the isogeny mentioned in Theorem 2.1 is given by

φ : J × P (C̃/C) → J̃ , φ(c, c̃) = f∗c+ c̃

For a Galois covering f : C̃ → C with ((C, x1, . . . , xr), f : C̃ → C) ∈ R(H, g, r)

and deg(f) = n, one can compute the genus g̃ := g(C̃) by the Riemann–Hurwitz

formula. Using the isogeny f∗J × P (C̃/C) ∼ J̃ we see that the dimension of the

Prym variety P (C̃/C) = P (f) is equal to p = g̃ − g. The canonical principal

polarization on J̃ restricts to a polarization of type D = (1, . . . , 1, n, . . . , n) where
1 occurs g − 1 times and n occurs p− (g − 1) times if r = 0 and 1 occurs g times
and n occurs p− g times otherwise.

Note that, it follows from Theorem 2.1 that if C ∼= P1, then the Prym variety

P (C̃/C) is isogeneous to the Jacobian J̃ . We will use this point in the sequel to
deduce that some families are special.

Let Al,D denote the moduli space of complex abelian varieties of dimension
p and polarization type D. More precisely, Al,D = Hl/ΓD is the moduli space
of polarized abelian varieties of type D where Hl := {M ∈ Ml(C) | tM = M,
imaM > 0} is the Siegel upper half space of genus p and

ΓD =
{
R ∈ GL2l(Z) | R

(
0 D

−D 0

)
tR =

(
0 D

−D 0

)}

is an arithmetic subgroup. The above constructions behave well also in the families
of curves and hence we obtain a morphism P = P(H, g, r) : R(H, g, r) → Al,D. We
call the map P the Prym map of type (H, g, r). Our objective in this paper is to
study the image of this map. The Prym map is even in the classical case known to
be non-injective which implies that one needs to study other closely related aspects,
namely the generic injectivity.

By the above mentioned H-action on H0(C̃, ω
C̃

) and H1(C̃,Z), we set:

H0(C̃, ω
C̃

)+ = H0(C̃, ω
C̃

)H(∼= H0(C, ωC)),

H0(C̃, ω
C̃

)− = H0(C̃, ω
C̃

)/H0(C̃, ω
C̃

)+ =
⊕

χ∈irr(H)r{1}

H0(C̃, ω
C̃

)χ

Notice that H0(C̃, ω
C̃

) = H0(C̃, ω
C̃

)+ ⊕H0(C̃, ω
C̃

)−.
The following lemma is then an immediate consequence of Theorem 2.1.

Lemma 2.1. Let f : C̃ → C be a Galois covering; then

P (C̃/C) = H0(C̃, ω
C̃

)−

∗
/H1(C̃,Z)−

Definition 2.1. A Prym datum (of type (H, g, r), compare [5, Definition 3.1])

is a triple (G̃, θ̃s, H) where G̃ is a finite group, θ̃s : Γs → G̃ is an epimorphism as

above and H is a normal subgroup of G̃, such that the quotient f : C̃ → C = C̃/H
is in R(H, g, r).

Let G̃ be a finite group and let C̃ → P1 be a G̃-Galois covering of P1 with the

Prym datum (G̃, θ̃s, H). Set V = H0(C̃, ω
C̃

) and let V = V+ ⊕ V− be the decom-
position into H-invariant and H-anti-invariant parts as above. There is also the
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corresponding Hodge decomposition H1(C̃,C)− = V− ⊕ V −. Set Λ = H1(C̃,Z)−.
The associated Prym variety is by definition the following abelian variety.

(2.1) P (C̃/C) = V ∗
−/Λ,

see [3] for more details.

Remark 2.1. There is a Q-variation of Hodge structures over T with fibers
given by H1(C̃t,Q)−. We choose a Hodge-generic point t0 ∈ T (C) and let M ⊂
GL(H1(C̃t0

,Q)−) be the generic Mumford–Tate group of the family. Let Pf be the
natural Shimura variety associated to the reductive group M . So in general, this
subvariety is different from the one with the same notation in [13, Remark 2.7].
The special subvariety Pf is the smallest special subvariety that contains Z and its
dimension depends on the real adjoint group Mad

R . Indeed, if Mad
R = Q1 × · · · ×Qr

is the decomposition of Mad
R to R-simple groups then dimPf =

∑
δ(Qi). If Qi(R)

is not compact then δ(Qi) is the dimension of the corresponding symmetric space
associated to the real group Qi which can be read from Table V in [11]. If Qi(R) is
compact (in this case Qi is called anisotropic) we set δ(Qi) = 0. We remark that for

Q = PSU(p, q), δ(Q) = pq and for Q = Psp2p, δ(Q) = p(p+1)
2 . Our computations

below show that in fact such factors do occur in the decomposition of M , see
Lemma 2.4. Note that Z is a Shimura subvariety if and only if dimZ = dimPf ,
i.e., if and only if Z = Pf .

These observations lead to the following key lemma.

Lemma 2.2. If dimPf > s − 3, then the family does not give rise to a special
subvariety of the Prym locus.

Proof. By the constructions and explanations in the previous paragraphs, we
have a map P : Rg → Ag−1 (resp. Rg,2 → Ag) and Z = P(T ) ⊂ Ag−1 (resp. Ag).
Now unlike the Torelli map, the Prym map is not injective, however, it holds that
dimZ 6 s− 3. Hence if dimPf > s− 3, one concludes that Z 6= Pf and therefore
Z is not a special subvariety, as given above. �

In the light of the above lemma, our strategy is to show that for families with
large s, the subvariety Pf constructed above is of dimension strictly greater than
s− 3, hence the subvariety Z is not special by the above lemma.

2.1. Abelian covers of P1 and their invariants. An abelian Galois cover
of P1 is determined by a collection of equations in the following way: consider an
m × s matrix A = (rij) whose entries rij are in Z/NZ for some N > 2. Let C(z)

be the algebraic closure of C(z). For each i = 1, . . . ,m, select a function wi ∈ C(z)
with

(2.2) wN
i =

s∏

j=1

(z − zj)r̃ij for i = 1, . . . ,m,

in C(z)[w1, . . . , wm]. Note that zj ∈ C. In other words, there exists a projective
non-singular curve Y birational to the affine curve defined by the above equations
together with a covering map π : Y → P1 with abelian Galois group.
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Here r̃ij is the lift of rij to Z∩ [0, N). We impose the condition that the sum of
the columns of A is zero. This implies that the cover is not ramified over infinity.
The matrix A will be called the matrix of the covering. Note that our notations
here are mostly that of [17]. Also we consider the row and column spans of A as
modules over the ring Z/NZ and so all of the operations with rows and columns
will be carried out in the ring Z/NZ, i.e., it will be considered modulo N . The
abelian Galois group G of the covering is isomorphic to the column span of the
matrix A and hence can be considered as a subgroup of (Z/NZ)m (denoted also by
Zm

N ).

Remark 2.2. Let G̃ be a finite abelian group, then the character group of G̃,

µ
G̃

= Hom(G̃,C∗) is isomorphic to G̃. To see this, first assume that G̃ = Z/N is

a cyclic group. Fix an isomorphism between Z/N and the group of N -th roots of
unity in C∗ via 1 7→ exp(2πi/N). Now the group µ

G̃
is isomorphic to this latter

group via χ 7→ χ(1). In the general case, G̃ is a product of finite cyclic groups, so

this isomorphism extends to an isomorphism ϕ
G̃

: G̃
∼
−→ µ

G̃
. In the sequel, we use

this isomorphism frequently to identify elements of G̃ with its characters without
referring to the isomorphism ϕ

G̃
.

For our applications, with notation as in the previous pages, we fix an isomor-

phism of G̃ with a product of Z/nZ’s and an embedding of G̃ into (Z/NZ)m.
Furthermore we set α̃j =

∑m
i=1 nir̃ij ∈ Z (note that α̃j is not necessarily in

Z ∩ [0, N)). Let us denote by ωX the canonical sheaf of X . Similar to the case of

π∗(OX), the sheaf π∗(ωX)χ decomposes according to the action of G̃. For the line

bundles Lχ corresponding to the character χ associated to the element a ∈ G̃ and
π∗(ωX)χ, we have the following result proven in [13].

Lemma 2.3. Notation being as above, Lχ = OP1

( ∑s
1

〈 α̃j

N

〉)
, where 〈x〉 denotes

the fractional part of the real number x and

π∗(ωX)χ = ωP1 ⊗ Lχ−1 = OP1

(
− 2 +

s∑

1

〈
−
αj

N

〉)
.

Let n ∈ G̃ be the element (n1, . . . , nm) ∈ G̃ ⊂ (Z/NZ)m. By Lemma 2.3,

dimH0(C̃, ω
C̃

)n = −1 +
∑s

j=1

〈
−

αj

N

〉
. A basis for the C-vector space H0(C̃, ω

C̃
)

is given by the forms

(2.3) ωn,ν = zνwn1

1 · · ·wnm
m

s∏

j=1

(z − zj)⌊−α̃j /N⌋dz.

Here 0 6 ν 6 −1 +
∑s

j=1

〈
−

αj

N

〉
. The fact that the above elements constitute a

basis can be seen in [13, proof of Lemma 5.1], where the dual version for H1(C,OC)
is proved.

The general method of our later computations in Section 5 is as follows. We

remark that if n = (n1, . . . , nm) ∈ G̃ = Zd1
× · · · × Zdm

⊂ (Z/NZ)m, we consider
the ni ∈ [0, N) and their sum as integers.
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The action of the abelian subgroup H is naturally inherited from that of G̃ and
the latter is described as follows: let g = (g1, . . . , gm) ∈ G̃ and write ord gi = vi.
Then the action of g on each wi is given by g·wi = ξvi

wi, where ξvi
denotes a

vi-th primitive root of unity. With this notation, H0(C̃, ω
C̃

)+, i.e., the group of

H-invariant differential forms is the set of all ωn,ν with
∑
ni/ai ∈ Z for all h =

(h1, . . . , hm) ∈ H (with ai = ordhi). The eigenspace H0(C̃, ω
C̃

)− is then given by

the complement, i.e., the set of all ωn,ν for whom there exists h = (h1, . . . , hm) ∈ H
such that

∑
ni/ai /∈ Z.

The following lemma generalizes [12, Lemma 2.5].

Lemma 2.4. Let the notation be as above. The group G̃ acts on the space

H0(C̃,K
C̃

)− and for g ∈ G̃, it holds that

H0(C̃,K
C̃

)−,g =





H0(C̃,K
C̃

)g, if ∃h = (h1, . . . , hm) ∈ H such that∑
gi/ai /∈ Z with ai = ordhi,

0 otherwise.

Similar statements hold for H1(C̃,C)−,g.

Proof. All of the claims follow directly using the basis for H0(C̃,K
C̃

) and

the action of G̃ on H0(C̃,K
C̃

)− decribed above. �

Families of abelian covers of P1 can be constructed as follows: Let Ts ⊂ (A1
C)s

be the complement of the big diagonals, i.e., Ts = {(z1, . . . , zs) ∈ (A1
C)s | zi 6=

zj ∀i 6= j}. Over this affine open set we define a family of abelian covers of P1

by the equation (2.2) with branch points (z1, . . . , zs) ∈ Ts and r̃ij the lift of rij

to Z ∩ [0, N) as before. Varying the branch points we get a family f : C̃ → Ts of
smooth projective curves over Ts (viewed as a complex manifold of dimension s−3)
whose fibers C̃t are abelian covers of P1 introduced above.

Remark 2.3. Let f : C̃ → T be a family of abelian Galois covers of P1 as
constructed in section 1. Then the local system L = R1f∗C− gives rise to a
polarized variation of Hodge structures (PVHS) of weight 1 whose fibers are the
HS discussed above. Consider the associated monodromy representation π1(T, x) →
GL(V ), where V is the fiber of L at x. The Zariski closure of the image of this
morphism is called the monodromy group of L. We denote the identity component
of this group by Mon0(L). The PVHS decomposes according to the action of the
abelian Galois group G and the eigenspaces Li (or Lχ where i ∈ G corresponds
to character χ ∈ µG by Remark 2.2) are again variations of Hodge structures and
we are mainly interested in these. Take a t ∈ T and assume that h1,0((Li)t) = a
and h0,1((Li)t) = b. The above computations show how to calculate h1,0((Li)t)
(resp. h0,1((Li)t)). Since monodromy group respects the polarization of the Hodge
structures [17, 3.2.6], (Li)t is equipped with a Hermitian form of signature (a, b) [6,
2.21 and 2.23]. This implies that Mon0(Li) ⊆ U(a, b). In this case, we say that
Li is of type (a, b). Lemma 2.4 (together with [13, Proposition 2.8]) computes the
type of any eigenspace. Two eigenspaces Li and Lj of types (a, b) and (a′, b′) are
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said to be of distinct types if {a, b} 6= {a′, b′}. We call an eigenspace Li trivial if it
is of type (a, 0) or (0, b).

Remark 2.4. Let V be a variation of Hodge structures over a non-singular
connected complex algebraic variety. If there is a point s, such that the Mumford–
Tate group MTs is abelian, then the connected monodromy group is a normal
subgroup of the generic Mumford–Tate group M . In fact in this case Mon0 = Mder,
see [1]. In particular, if Z ⊂ Ag is special, then Mon0 = Mder. Consequently, if

the family f : Y → T gives rise to a Shimura subvariety and Mad
R =

∏l
1 Qi as a

product of simple Lie groups then Mon0,ad
R =

∏
i∈K Qi for some K ⊂ {1, . . . , l}.

3. Shimura families in the Prym locus

Recall from section 2 that Al,D = Hl/ΓD is the moduli space of polarized
abelian varieties of type D, where Hl := {M ∈ Ml(C) | tM = M, imM > 0}, is
the Siegel upper half space of genus l and ΓD =

{
R ∈ GL2l(Z) | R

(
0 D

−D 0

)
tR =(

0 D
−D 0

)}
is an arithmetic subgroup. Note that Hl = Gsp2l(R)/K, where Gsp2l is

the standard Q-group of symplectic similitudes on the standard symplectic Q-space
Q2l and K is a maximal compact subgroup. So Al,D can be written as a double
quotient ΓD\ Gsp2l(R)/K. Such double quotients are called Shimura variety and
their structure has beeen studied extensively. A special (or Shimura) subvariety of
Al,D is then an algebraic subvariety of the form Y = Γ\D →֒ Al,D induced by an
injective homomorphism L →֒ Sp2l(R) of algebraic groups. In particular, it is a
totally geodesic subvariety.

Let G̃ be a finite group and consider a family C̃ → Ts whose fibers C̃t are G̃-
Galois coverings of P1 with a fixed Prym datum Σ = (G̃, θ̃s, H). Associating to t ∈

Ts the class of the pair ((Ct, x1, . . . , xr), πt : C̃t → Ct) gives a map Ts → R(H, g, r)
with discrete fibers. We denote the image of this map by R(Σ). It follows that R(Σ)
is a subvariety of dimension equal to s−3, see also [5, p. 6]. As in the last section, set

Vt = H0(C̃t, ωC̃t
) and let Vt = V+,t ⊕V−,t be the decomposition under the action of

H . There is also the corresponding Hodge decompositionH1(C̃t,C)− = V−,t⊕V −,t.

Set Λt = H1(C̃t,Z)−. The associated Prym variety is by 2.1, P (C̃t/Ct) = V ∗
−,t/Λt,

an abelian variety of dimension l = g̃ − g. So we have a map R(Σ)
P
−→ Al,D.

In this paper, we are interested in determining whether the subvariety Z =
P(R(Σ)) ⊂ Al,D is a special or Shimura subvariety.

We remark that one can, possibly after replacing Ts with a suitable finite cover,
endow the abelian scheme with a level structure and hence consider the resulting
map Ts → Al,D,n to the fine moduli space. Note that the answer to the above
question is independent of the level structure or the polarization. Alternatively, we
can consider Al,D as a coarse moduli space. The Prym varieties of the fibers of the

family C̃t → Ts fit into a family P → Ts which is an abelian scheme over Ts that

admits naturally an action of the group ring Z[G̃]. This action defines a Shimura

subvariety of PEL type P (G̃) in Al,D (or in the stack Al,D) that contains Z. The

following constrcution of the subvariety P (G̃) is adapted for the case of Prym
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varieties from [14], see also [10] for a different approach. Fix a base point t ∈ Ts

and let (Pt, λ) be the corresponding Prym variety with λ as its polarization of type
D. Let (VZ, ψ) be as above. We fix a symplectic similitude σ : H1(Pt,Z) → VZ.

Let F = Q[G̃]. The group G̃ acts on H0(C̃t, ωC̃
)− and thereby on the Prym

variety P (C̃t/Ct). We therefore view H0(C̃t, ωC̃
)− as an F -module. Via σ, the

Hodge structure on H1(Pt,Q) = H1(C̃t,Q)− corresponds to a point y ∈ Hl and
one obtains the structure of an F -module on VQ. F is isomorphic to a product
of cyclotomic fields and is equipped with a natural involution ∗ which is complex
conjugation on each factor. The polarization ψ on VQ satisfies ψ(bu, v) = ψ(u, b∗v)
for all b ∈ F and u, v ∈ V . Let us define the subgroup N = Gsp(VQ, ψ) ∩GLF (VQ).
If h0 : S → Gsp2l,R is the Hodge structure on VZ = H1(Pt,Z) corresponding to the
point y ∈ Hl, then by the above F -action this homomorphism factors through the
subvariety NR. As Al,D has the structure of a Shimura variety, one can talk about
its Shimura (or special) subvarieties. Let L = Gsp2l. Define the subset YN ⊆ Hl

by YN = {h : S → L2l,R | h factors through NR}. The point y lies in YN and there

is a connected component Y + ⊆ YN which contains y. We define P (G̃) to be the
image of Y + under the map

Hl → L(Z) rHl
∼= L(Q) rHl × L(Af)/L(Ẑ) ∼= Al,D(C).

If Y + is a connected component of YN and γKn ∈ L(Af)/Kn, the image of Y + ×
{γKn} in Al,D is an algebraic subvariety. We define a Shimura subvariety as an
algebraic subvariety S of Al,D which arises in this way, i.e., there exists a connected
component Y + ⊂ YN and an element γKn ∈ L(Af )/Kn such that S is the image
of Y + × {γKn} in Al,D.

For t = (z1, . . . , zs) ∈ Ts, let ((Ct, x1, . . . , xr), πt : C̃t → Ct) ∈ R(H, g, r) be
the covering corresponding to t. For this t, consider the Hodge decomposition

H1(C̃t,C)− = V−,t⊕V −,t which corresponds to a complex structure on H1(C̃t,R)−.
We therefore get a point f(t) ∈ Hl. Indeed we obtain a morphism f : Ts → Hl and
the following commutative diagram.

Ts Hl

R(Σ) Al,D

f

ι0 ι

P

It follows by construction of P (G̃) that Z ⊆ P (G̃). As we remarked earlier, the

Prym map is not in general injective. In order to conclude the equality Z = P (G̃)
and hence the speciality of Z, we still need to assure that the differential of the
Prym map on R(Σ) is injective, whence dimR(Σ) = dimP(R(Σ)). The following

lemma computes dimP (G̃) and so is very useful in the sequel.

Lemma 3.1. Let dn = dimH1,0(G̃) = dimH0(C̃, ω
C̃

)−,n; then

dim(P (G̃)) =
∑

2n6=0

dnd−n +
1

2

∑

2n=0

dn(dn + 1).
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Note that 2· 0 = 0 in G̃, so in fact the second sum in the right-hand side of the

above equality is always meaningful and if |G̃| is an odd number it will be zero.

4. Ordinary Prym varieties

An abelian variety of dimension g over a field k of characteristic p is called
ordinary if A[p](k) ≃ (Z/pZ)g. The Hodge filtration Fil := F 1

Hodge ⊂ H1
dR(A/k) is

well-known to be the kernel of the action of the Frobenius. Let W denote the ring
of Witt vectors A a lift of A to W . Then the crystalline cohomology H1

cris(A/W )
is a lift of H1

dR(A/k) to characteristic zero, i.e. H1
cris(A/W ) ⊗ k ≃ H1

dR(A/k). Let
Wn = W/pnW be the ring of truncated Witt vectors. Then there is a bijective
correspondence between the formal liftings of A/k to Wn and liftings of FilA to a
direct summand of H1

cris(A/Wn), see [7, Theorem 1.3]. If A is an ordinary abelian
variety, there is a distinguished lifting Filcan of Fil, which by the above explanation,
defines a lifting Acan of A to Wn called the canonical lifting. A smooth algebraic
curve C over a field k of characteristic p is called ordinary if the Jacobian Jac(C) is

an ordinary abelian variety. A cover C̃ → C in R(H, g, r) is called Prym-ordinary,

if the Prym variety P (C̃/C) is an ordinary abelian variety. In analogy with [7], we
make the following definition.

Definition 4.1. A Prym-ordinary cover C̃ → C is Prym-pre-W2-canonical if

there is a smooth curve Y/Wn and a cover Ỹ → Y whose Prym variety P (Ỹ/Y)

is isomorphic as an abelian variety to P (C̃/C)can.

In [7], Dwork and Ogus introduced an invariant β with the following key prop-
erty: if an ordinary curve C is pre-W2-canonical (meaning that the canonical lift-
ing of its Jacobian is again a Jacobian), then there exists a lifting C such that
FilC = Filcan and this implies that β = 0. The invariant β can also be defined in

families and in this case in denoted by β̃. We observe that if the Prym map of the
family is an immersion or generically injective, then this invariant vanishes also for
families of Prym varieties.

Lemma 4.1. Let U ⊂ R(H, g, r) be an open subset such that the restriction

of P to U is injective. Let (C̃ → C) ∈ U be Prym-ordinary, then it is Prym-

pre-W2-canonical if and only if there is a lifting Ỹ → Y (of C̃ → C) such that
Fil

Ỹ ,−
= Filcan,−, in particular β

C̃/C
= 0.

Proof. If the cover is Prym-pre-W2-canonical, then there is a cover Ỹ → Y

such that P (Ỹ/Y) = P (C̃/C)can. In particular, the reduction P (Ỹ /Y ) of P (Ỹ/Y)

to k is isomorphic to P (C̃/C). By the assumption on the Prym map, this implies

that [Ỹ → Y ] = [C̃ → C], i.e., Ỹ/Y is a lift of C̃ → C. �

Now let f̃ : C̃ → T be a family of abelian Galois covers of P1
C as constructed in

section 1. Let R = Z[1/N, u]/ΦN be the Nth cyclotomic polynomial. Let f : C → T
be the quotient family. Note that R can be embedded into C by sending the image
of u to exp(2πi

N ). We consider T ⊂ (A1
R)s as the complement of the big diagonals,

i.e., as the R-scheme of ordered s-tuples of distinct points in A1
R. For a prime
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number p, we denote by P a prime of R lying above p. One can choose a prime
number p ≡ 1 (mod N) and an open subset U ′ ⊂ T ⊗Fp

∼= T ⊗RR/P such that for
all t ∈ U ′, the fibers Ct of f are ordinary curves in characteristic p. This is possible

for example by [2, Theorem on p. 2]. Since C̃t → Ct is a finite abelian cover, there

exists an open subset U ⊂ U ′ such that both C̃t and Ct are ordinary for every

t ∈ U . Because of the isogeny Jac(C̃t) ∼ Jac(Ct) ⊕ Pt, this implies that Pt is also

an ordinary abelian variety for t ∈ U ′. By Lemma 4.1, if f : C̃ → T is a family
of abelian covers with a fixed Prym datum Σ = (G̃, θ̃s, H) for which the Prym
map is an immersion or generically injective, then there exists an open subset over

which β̃U = 0. In [8], under the assumption that the differential of the restriction
of the Prym map to the subvariety Z is injective (equivalent to the surjectivity of
the assumption that multiplication map), which implies that there is an immersion
from Z to Al,D, it is proved that the image of Z is not totally geodesic by applying
the second fundamental form. On the other hand, the results of Naranjo and Ortega
in [16], shows that the Prym map P(Z2, g, r) is an embedding if g > 0 and r > 6.
Here we make a similar assumption in characteristic p. However, we only need to
assume the following:

(*) The Prym map of the reduction of f̃ : C̃ → T to characteristic p is injective.

For p and U as above, consider the restricted family CU → U . The abelian

group G̃ also acts on the sheaves L(CU/U) and gives the eigensheaf decomposition
L(CU/U) = ⊕

n∈G̃
L(n). The same is true for EU = E(CU/U) and KU = K(CU/U).

This in turn gives us the decomposition β̃CU /U =
∑

n β̃n. Here β̃n is considered

as a section of F ∗
UL(n). In particular, the subgroup H ⊂ G̃ induces the decom-

position β̃CU /U = β̃CU /U,+ ⊕ β̃CU /U,− where β̃CU /U,+ (resp. β̃CU /U,−) denotes that
H-invariant (resp. H-anti-invariant) part under the action of H . In the same way,
we have eigenspaces KU,− = K(CU/U)− and L(CU/U)−. In particular, we have

−∇β̃C/T,− : F ∗
TK− → Ω1

T/k which is equal to the composition

F ∗
TK− →֒ F ∗

T Sym2(E)−
Sym2(γ)
−−−−−→ Sym2(E)−

κ
−→ Ω1

T/k.

The map κ : Sym2(E) → Ω1
T/k is the Kodaira–Spencer map associated to the family

f̃ : C̃ → T . Note that the group G̃ also acts on the sheaves K−, Sym2(E)− and so

on and we will denote the invariant susheaves by KG̃
−, Sym2(EU )G̃

−. We use this to
show that there are no more special subvarieties of the Prym locus obtained from
families of Galois covers.

Lemma 4.2. For prime number p and open subset U as above, if the family
satisfies condition (*) and gives rise to a Shimura subvariety Z ⊆ Al,D, then for

any t ∈ U we have that the Prym variety Pt = P (C̃t/Ct) is Prym-pre-W2-canonical

and in particular β̃CU /U,− = 0.

Proof. This is an analogue of the results of [15] for Prym varieties. According
to this result, a Shimura variety gives rise to a translation of a formal subtorus of
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local moduli. The group action then forces this to be a torus. In particular, if
the moduli variety Z is a Shimura subvariety and t ∈ T is an ordinary point (i.e.,

P (C̃t/Ct) is an ordinary abelian variety) then the canonical lifting P can
t of Pt is a

W (k)-valued point of Z. This means in particular that it is a Jacobian and hence

Pt is pre-W2- canonical. By Dwork–Ogus theory this forces β̃CU /U,− to be zero. �

From now on we just work with the restricted family CU/U whose fibers are
all ordinary instead of C/T and denote it simply as C/U .

Proposition 4.1. If the family of abelian covers gives rise to a Shimura sub-
variety in Al,D, then the map

F ∗
UK

G̃
− →֒ F ∗

U Sym2(EU )G̃
−

Sym2(γ)
−−−−−→ Sym2(EU )G̃

−
multG̃

−−−−→ f∗(ω⊗2
C/U )G̃

−

vanishes identically.

Proof. Since the fibers are Prym-ordinary curves over U , assuming that the
family gives rise to a Shimura subvariety in Ag, it follows from Lemma 4.3 that

β̃CU /U,− = 0 and hence ∇β̃CU /U,− = 0. On the other hand, by an argument similar

to [13, Lemma 4.1], the above composition map is just (∇β̃CU /U,−)G̃. �

Next, we mention a lemma which allows us to compute explicitly the Hasse–
Witt matrix of an abelian covering and whose proof can be found in [13, Lemma

5.1]. By Proposition 4.1, this lemma will be needed to compute the obstruction β̃CU
.

Consider a non-singular projective abelian cover π : C̃ → P1 with Galois group G̃

and matrix A. Let a = (a1, . . . , am) ∈ G̃ ⊆ Zm
N be an element in the Galois

group of the abelian covering (or the corresponding character χ. See Remark 2.2.
Consider the tuple (

∑m
1 air̃i1, . . . , air̃is) = (α̃1, . . . , α̃s) as in Lemma 2.3. Take a

prime number p such that p ≡ 1 (mod N) and let q = p−1
N .

Lemma 4.3. With notation as above, the eigenspaces H1(C̃,O
C̃

)χ are stable

under the Hasse–Witt map and there is a basis (ξa,i)i on each eigenspace in which
the (i, j) entry of matrix is given by the formula

∑
∑

li=Υ

(
q.[−α1]N

l1

)
· · ·

(
q.[−αs]N

ls

)
zl1

1 · · · zls
s ,

where Υ = (dn − i+ 1)(p− 1) + (i − j) and
(

a
b

)
= a!

b!(a−b)! .

5. Main results

In [8], Frediani has shown that if the the differential of the Prym map is a

surjestion and there exists an n ∈ G̃ with dn > 2 and d−n > 2, then the family is
not a totally geodesic family and hence is not Shimura. Here we prove a general-
ization of this result which allows also dn > 1. In this section, we prove our main
theorems for families of abelian covers satsifying condition of Remark 5.1. The
first one asserts that if a 1-dimensional family of abelian covers satsifies condition
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of Remark 5.1 then it is a special family if it is of the form P (G̃). The second one
treats higher dimensional families that also have an eigenspace with dn = 1. We
first need a remark.

Remark 5.1. In this section we will will work only with families of irreducible
abelian covers of P1, i.e., the fibers of the family are irreducible curves. For cyclic
covers this implies that the single row of the associated matrix is not annihilated by
a non-zero element of Z/NZ. More generally, for abelian covers of P1 this implies
that the rows of the associated matrix are linearly independent over Z/NZ.

Theorem 5.1. Let f : C̃ → T be a family of irreducible abelian covers as in
Remark 5.1 with a fixed Prym datum Σ := (G̃, θ̃s, H) and with s = 4, i.e., with 4
branch points. Then the associated subvariety Z ⊆ Al,D is a Shimura curve if and

only if Z = P (G̃).

Proof. One side is clear. To prove the other side, assume on the contrary that

Z 6= P (G̃) but Z is a Shimura subvariety and we will derive a contradiction. Since

dimZ = 1, the assumption Z 6= P (G̃) implies that dimP (G̃) > 1. Then there are
a, a′ ∈ G with a′ 6= ±a such that da = d−a = 1 and da′ = d−a′ = 1. Consequently,

using Lemma 2.4, the spaces H1,0
−,n for n ∈ {±a,±a′} are 1-dimensional. For n ∈

{±a,±a′}, let ωn be the generator of H1,0
−,n as in ( 2.3). For these n’s therefore,

the Hasse–Witt matrix An is a polynomial in Fp[z1, . . . , z4]. By the argument after
Lemma 4.2, there exists a suitable prime number p and an open subset U of T ⊗Fp

such that all fibers above U are ordinary. Therefore the Hasse–Witt operator is an
isomorphism over U and so An is invertible as a section of OU . It follows from the
description of ωn in Remark 2.3 that ωa.ω−a = ωa′ .ω−a′ as a section of the bundle
f∗(ω⊗2). It is a non-zero section of the bundle f∗(ω⊗2) and so by Proposition 4.1
we must have Aa.A−a = Aa′ .A−a′ as polynomials.

We will show that this identity can not hold with the above conditions. The
polynomials An are given by the dual version of Lemma 4.3 and we set Bn =
An |z1=0. It means that we have

Bn =
∑

j2+j3+j4=p−1

(
q.[−α2]N

j2

)
· · ·

(
q.[−α4]N

j4

)
zj2

2 · · · zj4

4 .

For h ∈ {2, 3, 4}, let ra(h) be the largest integer r such that Ba is divisible by zr
h.

We have that ra(h) = max{0, q.αk + q.αt − (p− 1)} where {k, t} = {2, 3, 4}r {h}.
One defines r−a(h) in a similar manner.

Similarly let r±a(h) be the largest integer ν such that Ba.B−a is divisible by
zν

h. We have r±a(h) = q· max{α1 + αh, αk + αt} − (p − 1). Now the equality
Aa.A−a = Aa′ .A−a′ implies that r±a(h) = r±a′(h) and so we get the equality
{α1 + αh, αk + αt} = {α′

1 + α′
h, α

′
k + α′

t}. By an easy lemma in [14, Lemma
6.3], we conclude that there exists an even permutation σ ∈ A4 of order 2, such
that αi = α′

σ(i). We first claim that σ 6= 1. This in fact follows from the linear

independence of the rows. See Remark 5.1, which ensures that αi and α′
i are not

all equal. So, we again, without loss of generality, suppose that α′
1 = α2, α

′
2 = α1
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and α′
3 = α4, α

′
4 = α3]. By our assumptions on a and a′, we have that

∑
[αi]N =

∑
[α′

i]N = 2N

Suppose that [α1]N +[α2]N = [α3]N +[α4]N = N , or in other words, [α2]N = −[α1]N
and [α4]N = −[α3]N in Z/NZ. This means that the two rows α = (α1, .., α4)
and α′ = (α′

1, .., α
′
4) are linearly dependent and this contradicts the irreducibility

by Remark 5.1. So the above equality does not hold and we may assume that
α1 + α2 < N and α3 + α4 > N . Now consider the row vector

α+ α′ = (α1, . . . , α4) + (α′
1, . . . , α

′
4) = (α1 + α2, α1 + α2, α3 + α4, α3 + α4).

Note that the irreducibility assumption in Remark 5.1 assures that α + α′ 6= ±α
and one can easily verify that this row vector also satisfies the conditions for αi and
α′

i (in fact 2([α1 +α2]+[α3 +α4]) = 2([(N−1)(α1 +α2)]+[(N−1)(α3 +α4)]) = 2N)
and so we may replace the second row (α′

1, . . . , α
′
4) = (α2, α1, α4, α3) by this row

vector and the equality Aa.A−a = Aa′ .A−a′ should hold for this row vector as α′

and (α1, . . . , α4) as α (actually for the corresponding elements a, a′ ∈ G). We show
that this is impossible. In fact, if this equality holds, then it is easy to see that the

left-hand side must contain a monomial of the form zα
2 z

β
3 and also a monomial of

the form zγ
1 z

δ
4 . This means that α2 +α3 = α1 +α4 = α1 +α3 = α2 +α4 = N which

is exactly to say that α = α′ = (α1, α1,−α1,−α1). This is against our assumptions
and this contradiction completes the proof. �

We also remark that if dimP (G̃) = s− 3, then, as explained earlier, the family

is a special family, hence the condition dimP (G̃) > s− 3 is actually required in the
next theorem.

Theorem 5.2. Let C̃ → T be a family of abelian covers of the line such that

dimP (G̃) > s− 3. If there exists an eigenspace of type (1, s− 3), then the family
does not give rise to a special subvariety of Al,D.

Proof. Assume on the contrary that C̃/T is a special family and take n ∈

G̃ as in the assumption. We claim that there exists another n′ ∈ G̃ such that
{dn′ , d−n′} = {1, s− 3}. Suppose that this not the case. Observe that if for every

n 6= n′ ∈ G̃, dn′ = 0 or d−n′ = 0, then by Lemma 3.1, dimP (G̃) = dnd−n = s− 3,

which is against our assumptions. Hence there exists n′ ∈ G̃ such that dn′ 6= 0 and
d−n′ 6= 0. If {dn′ , d−n′} 6= {1, s− 3}, then we have an eigenspace of new type and
consequently, dimPf > dnd−n + dn′d−n′ > s− 3. So we may and do assume that
{dn′ , d−n′} = {1, s−3}. In this case both eigenspaces correspond to the same factor
in the decomposition of Mad

R , see Remark 2.1. Let p and U be as in Subsection 2.1.

So p is a prime number such that p ≡ 1 mod N and set q = p−1
N . For these choices,

and using Lemma 2.4, consider the Hasse–Witt map γ(n) : F ∗
UE−,(n) → E−,(n) and

let Γ ∈ GLs−3(OU ) with respect to the basis ωn,ν introduced earlier in Remark 2.3.
Lemma 4.3 (actually its dual version) gives a description of the matrix A = An.
We also denote by γ(n′) and A′ the corresponding Hasse–Witt map and matrix
respectively for n′. We may, without loss of generality, assume that d−n = d−n′ = 1
and dn = dn′ = s−3. Hence A−n and A−n′ are 1×1 matrices, i.e., can be considered



60 MOHAJER

as sections of O∗
U which we denote by a, a′ respectively. For each τ ∈ {0, . . . , s−4},

let ϕτ ∈ Γ(U,KG
−) be defined by ϕτ := ω−n,0 ⊗ ωn,τ − ω−n′,0 ⊗ ωn′,τ . Note that

since ω−n,0ωn,ν = ω−n′,0ωn′,ν as sections of f∗(ω⊗2), it follows that the image of

ϕτ under Sym2(γ) is equal to
∑s−4

ν=0(a.Γν,τ − a′Γν,τ )(ω−n,0.ωn,ν). But the sections
ω−n,0.ωn,ν are linearly independent for ν ∈ {0, . . . , s− 4}, so Proposition 4.1 gives
that aΓν,τ − a′Γν,τ = 0 for all τ, ν ∈ {0, . . . , s − 4}. This can be rewritten as
a−1Aν,τ = a′−1A′

ν,τ . By examining the powers of various indeterminates in both
sides of this equation, we show that this equality can not hold. Assume the contrary.
Pick two distinct i, j ∈ {1, . . . , s} and set I = {1, . . . , s}r{i, j}. For h = 1, 2, define
rn(h) similarly as in [13, proof of Theorem 6.2], to be the largest integer r such
that Ah,h|ti=0 is divisible by trj . Similarly, let r−n be the largest integer r such that

a−1|ti=0 is divisible by trj . Let (α̃1, . . . , α̃s) be as in Lemma 2.3. By the formulas

for a−1 and the matrix A given in Lemma 4.3, we find

r−n = max

{
0, (p− 1).q

∑

i∈I

[αi]N

}
,

rn(1) = max

{
0, (s− 3)(p− 1).q

∑

i∈I

[−αi]N

}
.

Note that rn(2) = 0. With the above definitions, un(h) = r−n +rn(h) is the largest
integer u such that (a−1Ah,h)|ti=0 is divisible by tuj . The fact that d−n = 1 and

dn = s− 3 show that
∑

[αi]N = 2N and [−αi]N = N − [αi]N for every i. By these
relations one gets

un(1) = max

{
(p− 1) − q

∑

i/∈I

[αi]N , (p− 1) − q
∑

i∈I

[αi]N

}

=

∣∣∣∣(p− 1) − q
∑

i/∈I

[αi]N

∣∣∣∣ = q.
∣∣N − [αk] + [αλ]

∣∣

un(2) = max

{
0, (p− 1) − q

∑

i/∈I

[αi]N

}
= max

{
0, (p− 1) − q

∑

i∈I

[αi]N

}

= q.max
{

0, [αk] + [αλ] −N
}

We can also define the above notions for ±n′ which we represent by u′(1), u′(2).
The above relations give that u(1) = u′(1), u(2) = u′(2). This implies that for all
k, λ, we have [αk]N +[αλ]N = [α′

k]N +[α′
λ]N . From this one gets that [αi]N = [α′

i]N
for every i ∈ {1, . . . , s}. But this implies that the two rows corresponding to n and
n′ are equal and in particular linearly dependent. This is in contradiction with our
assumptions by Remark 5.1. �
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