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APPLICATIONS OF EQUIVARIANT

FACTORIZATION HOMOLOGY

Aleksandar Miladinović

Abstract. We use the equivariant version of factorization homology con-
structed using the parametrized higher category theory and show that it can
be used to describe the results used in the series of papers.

1. Introduction

Factorization homology represents homology theories for manifolds of fixed
dimension. It was introduced by Ayala and Francis in [3] and Lurie in the form of
chiral homology [15]. It originated in the work of Beilinson and Drinfeld in [6], as
well as in the work of Salvatore [20] and Segal [21].

There are numerous reasons to study factorization homology. For one, factor-
ization homology is used for defining topological quantum field theories [9]. Addi-
tionally, factorization homology allows us to define and study homology theories of
manifolds in particular.

Higher category theory. Factorization homology is a construction in higher
category theory, or, to be more precise, in the setting of ∞-categories.

What are ∞-categories? To answer this question, we will ask a more general
question: What would be a correct category in which one could study homotopy
theory? Such a category should feature topological spaces as objects, continuous
maps as morphisms, and should consider homotopies of continuous maps between
topological spaces, as well as homotopies between homotopies, homotopies between
homotopies of homotopies, etc. It turns out that such category exists, if we accept
to expand what we mean by category. This has been explained in great detail in
Lurie’s book [14], hence we will jump straight to the definition of ∞-categories.

Definition 1.1. An ∞-category is a simplicial set X such that the dotted lifts
exist
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Λn
i X

∆n

for every n ∈ N and every 0 < i < n, where ∆n is the standard n-simplex simplicial
set, and where Λn

i is the i-th horn of ∆n i.e., Λn
i is a subsimplicial set of ∆n which

features all (n− 1)-faces of ∆n containing i.

Let X be an ∞-category. The set of vertices X0 is viewed as the set of objects
while the set of edges X1 is viewed as the set of morphisms. From there the things
get interesting. Let x, y and z be three objects and let f : x → y and g : y → z be

two morphisms in this ∞-category. The diagram x
f
−→ y

g
−→ z represents a horn Λ2

1

in X . By definition, such horn admits a lift i.e., we arrive at the diagram

y

x z

gf

h

Given by the 2-simplex σ : ∆2 → X . We can think of σ as a homotopy form
g ◦ f to h. It is, however, important to note that there is no canonical choice of
a composition arrow g ◦ f , rather, the composition of f and g is defined up to
homotopy, which is part of the data. We say that σ exhibits h as the composition
of f and g. At first, this may seem like a disadvantage, however, it can be shown
that the space of all possible compositions of f and g is in fact contractible, hence,
the composition is unique up to homotopy.

To give more insight into the last statement let σ′ : ∆2 → X be the 2-simplex
of the form

y

x z

gf

h′

Then, the maps h and h′ will be homotopic in a suitable sense. Let τ : ∆2 → X be
the degenerate triangle given by

x

x y

fidx

f

We can further construct a Λ3
2-horn in X whose sides will be given by σ, σ′ and τ

y

x

x z

g

f

h′

h

idx

f
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This horn can be filled to a 3-simplex ∆3 → X . In particular, we have the lower
2-face of this simplex of the form

x

x h

h′idx

h

exhibiting a homotopy between h and h′.
Furthermore, constructions such as limits and colimits in the ∞-category can

be viewed as homotopy limits and colimits in a suitable sense.
In addition, every category can be interpreted as an ∞-category via its nerve.

For a small category C, the nerve of C is a simplicial set N(C) given by

N(C)n = HomCat([n],C)

where [n] is the category corresponding to the poset {1, 2, . . . , n} with its usual
linear order. Furthermore, if the morphism sets of a category C can be endowed
with the structure of a topological space (or a simplicial set), one can make a
construction of a so-called topological (or simplicial) nerve of a category C, taking
into account this structure.

Using this construction, we can build an ∞-category of spaces Spc∞ as a topo-
logical nerve of the category of CW-complexes and continuous maps between them.
Moreover, in such category, the notion of limits and colimits corresponds to the no-
tion of homotopy limits and colimits, which is exactly what we have wished for.

Parametrized higher category theory. Let X be a topological space with
an action of a group G. Let OG be the category of G-orbits i.e., the category
of transitive G-spaces and G-equivariant maps between them. We can think of
elements of OG as cosets G/H by choosing a basepoint of the orbit, with H being
the stabilizer of the basepoint.

The space X can be represented by a functor F : Oop
G → Top, G/H 7→ XH ,

hence, in order to study equivariant spaces categorically, one needs to consider
G-spaces as functors depicted above. The first problem that we encounter is that
working with functors as objects is more complicated than working with (ordi-
nary) categories. Secondly, and more importantly, what happens when we want to
incorporate homotopy into our framework?

In the same way that the higher category theory turned out to be the ideal
setting in which one can do homotopy theory, parametrized higher category the-
ory represents a good framework when dealing with the problems of equivariant
homotopy theory. The theory had been developed by Barwick and his students in
a series of papers [5,17–19,22]. Some of the applications can be seen in [11,13],
as well as in the PhD thesis of the author [16].

The general idea stems from the Grothendieck–Lurie correspondence:

Theorem 1.1. For a simplicial set S there is an equivalence of ∞-categories

u : Fun(S,Cat∞)
≃
−→ Fibcoc(S)
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where Cat∞ is the ∞-category of (small) ∞-categories, Fun(S,Cat∞) is the ∞-
category of simplicial maps between S and Cat∞ and Fibcoc(S) is the ∞-category
of coCartesian fibrations over S.

CoCartesian fibrations are special kind of morphisms, but since it will not be
necessary to state its definition, it will be omitted.

Therefore, setting S = O
op
G we arrive to the definition of a G-∞-category.

Namely, a G-∞-category is a coCartesian fibration C → O
op
G . A functor of G-∞-

categories C → O
op
G and D → O

op
G , or a G-functor, is a functor of ∞-categories

F : C → D lying over Oop
G , i.e., F fits into a commutative diagram

C D

O
op
G

F

and F respects the coCartesian structure (in particular, F sends coCartesian mor-
phisms to coCartesian morphisms, see [14] for more details). Given aG-∞-category
C → O

op
G , we can think of the fiber of the orbit G/H , denoted with C[G/H], as the

∞-category of H-objects. If K 6 H are subgroups of G, then the lift of the map
G/K → G/H gives us the functor C[G/H] → C[G/K] which we can think of as a re-
striction functor. Similarly, for an element g ∈ G and H 6 G we have a conjugation
map gHg−1 → H , which lifts to the functor C[G/H] → C[G/gHg−1 ].

These examples illustrate why such a definition of an equivariant ∞-category is
the right one: the G-∞-category, in addition to the G-objects, contains H-object,
for H a subgroup of G, and all of them are linked in a suitable way (as we have
seen).

There is also a notion of a G-symmetric monoidal ∞-category. These cate-
gories are important since the G-factorization functor needs to be a G-symmetric
monoidal functor in order to satisfy the equivalents of Eilenberg–Steenrod axioms
for generalized homology theories. Unfortunately, there are technical difficulties
when working with G-symmetric monoidal categories. In particular, G cannot be
any group. Fortunately, G can be a finite group, which is the most important case.
Additionally, G is allowed to be a compact Lie group as long as the orbit category
OG consists only of those orbit spaces with finite stabilizers. Therefore, for the
remainder of this paper, we will only consider G to be a finite group or a compact
Lie group, in which case OG is assumed to be an ∞-category of those transitive
G-spaces with finite stabilizers.

2. Equivariant factorization homology

Equivariant factorization homology has two inputs: geometric and algebraic.
Geometric input is an equivariant manifold while the algebraic input is an equi-
variant disc algebra. Let us start with the geometric input.

G-Manifolds. G-manifolds of a fixed dimension n can be organized into a
G-∞-category in the following way: consider a functor O

op
G → Cat∞ sending the
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orbit G/H to the ∞-category N(MfldH), the nerve of the category of smooth H-
manifolds and H-equivariant smooth embeddings between them. Using the Groth-
endieck–Lurie correspondence we obtain the coCartesian fibration Mfld → O

op
G

which we call the G-∞-category of (smooth) G-manifolds. Moreover, we can
consider G-manifolds with additional tangential structure. To be more precise,
a smooth G-manifold M is equipped with a tangent bundle map in the form
τ : M → BOn(G). If B is a G-space and f : B → BOn(G) is a G-map, then the
B-framing (or f -framing) on M consists of a G-homotopy commutative diagram

B

M BOn(G)

f

τ

In other words, the tangential structure on M is determined by the map f . Such
f -framed G-manifolds can also be organized into a G-∞-category MfldG,f-fr. Addi-
tionally, the disjoint union of G-manifolds provides a G-symmetric monoidal struc-
ture on MfldG,f-fr.

Example 2.1. Let B = ∗ be just a point and let f : ∗ → BOn(G) be a G-map.
A f -framing on a G-manifold M corresponds to the trivialization of the tangent
bundle of M . To be more precise, tangent classifier map of M factors through a
point, hence, we obtain the following diagram

TM V EOn(G)

M ∗ BOn(G)

where both inner rectangles are pullback diagrams, hence, the outer rectangle as
well. In such setting, V is the n-dimensional G-representation, and since the left
rectangle is a pullback diagram, the tangent bundle of M is TM ∼= M ×V . Instead
of f -framed, we will often write V -framed in such case of framing on G-manifolds.

G-Disk algebras. G-disks represent the link between the algebra and the
geometry of G-manifolds. The G-∞-category of G-disks is used for defining G-disk
algebras which are again used as coefficients for equivariant version of factorization
homology. At the same time, G-disks provide insight into geometry of G-manifolds
by capturing the local properties. Furthermore, they can be linked with equivariant
configuration spaces. A G-disk can be viewed as a G-vector bundle E → U , where
U is a finite G-set (i.e., a coproduct of finite number of orbits). We notice that E is,
in fact, a G-manifold, hence, we can consider a G-∞-category of (framed) G-discs

DiskG,f-fr as a full G-∞-subcategory ofMfldG,f-fr spanned by G-discs. Furthermore,
DiskG,f-fr admits a G-symmetric monoidal category inherited from MfldG,f-fr. Let
C⊗ be a G-symmetric monoidal category. An f -framed G-disc algebra is a G-
symmetric monoidal functor A : DiskG,f-fr → C⊗.
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G-Factorization homology. Since we have defined what are the input pa-
rameters, it is time to define G-factorization homology:

Definition 2.1. Let M ∈ Mfld
G,f-fr
[G/H] be an H-manifold (since it lays in the

fiber of G/H), and let A be an f -framed G-disk algebra taking values in a G-∞-
category C. The equivariant factorization homology of M with coefficients in A,
denoted with

∫

M A, is given by the parametrized G/H-colimit
∫

M

A = G/H − colim
(

Disk
G,f-fr
/M → G/H×DiskG,f-fr → G/H×C

)

where G/H = O
op
G /(G/H) ≃ O

op
H , DiskG,f-fr

/M is the parametrized slice category and

where G/H×DiskG,f-fr is a category obtained via the pullback diagram

G/H×DiskG,f-fr DiskG,f-fr

G/H O
op
G

(and similarly for G/H×C).

Parametrized colimits are fairly complicated and technically demanding, but
the ideas behind them are natural [22]. To be more precise, if we take G to be
a trivial group, then the G-parametrized colimits (or simply G-colimits) coincide
with the regular colimits.

Alternatively, there is an adjunction of G-functors

i! : FunG(Disk
G,f-fr,C) ⇄ FunG(Mfld

G,f-fr,C) : i∗

where FunG represents the ∞-category of G-functors between two G-∞-categories,
i is the inclusion functor i : DiskG,f-fr → MfldG,f-fr, i∗ is given by precomposition
with i, and i! is given by the G-left Kan extension along i. As it turns out [13, Sec-
tion 4], or [16, Chapter 8], the functor i! represents G-factorization homology func-
tor. Moreover, the G-factorization homology can be expanded to a G-symmetric
monoidal functor.

Homology theory. As stated in the introduction, G-factorization homology
represents homology theory for G-manifolds and as such needs to satisfy some
equivalents of Eilenberg–Steenrod axioms. In particular, it needs to satisfy the
G-⊗-excision property and needs to respect G-sequential unions. Let us break this
down into more detail:

Definition 2.2. [13, 5.1.1] or [16, 9.1.1] LetM be a G-manifold and let [−1, 1]
be a closed interval endowed with the trivial G-action. By G-collar decomposition
(or G-collar gluing), we mean a surjective equivariant map f : M → [−1, 1] such
that the restriction M |(−1,1) → (−1, 1) is a manifold bundle map with a choice of

trivialization M |(−1,1)
∼= M0 × (−1, 1) where M0 = f−1(0). We will denote with

M+ = f−1(−1, 1] and M− = f−1[−1, 1).
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Definition 2.3. Let F : MfldG,f-fr → C be a G-symmetric monoidal functor
such that for every G-manifold M with a G-collar decomposition f : M → [−1, 1]
the induced map F (M−) ⊗F (M0×(−1,1)) F (M+) → F (M) is an equivalence, where
F (M−) ⊗F (M0×(−1,1)) F (M+) is given by the two-sided bar construction. In such
case we say that F satisfies the G-⊗-excision property.

Definition 2.4. Let M be a G-manifold. A G-sequential union of M is a
sequence of open G-submanifolds M1 ⊆ M2 ⊆ · · · ⊆ M with M =

⋃∞

i=1 Mi.

Definition 2.5. Let F : MfldG,f-fr → C be a G-symmetric monoidal functor
and M =

⋃∞

i=1 Mi a G-sequential union of M . Then F induces a map

colimi F (Mi) → F (M).

We say that F respects G-sequential unions if this map is an equivalence.

Finally, we have

Proposition 2.1. [16, 9.2.4 and 9.3.3] Let C be a G-symmetric monoidal

category and let A : DiskG,f-fr → C be an f -framed G-disk algebra. Then the G-
factorization functor

∫

−
A : MfldG,f-fr → C satisfies the G-⊗-excision property and

respects G-sequential unions.

Furthermore, the axiomatic characterization of G-factorization homology [16,
9.4.3] tells us that G-factorization homology accounts for all homology theories
i.e., all G-symmetric monoidal functors that satisfy the G-⊗-property and respect
G-sequential unions.

Naive G-factorization homology. If one wishes to disregard the parametri-
zed structure and consider only the ∞-category of f -framed G-manifolds, which

would be the ∞-category Mfld
G,f-fr
[G/G] when G is finite, then the construction of

the factorization homology is still possible [23]. In such construction there is no
genuine action of G i.e., we have no restriction and conjugation functors since
there is no parametrized structure. Furthermore, a functor from such category
does not carry any information about the G-action, it is just a functor from a
category with G-objects to some other category. Hence, we call this construction
the naive G-factorization homology. Even though it seems like a step down from
the parametrized point of view, this construction does provide some interesting
examples, as we shall see.

Example 2.2. [3, 3.12] The first example that we are going to see is the
simplest one, hence we have left it out of the section dedicated to the applications
of the equivariant factorization homology. Let G be a trivial group. In this case
the construction of the G-factorization homology agrees with the one provided by
Ayala and Francis in [3]. Furthermore, let M be the unit interval [−1, 1]. Note
that M is a manifold with a boundary, hence, we can consider the ∞-category
of one-dimensional oriented disks (possibly) with boundary Diskor1 . Let C⊗ be
a symmetric monoidal category which is ⊗-presentable and A : Diskor1 → C⊗ a
one-dimensional oriented disc algebra. Let us denote (by abuse of notation) with
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A = A((−1, 1)), and with L = A([−1, 1)), R = A((−1, 1]). Embeddings (−1, 1) →֒
[−1, 1) and (−1, 1) →֒ (−1, 1] give R and L a structure of a right and left A-module,
respectively. Furthermore, M admits obvious collar gluing

[−1, 1] ∼= [−1, 1) ∪(−1,1) (−1, 1].

Therefore, the excision property of factorization homology gives
∫

[−1,1]
A ≃ L⊗AR.

Readers not familiar with the notion of a ⊗-presentable ∞-category can safely
ignore it, since it is a technical term, and does not stop us from understanding the
idea behind this example.

3. Applications

In the final section of this paper we will look at some (and certainly not all)
examples of applications of equivariant factorization homology in the literature.

3.1. Ordinary factorization homology. As stated in the previous example,
when G is taken to be a trivial group, the equivariant factorization homology can
be viewed as the (ordinary) factorization homology. There are many applications,
as depicted in [4], hence, we will not dive into every one of them, but will select a
few.

3.1.1. Ordinary and generalized homology theories. Let B = ∗ be a point and
let f : ∗ → BOn, let Spectra be the ∞-category of spectra, and let A : Diskf-frn →
Spectra be an f -framed n-disk algebra. By 2.1 the f -framing on a manifold M
corresponds to the trivialization of the tangent bundle TM ∼= M × R

n ≃ M ,
hence, the factorization homology gives

∫

M
A ≃ Σ∞M ∧ A(Rn) where Σ∞M is

the suspension spectrum of M . In the special case when A(Rn) is chosen to be
the Eilenberg–MacLane spectrum HZ we obtain a spectrum which represents the
ordinary homology theoryH•(M). Moreover, if C is any Abelian group andHC the
Eilenberg–MacLane spectrum of C, factorization homology produces a spectrum
which corresponds to the ordinary homology ofM with coefficients in C, H•(M ;C).

3.1.2. Hochschild homology. Another great example of factorization homology
is the connection with Hochschild homology (see [3, 3.19] or [4, 3.31]). Let M be a
circle S1. If we write S1 as the set {(x, y) ∈ R

2 | x2 + y2 = 1}, then the projection
on the x-axis provides us with a collar gluing of S1 ∼= R ∪R⊔R R presented as in
Figure 1.
Let C⊗ be a nice enough symmetric monoidal ∞-category (in particular, C⊗ needs
to be ⊗-presentable ∞-category), and let A : Diskor1 → C⊗ be an oriented 1-disk
algebra. Note that the orientation on the category of one-dimensional manifolds
is given by a suitable choice of framing [3, 2.2]. In literature, A is also called an
associative algebra object in C⊗. We obtain

∫

S1

A ≃ A(R)⊗A(R)⊗A(R)op A(R)

where the superscript “op” stems from the opposite orientation of the second
R in R ⊔ R from the standard orientation on Euclidean spaces. Additionally,
this is equivalent to the Hochschild homology associated to the algebra A i.e.,
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Figure 1. Collar gluing of the circle

A(R)⊗A(R)⊗A(R)op A(R) ≃ HH•(A). Furthermore, we can make the connection be-
tween the factorization homology and the topological Hochschild homology (THH)
by taking A to be an associative ring spectrum. The action on the circle translates
to the action on THH(A) which serves as a motivation for studying factorization
homology in the equivariant setting, keeping in mind that there is an action of the
group O(2) on S1 and therefore on THH(A).

3.2. Bredon homology and Borel equivariant homology. As ordinary
factorization homology can encode general homology theories via spectra, simi-
lar can be said about the equivariant factorization homology. Let G be a finite
group. In [8, Chapter 5], Bredon defined equivariant (co)homology theories and
later proved that, for every functor A : OG → Ab (where Ab is the category of
Abelian groups) there is a unique equivariant (Bredon) homology theory HG

• (−;A)
such that HG

0 (G/H ;A) = A(G/H). Each such theory is constructed as homology
of a certain chain complex CG

• (−;A). By [23, Section 5.1] every Bredon homology
theory can be realized via equivariant factorization homology

HG
• (M ;A) ≃

∫

M

CG
• (−;A)

where CG
• (−;A) : DiskG → Ch⊕

K
is a G-disk algebra with coefficients in the category

of chain complexes over a field K. Moreover, for every G-disk E viewed as the total
space of a vector bundle E → G/H , we have E ≃ G/H and hence HG

0 (E;A) =
A(G/H). In particular, if A is chosen to be a constant coefficient system at Z i.e.,
A(G/H) = Z for every G/H ∈ OG, then the Bredon homology coincides with the
notion of Borel equivariant homology.

3.3. Real topological Hochschild homology. Let C2 be the cyclic group
of order 2, and let σ be its one-dimensional sign representation (i.e., σ is R with
an action of C2, sending x to −x). Furthermore, regard S1 represented as the set
{(x, y) ∈ R

2 | x2 + y2 = 1} with C2 action as the reflection with respect to the y-
axis. Then there is a C2-equivariant collar gluing on S1 given by S1 ∼= σ

⋃

R⊔C2
R
σ.

Let SpectraC2 be the G-symmetric monoidal category of genuine C2-spectra and
let DiskC2,σ-fr be the C2-symmetric monoidal category of σ-framed one-dimensional
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disks. Then, for A : DiskC2,σ-fr → SpectraC2 we have the result
∫

S1 A ≃ THR(A) of
Horev [13, 7.1.1, 7.1.2] where THR(A) is the topological real Hochschild homology
of A. Moreover, THR(A) admits an action of C2 which can be refined to O(2)
action by [16, 10.3].

3.4. Twisted topological Hochschild homology. Let Cn be a cyclic group
of order n, and let DiskCn,R-fr be the Cn-symmetric monoidal category of R-framed
one-dimensional Cn-disks, with Cn acting trivially on R. Let S1 be a circle with
standard action of Cn (by rotations) and let A : DiskCn,R-fr → SpectraCn . By abuse
of notation, let us write A := A(R). Then, by [13, 7.2.3], we have

(
∫

S1

A

)ΦCn

≃ THH(A;Aτ )

where the superscript ΦCn denotes the geometric fixed points, Aτ is the A − A-
bimodule with twisted multiplication given by first acting on the scalar by the
generator τ ∈ Cn:

A⊗Aτ ⊗A → A, x⊗ a⊗ y 7→ τx⊗ a⊗ y

and where THH(A;Aτ ) is the topological Hochschild homology of A with coeffi-
cients in Aτ . In, particular, this result tells us that THH(A;Aτ ) admits a natural
circle action.

3.5. Equivariant nonabelian Poincaré duality. Equivariant factorization
homology can be used to prove the equivariant version of nonabelian Poincaré
duality: Let G be a finite group, V a G-representation and M a V -framed G-
manifold. Additionally, let X be a pointed G-space such that πk(X

H) = 0 for all
subgroups H < G and all k < dim(V H). It can be shown [11] that the G-functor

Map∗((−)+, X) : MfldG,V -fr → TopG∗ is a homology theory of G-manifolds (i.e., it
satisfies the G-⊗-excision property and respects G-sequential unions) (where the

superscript + denotes the one-point compactification, and where Top
G
∗ represents

theG-∞-category of pointedG-spaces). Hence, we obtain a natural equivalence [11,
Theorem 2.2]

∫

M

ΩV X ≃ Map∗((M)+, X)

where we can write Map∗((−)+, X) : DiskG,V -fr → TopG∗ for a V -framed G-disk
algebra with Map∗((V )+, X)[G/G] ≃ Map∗((V )+, X) = ΩV X . In the case when G
is a trivial group, the upper equivalence can be upgraded into

∫

M

ΩnX ≃ Mapc(M,X)

whereM is a manifold of dimension n, X is n−1-connective space and Mapc(M,X)
is the space of compactly supported maps from M to X . Furthermore, when n = 1,
this equivalence reduces to the Goodwillie’s quasi-isomorphism HH•(ΩX) ≃ LY ,
where LX = Map(S1, X) is the free loop space of X (see 3.1.2 and [10]).
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3.6. Norm construction. The norm construction is the vital tool for un-
derstanding the multiplicative structure on the genuine equivariant stable category
when G is finite. It was first introduced by Hill, Hopkins and Ravenel in their
paper on the Kervaire invariant problem [12]. When G is a compact Lie group
the situation is different and more complicated. Even though there have been
some constructions of norms of particular compact Lie groups (S1 and O(2) to be
precise) in [2] and [1], up until recently, there has not been a general construc-
tion of the norm for compact Lie groups. The first such construction is proposed
in [7] using factorization homology. Let G be a compact Lie group of dimension
n and let U be a G-universe i.e., a countable sum of some set of irreducible G-
representations. Furthermore, let A be a spectrum. By abuse of notation, let us
write A : Disk∗-frn → Spectra for a point-framed n-disk algebra with A(Rn) = A.
We define the absolute norm of A, NG

e A as

NG
e A = IUUG

∫

G

A

where IUUG denotes the point-set change of universe functor from R
∞ = UG to U ,

and where
∫

G
A can be viewed as a G-object by the natural left G-action on G. This

construction gives us a genuine G-spectrum objectNG
e A indexed on the universe U ,

starting from a spectrum object A. Moreover, this construction can be upgraded
to a relative norm construction NG

H for any closed subgroup H < G. In the case
when G = S1, this construction agrees with the relative norm constructed in [2].
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