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ON THE SPECTRUM OF SINGULAR

q-STURM–LIOUVILLE OPERATORS

ON THE WHOLE AXIS

Bilender P. Allahverdiev and Hüseyin Tuna

Abstract. We give some conditions for the self-adjoint operators associated
with the q-Sturm–Liouville expression

τy := −

1

q
D

q−1 (p(x)Dqy(x)) + r(x), −∞ < x < ∞.

to have a discrete spectrum, and investigate the continuous spectra of these op-
erators. We also prove that the regular symmetric q-Sturm–Liouville operator
is semi-bounded from below which is not studied in literature yet.

1. Introduction

Quantum calculus is a generalization of mathematical objects that have the
original object as limits when q → 1. Hence q-calculus is a popular subject. It is
of great importance for its applications in several mathematical areas such as the
calculus of variations, combinatorics, number theory, basic hypergeometric func-
tions, fractal geometry, quantum theory, orthogonal polynomials, statistic physics
and theory of relativity etc. For a deeper understanding of q-calculus we refer the
reader to [1,8,13,19,20,27,33].

The class of self-adjoint operators is one of the important class in the op-
erator theory because they play an important role in quantum mechanics. For
a given self-adjoint operator, a basic question is: What is its spectrum? Spe-
cially, the self-adjoint differential operator are widely studied by many authors
[11,14,15,17,22,23,28,31,34]. The spectrum of a self-adjoint differential opera-
tor is real, consists of discrete spectrum and of continuous spectrum. The spectrum
of such operators depends on the behavior of the coefficients of the corresponding
differential expression.

Recently, in [35], Zhang and Ao have studied the finite spectrum of Sturm–
Liouville problems with transmission conditions dependent on the spectral parame-
ter. In [9], the authors have studied some spectral properties of the Sturm–Liouville
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equation associated with periodic boundary conditions and additional transmission
conditions at one interior singular point. Olgar et al. investigated some spectral
properties of a discontinuous boundary value problem [30]. In [10], Bairamov
et al. studied eigenvalues, spectral singularities, resolvent operator, spectrum and
scattering function of second–order impulsive matrix difference operators. In [21],
the authors investigated the discreteness and some other properties of the spectrum
for the Schrödinger operator. Fulsche and Nursultanov [16] studied the spectral
properties of Sturm–Liouville operators with measure potentials. In [5], the authors
investigated the spectrum of Hahn–Sturm–Liouville operators. In [4], Allahverdiev
and Tuna studied the spectrum of singular Sturm–Liouville operators on unbounded
time scales.

In this paper we extend some results for differential operators obtained in [17]
to the case of q-Sturm–Liouville expression

(1.1) (τy)(x) := −
1

q
Dq−1 (p(x)Dqy(x)) + r(x)y(x), −∞ < x < ∞,

where p, r are real-valued functions defined on R := (−∞, ∞), continuous at zero
(p(x) 6= 0, x ∈ R) and 1

p , r ∈ L1
q,loc(R). We will prove that the regular symmetric q-

Sturm–Liouville operator is semi-bounded from below. Using the splitting method
[17], we will also give some conditions for the self-adjoint operator associated with
the singular expression (1.1) to have a discrete spectrum. Finally, we investigate
the continuous spectrum of this operator. The same problem has been investigated
by the authors on the semi-axis [3].

2. Preliminaries

Now, some preliminary concepts related to quantum analysis and essentials
of operator theory are presented for the convenience of the reader. Following the
standard notations in [6, 25], let q be a positive number with 0 < q < 1, A ⊂ R

and a ∈ A. A q-difference equation is an equation that contains q-derivatives of a
function defined on A. Let y be a complex-valued function on A. The q-difference

operator Dq, the Jackson q-derivative is defined by Dqy(x) = y(qx)−y(x)
qx−x for all

x ∈ A r {0}. Note that there is a connection between q-deformed Heisenberg
uncertainty relation and the Jackson derivative on q-basic numbers (see [32]). In
the q-derivative, as q → 1, the q-derivative is reduced to the classical derivative.
The q-derivative at zero is defined by

Dqy(0) = lim
n→∞

y(qnx) − y(0)

qnx
(x ∈ A),

if the limit exists and does not depend on x. Since the formulation of the extension
problems requires the definition of Dq−1 in the same manner to be

Dq−1 y(x) :=

{
y(x)−y(q−1x)

x−q−1x , x ∈ A r {0},

Dqf(0), x = 0,
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provided that Dqf(0) exists. A right-inverse to Dq, the Jackson q-integration is
given by ∫ x

0
f(t)dqt = x(1 − q)

∞∑

n=0

qnf(qnx) (x ∈ A),

provided that the series converges, and
∫ b

a

f(t) dqt =

∫ b

0
f(t) dqt −

∫ a

0
f(t) dqt (a, b ∈ A).

The q-integration for a function is defined in [18] by the formulas
∫ ∞

0
f(t) dqt = (1 − q)

∞∑

n=−∞

qnf(qn),

∫ 0

−∞

f(t) dqt = (1 − q)

∞∑

n=−∞

qnf(−qn),

∫ ∞

−∞

f(t) dqt = (1 − q)

∞∑

n=−∞

qn[f(qn) + f(−qn)].

A function f which is defined on A, 0 ∈ A, is said to be q-regular at zero if

lim
n→∞

f(xqn) = f(0),

for every x ∈ A. Through the remainder of the paper, we deal only with functions
q-regular at zero. If f and g are q-regular at zero, then we have

∫ a

0
g(t)Dqf(t) dqt −

∫ a

0
f(qt)Dq g(t)dqt = f(a)g(a) − f(0)g(0).

Let L2
q(R be the space of all complex-valued functions defined on R such that

‖f‖ :=

( ∫ ∞

−∞

|f(x)|2dqx

)1/2

< ∞.

The space L2
q(R) is a separable Hilbert space with the inner product

(f, g) :=

∫ ∞

−∞

f(x) g(x) dqx, f, g ∈ L2
q(R)

(see [7]).

Definition 2.1. Let DA denote a subset of the complex Hilbert space H . A
linear operator A is said to be Hermitian if, for all x, y ∈ DA, (Ax, y) = (x, Ay)
holds. A Hermitian operator with a domain of definition dense in H is called a
symmetric operator. An operator A∗ defined on H is called the adjoint of symmetric
operator A if for all x, y ∈ DA, (x, Ay) = (A∗x, y). An operator with a domain of
definition dense in H is said to be self-adjoint if A = A∗. An operator A is said to
be compact if it maps every bounded set into a compact set (see [29]).

Definition 2.2. A complex number λ is called a regular point of the linear
operator A acting in complex Hilbert space H if it satisfies (R1) and (R2) below
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(R1) the inverse Rλ(A) = (A − λI)−1 where I is the identity operator in H exists,
(R2) Rλ(A) is a bounded operator defined on the whole space H .
(R3) Rλ(A) is defined on a set which dense in H .

If Rλ(A) satisfies (R3), then it is called the resolvent of the operator A. All non-
regular points λ are called points of the spectrum of the operator A.

The point spectrum or discrete spectrum σp(A) is the set such that Rλ(A) does
not exist. A λ ∈ σp(A) is called an eigenvalue of A. The spectrum of the operator
A is said to be purely discrete if it consists of a denumerable set of eigenvalues with
no finite point of accumulation. The continuous spectrum σc(A) is the set such
that Rλ(A) exists and satisfies (R3) but not (R2). The residual spectrum σr(A) is
the set such that Rλ(A) exists but does not satisfy (R3) (see [26]).

Theorem 2.1. [26] The residual spectrum σr(A) of a self-adjoint linear oper-

ator acting on a complex Hilbert space H is empty.

Theorem 2.2. [29] All self-adjoint extensions of a closed, symmetric operator

which has equal and finite deficiency indices have one and the same continuous

spectrum.

Definition 2.3. [29] The direct sum A1 ⊕ A2 of two operators A1, A2 in the
spaces H1, H2 is an operator in the space H1 ⊕ H2 of all ordered pairs {x1, x2},
x1 ∈ H1, x2 ∈ H2; its domain of definition is the set of all ordered pairs {x1, x2},
x1 ∈ DA1

, x2 ∈ DA2
, and (A1 ⊕ A2){x1, x2} = {A1x1, A2x2}. It is easily seen that

if A1 and A2 are each self-adjoint operators, then their direct sum A1 ⊕ A2 is also
a self-adjoint operator.

Definition 2.4. [29] A symmetric operator A is said to be semi-bounded
from below if there is a number m such that (Ax, x) > m‖x‖2 for all x ∈ DA.
Similarly, if for all x ∈ DA, there is a number M such that (Ax, x) 6 M‖x‖2, then
A is said to be semi-bounded from above.

Theorem 2.3. [29] If a symmetric operator A, with finite deficiency indices

(n, n), satisfies the condition (Ax, x) > m‖x‖2, x ∈ DA, or the condition (Ax, x) 6
M‖x‖2, x ∈ DA, then the part of the spectrum of every self-adjoint extension of A

which lies to the left of m or to the right of M can consist of only a finite number

of eigenvalues and the sum of their multiplicities does not exceed n.

3. Main Results

Let us consider the linear set Dmax consisting of all vectors y ∈ L2
q(R) such

that y and pDqy are q-regular at zero and τy ∈ L2
q(R). We define the maximal

operator τmax on Dmax by the equality τmaxy = τy. The q-Wronskian of y(.), z(.)
is defined to be Wq(y, z)(x) := y(x)Dqz(x) − z(x)Dqy(x), x ∈ R.

For every y, z ∈ Dmax we have q-Green’s formula (or q-Lagrange’s identity)

∫ q−n

−q−n

(τy)(x) z(x) dqx −

∫ qn

−qn

y(x) (τz)(x) dqx = [y, z](q−n) − [y, z](−q−n), n ∈ N,
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where [y, z](x) denotes the q-Lagrange bracket defined by

[y, z](x) := p(x)
[
y(x)Dq−1 z(x) − Dq−1y(x)z(x)

]

(see [2,7]). It is clear that from q-Green’s formula limits

[y, z](∞) := lim
n→∞

[y, z](q−n), [y, z](−∞) := lim
n→∞

[y, z](−q−n)

exist and are finite for all y, z ∈ Dmax.
Let Dmin be the linear set of all vectors y ∈ Dmax satisfying the conditions

(3.1) [y, z](−∞) = [y, z](∞),

for arbitrary z ∈ Dmax. The operator τmin, that is the restriction of the operator
τmax to Dmin is called the minimal operator and the equalities τmax = τ∗

min holds.
Further (it follows from (3.1)) τmin is closed symmetric operator with deficiency
indices (1, 1) or (2, 2) [2,7,12,29].

Theorem 3.1. If p(x) > 0 (x ∈ [−a, a]), 0 < a < ∞), then the regular operator

τmin acting in L2
q(−a, a) is semi-bounded from below. Further, the negative part of

the spectrum of every self-adjoint extension of τmin consists of not more than a

finite number of negative eigenvalues of finite multiplicity.

Proof. For y ∈ Dmin we have

y(−a) = (pDq−1 y)(−a) = 0, y(a) = (pDq−1y)(a) = 0.

By q-integration by parts, we get

(τminy, y) =

∫ a

−a

τyy dqx =

∫ a

−a

[
−

1

q
Dq−1 (pDqy) + ry

]
y dqx

=

∫ a

−a

[
−

1

q
Dq−1 (pDqy)y + r(x)|y|2

]
dqx

=

∫ a

−a

[
p|Dqy|2 + r(x)|y|2

]
dqx.

We set

v(x, ξ) =

{
1, ξ 6 x

0, ξ > x,
and H(ξ, η) = −

∫ a

−a

r(x)v(x, ξ)v (x, η) dqx.

For y ∈ Dmin we have

y(x) =

∫ a

−a

v(x, ξ)(pDqy)(ξ)

p(ξ)
dqξ.

Hence we get

(3.2) (τminy, y) =

∫ a

−a

|(pDqy)(ξ)|2

p(ξ)
dqξ

−

∫ a

−a

∫ a

−a

H(ξ, η)(pDqy)(ξ)pDqy(η)

p(ξ)p(η)
dqξ dqη.
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Let L2
q,p(−a, a) be the Hilbert space of all complex-valued functions defined on

[−a, a] with the inner product

(f1, f2)1 =

∫ a

−a

f1(x)f2(x)
1

p(x)
dqx.

In L2
q,p(−a, a) we consider the integral operator K with the symmetric kernel

H(ξ, η) :

Kf =

∫ a

−a

H(ξ, η)

p(η)
f(η)dqη where

∫ a

−a

∫ a

−a

|H(ξ, η)|2

p(ξ)p(η)
dqξ dqη < ∞.

Then K is a compact operator in the space L2
q,p(−a, a) [6].

Let ϕ1, ϕ2, ϕ3, dots be a complete orthonormal system of eigenfunctions of the
operator K and λ1, λ2, λ3, . . . be the corresponding eigenvalues. Then we get

(Kf, f)1 =
∞∑

k=1

λk|(f, ϕk)1|2.

As k → ∞, we have λk → 0. Then there is a certain number N such that λk < 1
for k > N . For (f, ϕk)1 = 0, k = 1, 2, . . . , N , we have

(Kf, f)1 =

∞∑

k=N+1

λk|(f, ϕk)1|2 6

∞∑

k=N+1

|(f, ϕk)1|2,

that is,

(3.3) (Kf, f)1 6 (f, f)1.

Let D denote the manifold of all functions y ∈ Dmin which satisfy the conditions

(pDqy, ϕk)1 = 0, k = 1, 2, . . . , N, ; y ∈ Dmin.

By (3.3), we have, for y ∈ D,
∫ a

−a

∫ a

−a

H(ξ, η)(pDqy)(ξ)(pDqy(η))

p(ξ)p(η)
dqξ dqη

6 (KpDqy, pDqy)1 6 (pDqy, pDqy)1 =

∫ a

−a

|(pDqy)(ξ)|2

p(ξ)
dqξ.

From the equality (3.2), we obtain (τminy, y) > 0.
On the other hand, the dimension of the manifold Dmin modulo D is N , and

consequently, the operator τmin is semi bounded from below on the whole manifold
Dmin. By Theorem 2.3, we get the desired result. �

Let H ′ denotes the set of all functions f from L2
q(R) which vanish outside a

finite interval [α, β] ⊂ (−∞, ∞) and D′
min = H ′ ∩ Dmin. Further, let τ ′

min denote
the restriction of the operator τmin to D′

min. Then τmin is the closure of the operator

τ ′′
min, i.e., τ̃ ′

min = τmin [29].
Now we restrict D′

min by imposing the additional conditions

y(−c) = (pDq−1 y)(−c) = 0, y(c) = (pDq−1 y)(c) = 0,
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where c is a fixed point of the interval R. By this restriction, we obtain the manifold
D′′

min. The restriction τ ′′
min of the operator τ ′

min to D′′
min is called the splitting of

the operator τ ′
min at the points −c and c of the interval R. It is clear that

(3.4) τ ′′

min = τ ′

1 ⊕ τ ′

2 ⊕ τ ′

3,

i.e., the operator τ ′′
min is the direct sum of three operators τ ′

1, τ ′
2 and τ ′

3 in the spaces
L2

q(−∞, −c), L2
q(−c, c) and L2

q(c, ∞), where τ ′
1, τ ′

2 and τ ′
3 are generated in these

spaces from the q-Sturm–Liouville expression τ in the same way as τ ′
min was.

If τ1 = τ̃ ′
1, τ2 = τ̃ ′

2 and τ3 = τ̃ ′
3 are the closures of the operators τ ′

1, τ ′
2 and τ ′

3,

then (3.4) implies that τ̃ ′′
min = τ1 ⊕ τ2 ⊕ τ3. If we extend the symmetric operators

τ1, τ2 and τ3 into self-adjoint operators τ1,s, τ2,s and τ3,s in the spaces L2
q(−∞, −c),

L2
q(−c, c) and L2

q(c, ∞) respectively, then the direct sum A = τ1,s ⊕ τ2,s ⊕ τ3,s will

be a self-adjoint extension of the symmetric operator τ̃ ′′
min. The spectrum of the

operator A is the set-theoretic sum of the spectra of τ1,s, τ2,s and τ3,s. Since the

deficiency indices of the operator τ̃ ′′
min are finite, by Theorem 2.2, all its self-adjoint

extensions have one and the same continuous spectrum. Both the operator A and
also each self-adjoint extension τs of the operator τmin are such extensions. Hence,
the continuous parts of spectrum of the two operators A and τs coincide.

Therefore, we have the following theorem.

Theorem 3.2. The continuous parts of the spectrum of every self-adjoint ex-

tension of the operator τmin is the set-theoretic sum of the continuous parts of the

spectra of τ1,s, τ2,s and τ3,s, where τ1,s, τ2,s and τ3,s have been obtained by the

splitting of the operator τmin.

Theorem 3.3. If

lim
x→±∞

r(x) = +∞,(3.5)

p(x) > 0, x ∈ R(3.6)

then every self-adjoint extension τs of the singular operator τmin has a purely dis-

crete spectrum.

Proof. Let N > 0 be an arbitrary number. From (3.5), one can choose
numbers −c and c such that r(x)| > N for x ∈ Rr (−c, c). By condition (3.6), via
q-integration by parts, we obtain (y ∈ Dτ ′

1
)

(τ ′

1y, y) =

∫ −c

−∞

τyy dqx =

∫ −c

−∞

[
−

1

q
Dq−1 (pDqy) + ry

]
y dqx

=

∫ −c

−∞

[
−

1

q
Dq−1 (pDqy)y + r(x)|y|2

]
dqx

=

∫ −c

−∞

p|Dqy|2 + r(x)|y|2dqx > N

∫ −c

−∞

|y|2dqx = N(y, y).

Hence the operator τ ′
1 is bounded from below and its closure τ1 is also bounded from

below by the number N . Therefore, by Theorem 2.3, the half-axis −∞ < λ < N ,
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contains no point of the continuous spectrum of the self-adjoint extension τ1,s of τ1.
Similarly, by condition (3.6), via q-integration by parts, we obtain (y ∈ Dτ ′

3
)

(τ ′

3y, y) =

∫ ∞

c

τyy dqx =

∫ ∞

c

[
−

1

q
Dq−1 (pDqy) + ry

]
y dqx

=

∫ ∞

c

[
−

1

q
Dq−1 (pDqy)y + r(x)|y|2

]
dqx

=

∫ ∞

c

p|Dqy|2 + r(x)|y|2dqx > N

∫ ∞

c

|y|2dqx = N(y, y).

Hence the operator τ ′
3 is bounded from below and its closure τ3 is also bounded from

below by the number N . Therefore, by Theorem 2.3, the half-axis −∞ < λ < N ,
contains no point of the continuous spectrum of the self-adjoint extension τ3,s of τ3.
On the other hand, since the operator τ2 is regular, the spectrum of any self-adjoint
extension τ2,s of τ2 is purely discrete. Hence the half-axis −∞ < λ < N , contains
no point of the continuous spectrum of A = τ1,s ⊕τ2,s ⊕τ3,s. By Theorem 3.2, every
self-adjoint extension τs of the operator τmin has this property. Since the number
N is arbitrary, the spectrum of the operator τs has no continuous part at all. �

Theorem 3.4. Let limx→±∞ r(x) = M and p(x) > 0 (x ∈ R). Then the

interval (−∞, M) contains no point of the continuous spectrum of any, self-adjoint

extension τs of the singular operator τmin; on the contrary, any τs can only have at

most point-eigenvalues on this interval and these can have a point of accumulation

only at λ = M

Proof. If we decompose the operator at the points −c and c such that

r(x) > M − ε for x ∈ R r (−c, c),

then we obtain (τ ′
2y, y) > (M − ε)(y, y). Hence, the part of the spectrum of τ1

lying in the interval (−∞, M − ε) can consist only of a finite number of eigenvalues
of finite multiplicity. Likewise, we obtain (τ ′

3y, y) > (M − ε)(y, y). Consequently,
the part of the spectrum of τ3 lying in the interval (−∞, M − ε) can consist only
of a finite number of eigenvalues of finite multiplicity. On the other hand, by
Theorem 3.1, the operator τ2 is regular and bounded below. Hence its spectrum is
purely discrete; and any point of accumulation of the spectrum τ2,s can only be at
λ = +∞. Thus, from Theorem 3.2, we get the desired result. �

Now, we need following lemma.

Lemma 3.1. If the interval [λ0 − δ, λ0 + δ] contains no point of the spectrum of

a self-adjoint operator A except perhaps for a finite number of eigenvalues each of

finite multiplicity, and if Q is a bounded Hermitian operator satisfying the condition

‖Q‖ < δ, then the point λ0 does not lie in the continuous part of the spectrum of

the operator A + Q.

Proof. See [29]. �



q-STURM–LIOUVILLE OPERATORS 113

Theorem 3.5. Let p(x) ≡ 1 and limx→±∞ |r(x)| = M . Then any interval, of

length greater than 2M , of the positive half-axis contains of the continuous spectrum

of any self-adjoint extension τs of the singular operator τmin.

Proof. Suppose, contrary to our claim, that an interval [λ0 − δ, λ0 + δ] of
the half-axis λ > 0 contains no point of the continuous spectrum of τs, δ > M .
Then, the operator may be decomposed, this interval would contain no point of the
continuous spectrum of any self-adjoint extension of τmin. If we choose the points
−c and c such that |r(x)| 6 M + ε < δ for |x| > c, then, by Lemma 3.1, λ0 can not
belong to the continuous spectrum of the self-adjoint extension of the minimal op-
erator generated by the expression − 1

q Dq−1Dq and the same boundary conditions.

But this is contradiction because the continuous spectrum of last operator covers
the whole of the positive half-axis. �

In particular, for M = 0 we have the following corollary.

Corollary 3.1. Let p(x) ≡ 1 and limx→±∞ |r(x)| = 0. Then the whole

positive half-axis is covered by the continuous spectrum of any self-adjoint extension

τs of the singular operator τmin.

Corollary 3.2. Let p(x) ≡ 1 and

lim
x→±∞

|r(x)| = ρ < ∞, lim
x→±∞

|r(x)| = σ > −∞.

Then any interval, of length greater than (ρ − σ), of the half-axis λ > 1
2 (ρ + σ)

contains the continuous spectrum of any self-adjoint extension τs of the singular

operator τmin.

Proof. For, if r1(x) = r(x) − 1
2 (ρ + σ), then limx→±∞ |r1(x)| = 1

2 (ρ − σ), and
the result follows by replacing r(x) by r1(x), i.e., by applying Theorem 3.5 to the
operator τs − 1

2 (ρ + σ)I. �
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