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CATEGORICAL CENTERS
AND YETTER–DRINFEL’D-MODULES

AS 2-CATEGORICAL (BI)LAX STRUCTURES

Bojana Femić and Sebastian Halbig

Abstract. The bicategorical point of view provides a natural setting for
many concepts in the representation theory of monoidal categories. We show
that centers of twisted bimodule categories correspond to categories of 2-
dimensional natural transformations and modifications between the deloop-
ings of the twisting functors. This explains conceptually the lifting of (rigid)
dualities to centers of twisted bimodule categories. Inspired by the notion of
(pre)bimonoidal functors due to McCurdy and Street and by bilax functors of
Aguiar and Mahajan, we study 2-dimensional functors which are simultane-
ously lax and colax with a compatibility condition. Our approach is build upon
a 2-categorical Yang–Baxter operator. We show how this concept, which we
call a bilax functor, generalizes many known notions from the theory of Hopf
algebras. We propose a 2-category of bilax functors whose 1-cells generalize
Yetter–Drinfel’d modules in ordinary categories. We prove that the 2-category
of bilax functors from the trivial 2-category is isomorphic to the 2-category of
bimonads, and construct a faithful 2-functor from the latter to the 2-category
of mixed distributive laws of Power and Watanabe.

1. Introduction

The concept of a center of a monoid was categorified independently by Majid
in [31] and Joyal and Street in [21]. Since then, it has been extensively studied in
Hopf algebra and category theory, see for example [22] for an overview. One of its
striking features comes from the fact that by passing from sets to categories one
can replace the qualitative question: ‘Do two elements of a monoid commute with
another?’ with a quantitative one: ‘How many suitably coherent (iso)morphisms
exist in a given monoidal category between the tensor product of two objects and
its opposite?’. Such (iso)morphisms are called half-braidings. The center of a
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monoidal category consists of objects of the underlying category with fixed half-
braidings together with morphisms of the base category which satisfy a certain
compatibility relation.

The aim of the present paper is twofold. In the first part, we study the center
construction from the bicategorical perspective. For a monoidal category C let ΣC
denote the induced one-object bicategory, which is called the delooping or suspen-
sion of C. It was observed in [44, page 255], see also [37, Corollary 4.13], that the
center of C is isomorphic to the category of pseudonatural transformations of the
identity 2-functor of ΣC and their modifications. See also the discussion on pages
187–189 of [6]. We extend this bicategorical interpretation to center categories of
bimodule categories, introduced in [38] and also named actegories in [32]. In or-
der to keep our notation concise, we will focus throughout the introduction on the
special case that the bimodule category in question is the regular one. That is C

with tensoring from the left and right as its action.
Given another monoidal E and two lax monoidal functors F,G : E −→ C, we

define the twisted center Z(F,C, G). We show that it can be identified with the
category of 2-dimensional natural transformations between the deloopings of F and
G, see Theorem 3.1. Consequently, twisted centres can be interpreted as the hom
categories of a 2-category Z(E,C), see Theorem 3.2, whose objects are lax functors
ΣE −→ ΣC. While half-braidings need not be isomorphisms in our setting, we
prove that if E and C are autonomous and we restrict ourselves to strong monoidal
functors, their inverses do exist, see Theorem 3.4. In this case, the bicategory
Z(E,C) is compact, (Theorem 3.5), i.e., all 1-cells have adjoints. This result provides
a natural interpretation of certain duality notions between centers of compatible
bimodule categories in [18]. A special instance of our construction is Shimizu’s
bicategory TF(E,C) of tensor functors, see [41], and the result thereof about duals.
Furthermore, we will discuss its relation with the centre of of a bicategory developed
in [34].

In the second part of the paper, we introduce and study 2-categorical functors
which are simultaneously lax and colax with a compatibility relation involving a
Yang–Baxter operator. We call them bilax functors. For monoidal categories such
functors were studied under the names of pre-bimonoidal and bimonoidal functors in
[33], and, in case the domain category is braided, bilax functors in [1]. We show that
2-categorical bilax functors generalize bialgebras in braided monoidal categories and
bimonads in 2-categories, defined with respect to a Yang–Baxter operator. They
furthermore preserve various types of monads, including bimonads and comodule
monads as well as relative bimonad modules. The component functors of a bilax
functor factor on the endo-hom-categories through an analogue of Hopf bimodules,
defined with respect to Yang–Baxter operators.

We record that instead of working with Yang–Baxter operators, one could
equally use local braidings, following the footsteps of [1]. In this case, the gener-
alization and preservation results somewhat differ from the ones that we obtained
and that are listed above.

We establish a 2-category of bilax functors by introducing bilax natural trans-
formations and bilax modifications. Bilax natural transformations are both lax
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and colax natural transformations satisfying a compatibility condition. As such
they generalize the bimonad morphisms from [13] and Yetter–Drinfel’d modules
from braided monoidal categories. Classically, the Drinfel’d center of the category
of modules over a Hopf algebra is monoidally equivalent to its Yetter–Drinfel’d
modules. We will discuss in Section Subsection 5.1 how bilax natural transforma-
tions and bilax modifications generalize Yetter–Drinfel’d modules, but need not
correspond to center categories. Let Bilax(1,K) be the 2-category of bilax functors
whose source is the trivial 2-category 1. We prove that there is a 2-category iso-
morphism between Bilax(1,K) and the 2-category of bimonads from [14]. Finally,
we show that there is a faithful 2-functor Bilax(1,K) →֒ Dist(K) to the 2-category
of mixed distributive laws of [39].

The paper is composed as follows. We first give an overview of bicategories,
deloopings, module and center categories in Section 2. Section 3 provides a higher
categorical interpretation of center categories and studies compactness of the bi-
category of center categories. Bilax functors and their properties are investigated
in section 4. In the last section a 2-category of bilax functors is introduced and its
relations to the 2-categories Bimnd(K) and Dist(K) is shown.

2. Preliminaries: Deloopings and weak twisted centers

We assume that the reader is familiar with the notion of a braided monoidal
category and the corresponding notation of string diagrams (see e.g. [20, 22, 45]),
as well as with the definition of a bicategory, for which we recommend [4, 19].

In this section we give a short summary of bicategories, deloopings of monoidal
categories, module categories, and weak twisted centers. For a more extensive
discussion of module categories we refer the reader to [10].

Briefly, a monoidal category consists of a category C together with a suitably
associative and unital multiplication ⊗ : C×C −→ C implemented by a functor which
is called the tensor product.

A ‘many object’ generalization of monoidal categories is provided by bicate-
gories These can be thought of as higher dimensional categories with hom-categories
between every pair of objects instead of mere sets. The objects of these hom-
categories are called 1-cells and the morphisms 2-cells. Any bicategory K admits
two ways to compose: horizontal composition given by the composition functors

◦Z,Y,X : K(Y, Z)×K(X,Y ) −→ K(X,Z), for X,Y, Z ∈ ObK (objects of K),

and vertical composition induced by the compositions inside the hom-categories.
Instead of identity morphisms, every X ∈ ObK has a unit 1-cell idX ∈ K(X,X).
In general, the horizontal composition of a bicategory is associative and unital
only up to suitable natural isomorphisms. Bicategories where these morphisms
are identities are called 2-categories. Since every bicategory is biequivalent to a
2-category, we will restrict ourselves without loss of generality to the setting of
2-categories.

As hinted at before, there is an intimate relationship between monoidal cat-
egories and bicategories It is provided by considering a monoidal category C as a
bicategory ΣC with one object (which we will usually denote by ∗) and C as its
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unique hom-category. Under this identification, the tensor product of C becomes
the horizontal composition of ΣC, and the monoidal unit becomes the identity 1-cell
id on the unique object of ΣC. The resulting canonical isomorphism of categories
between the category of monoidal categories with certain structure preserving func-
tors and one-object bicategories plus structure preserving 2-dimensional functors is
called delooping:

{

monoidal categories with
lax/colax/strong monoidal functors

}

−→

{

one-object bicategories with
lax/colax/pseudofunctors

}

.

Remark 2.1. While horizontal composition in bicategories is contravariant,
the tensor product of a monoidal category is usually defined covariantly. Since our
focus lies on 2-dimensional categories and in order to avoid confusion, we will also
read tensor products contravariantly. Technically, this means, replacing a monoidal
category (C,⊗) with (C,⊗rev).

Bicategories provide a natural interpretation of the representation theory of
monoidal categories. All endomorphism categories of a bicategory are monoidal
with horizontal composition as tensor product. Similarly, given two objects A,B ∈
ObK of a bicategory with endomorphism categoriesD := K(A,A) and C := K(B,B),
horizontal composition endows M := K(A,B) with the structure of a (C,D)-
bimodule category1. That is, there are two functors

⊲ : C×M −→ M and ⊳ : M×D −→ D

subject to analogous but weakened version of the axioms of bimodules over a
monoid.

Conversely, we can associate to any (C,D)-bimodule category M a two-object
bicategory ΣM, which we call the delooping ofM. We write C andD for its objects.
The hom-categories of ΣM are

ΣM(D,D) = D, ΣM(D,C) =M,

ΣM(C,C) = C, ΣM(C,D) = 1, the trivial category.

Horizontal composition is given by the tensor products of C and D as well as the
left and right action of C and D on M. The relation between (bi)module categories
and bicategories was already observed by Bénabou, [4, Section 2.3].

If the categories C and D coincide, one can define the center of a bimodule
category. The aim of the paper at hand will be the study of these centers and their
interaction with the theory of bicategories in a slightly more general version.

Definition 2.1. Let F : E −→ D and G : E −→ C be lax monoidal functors
and M a (strict) (C,D)-bimodule category over the (strict) monoidal categories C
and D. A left half-braiding of an object M ∈ M relative to F and G is a natural
transformation

σX : M ⊳ F (X) −→ G(X)⊲M, for all X ∈ E,

1(Bi)module categories are also known as actegories, see [32].
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such that for all X,Y ∈ E the following diagrams commute:

(2.1)

M ⊳ F (Y )⊳ F (X) G(Y )⊲M ⊳ F (X)

M ⊳ F (Y ⊗X) G(Y ⊗X)⊲M G(Y )⊲G(X)⊲M

σI⊳ idF (X)

M⊳F 2 idG(Y ) ⊳σX

σY⊗X G2
⊲M

(2.2)

M ⊳ I ∼= I ⊲M G(I)⊲M

M ⊳ F (I)

M⊳F 0

G0
⊲M

σI

Similarly, a right half-braiding onM relative to F and G is a natural transformation

σ̃X : G(X)⊲M −→M ⊳ F (X), for all X ∈ E,

subject to analogous identities.

The left weak center of M relative to F and G is the category Zwl (F,M, G). Its
objects are pairs (M,σ) consisting of an object M ∈ M together with a left half-
braiding σ onM relative to F and G. A morphism between objects (M,σ), (N, τ) ∈
Zwl (F,M, G) is an arrow f ∈ M(M,N) such that

(idG(X)⊲f)σX = τX(f ⊳ idF (X)), for all X ∈ E.

The full subcategory Zsl (F,M, G) of Zwl (F,M, G) whose objects have invertible
half-braidings is called the (strong) left center of M relative to F and G. When the
functors are clear from the context, we will call the latter two categories simply left
weak or strong twisted centers of M, respectively.

We define the right weak and strong twisted center categories Zwr (F,M, G) and
Zsr(F,M, G) in an analogous way.

When C = D = M we set

Zwl (F,G) := Zwl (F,D, G) and Zwr (F,G) := Zwr (F,D, G).

For C a tensor category and F,G tensor functors these present the left and right
version of the twisted center category Z(F,G) studied in [41, Section 3].

If F = G = IdC, we write ZlC(M) := Zsl (Id,M, Id) and ZrC(M) := Zsr(Id,M, Id).
These recover the (left and right) center category from [16].

Lemma 2.1. Suppose G : E −→ C and F : E −→ D are lax monoidal functors and
M is a (C,D)-bimodule category. Then there exists an isomorphism of categories

Ξ: Zsl (F,M, G) −→ Zsr(F,M, G), Ξ(M,σ) = (M,σ−1),

which is the identity on morphisms.

Proof. Suppose that σ is an invertible left half-braiding on an objectM ∈ M.
We show that σ−1 defines a right half-braiding. Precomposing the equation in (2.1)
by (σ−1

Y ⊳ idF (X))(idG(X)⊲σ
−1
X ) and postcomposing by σ−1

Y X yields the desired
compatibility of right half-braidings with the lax functor structures. Analogous
calculations show that σ−1 is compatible with the lax units of F and G and that
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Ξ sends any morphism in the strong left center to a morphism of the strong right
center. The proof is concluded by constructing Ξ−1 in the same spirit as Ξ. That
is, by mapping invertible right half-braidings to their inverses. �

The construction of (left) strong twisted center categories can be seen as a
result of the following composition of 2-functors:

C-D- Bimod
(F,G)
−−−→ E-E- Bimod

ZE−−→ Z(E)-Mod

M 7−→ GMF 7−→ ZE(GMF )

where (F,G) denotes precomposing the left and right action by F and G, respec-
tively, and ZE is defined as in [11, Section 3.4]. The term ‘twisted’ is motivated by
this composition. Namely, if F andG are strong monoidal functors, a C-D-bimodule
category structure is twisted by them into an E-bimodule structure.

3. Categorical centers as a data in a tricategory

At the core of our investigation in this section are (weak) twisted centers and
their interpretation from a higher categorical point of view. We will show that
center categories are hom-categories of hom-bicategories of a particular tricategory.
Namely, the tricategory of bicategories with a single object.

Throughout this section, we fix a monoidal category E and a 2-category K.

3.1. Categorical centers as (co)lax natural transformations. For the
interpretation of center categories from the perspective of 2-categories, we first
recall the definitions of lax and colax functors between bicategories and of lax and
colax natural transformations between the latter ones.

Definition 3.1. A lax functor (F,F2,F0) : K −→ K′ between 2-categories con-
sists of

(1) an assignment ObK ∋ A 7→ F(A) ∈ ObK′,
(2) for all A,B ∈ ObK a local functor FA,B : K(A,B) −→ K′(F(A),F(B)),
(3) a natural transformation

F2
g,f : F (g) ◦

′ F (f) ⇒ F (g ◦ f), for (g, f) ∈ K(B,C)×K(A,B),

(4) a natural transformation F0
A : idF(A) ⇒ F(idA), for A ∈ ObK,

so that F2 and F0 satisfy associativity and unitality laws.
When the natural transformations F2 and F0 are directed in the opposite di-

rection and satisfy coassociativity and counitality laws, one has a colax functor.
One speaks of a pseudofunctor if F2 and F0 are isomorphisms.

Lax transformations can be defined for lax and colax functors. The same holds
for colax transformations, so that there are four variations of definitions, depending
on the situation.

Definition 3.2. Let (F,F2,F0) : K −→ K′ and (G,G2,G0) : K −→ K′ be lax
functors between 2-categories. A colax natural transformation χ : F ⇒ G consists
of
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(1) a 1-cell χA : F(A) −→ G(A) for each object A ∈ ObK, and
(2) for every pair of objects A,B ∈ ObK a collection of 2-cells

{χf : χB ◦ FA,B(f) ⇒ GA,B(f) ◦ χA | f ∈ K(A,B)}

natural in f subject to colax multiplicativity

(3.1)

F(B)

F(A) F(B) F(C) F(A) F(C)

=

G(A) G(B) G(C) G(A) G(C)

F(f) F(g)

χC

G(g)

χBχA

G(f)

G(gf)

F(f) F(g)

F(gf)

G(gf)

χCχA
χf

χg

χgf

F
2

G
2

and colax unitality

F(A) F(A) F(A) F(A)

=

G(A) G(A) G(A) G(A)

χA χA

idG(A)

G(idA)

idF(A) idF(A)

F(idA)

χAχA

G(idA)

id

χidA

F
0

G
0

If the 2-cells of χ are invertible, it is called a pseudonatural transformation. In case
they are identities, one speaks of a strict natural transformation.

By reverting the direction of the 2-cells of χ one obtains the notion of a lax
natural transformation between lax functors.

Definition 3.3. Let F,G : ΣE −→ K be two lax functors. The left weak center
of K relative to F and G is Zwl (F,K,G) := Zwl (F,M,G), where M = K(F(∗),G(∗))
is the bimodule category over C = K(G(∗),G(∗)), D = K(F(∗),F(∗)) whose actions
are given by composition and F := F∗,∗ : E −→ D and G := G∗,∗ : E −→ C are the
unique lax monoidal component functors of F and G.

We may now characterise the objects of a tiwsted center in terms of colax
transformations.

Proposition 3.1. Let E be a monoidal category, F,G : ΣE −→ K two lax func-
tors. The objects of the left weak twisted center Zwl (F,K,G) are canonically in
bijection with colax natural transformations χ : F ⇒ G : ΣE −→ K. Under this
identification, the objects of the strong center correspond to pseudonatural transfor-
mations.



8 FEMIĆ AND HALBIG

Proof. Since the bicategory ΣE has a single object, there is a single 1-cell
component χ∗ : F(∗) −→ G(∗) of χ : F ⇒ G, which corresponds to a distinguished
object Mχ ∈ M. The 2-cell components of χ are arrows χX : Mχ ◦ F(X) −→
G(X)◦Mχ in M natural in X ∈ E and the colax multiplicativity and unity translate
into the commuting diagrams (2.1) and (2.2). The second claim is immediate. �

Suppose M is a (C,D)-bimodule category and F : E −→ D and G : E −→ C

are two lax monoidal functors. Let ιC : ΣC −→ ΣM be the 2-functor given by
ιC(∗) = C and as identity on the hom-categories C −→ ΣM(C,C) = C, and define
ιD : ΣD −→ ΣM similarly. According to the previous theorem, we can interpret
the objects of the twisted centre Zwl (F,M, G) as the colax natural transformations
χ : ιC ◦ ΣF ⇒ ιD ◦ ΣG : ΣE −→ ΣM.

Remark 3.1. An analogous statement to the previous proposition for right
half-braidings can be obtained by considering lax instead of colax natural transfor-
mations between lax functors.

To obtain a bicategorical interpretation of the morphisms in a center category,
we need to recall the definition of modifications.

Definition 3.4. A modification a : χ ⇛ ψ between two colax natural trans-
formations χ, ψ : F ⇒ G : K −→ K′ consists of a family of 2-cells aA : χ(A) ⇒ ψ(A),
indexed by the objects A ∈ ObK, such that for every 1-cell f ∈ K(A,B) we have

F(A) G(A) F(A) G(A)

=

F(B) G(B) F(B) G(B)

χA

F (f) G(f)

χB

ψA

χf

ψA

G(f)F (f)

ψB

χB

ψf

aA

aB

For two lax functors F,G : B −→ B′ among bicategories let Colax(F,G) and
Lax(F,G) denote the categories of colax (respectively lax) natural transformations
and their modifications. Similarly, Pseudo(F,G) denotes the category of pseudo-
natural transformations and their modifications.

Theorem 3.1. Suppose E is a monoidal category and F,G : ΣE −→ K are lax
functors. There are canonical isomorphisms of categories:

Zwl (F,K,G)
∼= Colax(F,G), Zsl (F,K,G)

∼= Pseudo(F,G)

Zwr (F,K,G)
∼= Lax(F,G), Zsr(F,K,G)

∼= Pseudo(F,G).

Proof. We only prove the claim for weak left center categories as the other
cases are analogous. Let χ, ψ : F ⇒ G be colax natural transformations and write
(Mχ, χ), (Nψ , ψ) ∈ Zlw(F,K,G) for their corresponding objects in the weak left
center. Since ΣE is a delooping of a monoidal category, any modification a : χ⇛ ψ
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is defined by a single morphism f : Mχ −→ Nψ satisfying for all X ∈ E the following
identity:

MχF (X)

χX

f

G(X) Nψ

=

MχF (X)

f

ψX

G(X) Nψ.

This is precisely the defining equation of a morphism in the weak center and the
claim follows. �

3.2. The bicategory of center categories. The bicategorical perspective
provides a conceptual understanding why twisted centers can be ‘composed’ and
in particular why ‘F -F -twisted’ center categories are monoidal. Consider the bi-
categories Laxclx(ΣE,K) and Laxlx(ΣE,K) of lax functors ΣE −→ K, (co)lax trans-
formation, and their modifications, see [19, Theorem 4.4.11]2. We may view their
hom-categories as twisted centres. Under this identification, horizontal composi-
tion provides us with a suitable associative and unital way to ‘combine’ centers.
In particular, endomorphism categories, that is, centeres which are twisted by the
same functor from the left and the right, are monoidal.

We write Zwl (E,K) := {Zwl (F,K,G) | F,G : ΣE −→ K} for the collection of
weak left centers of K relative to E. To formulate our next result, we use the

following notation: given two vertically composable 2-cells x
α
⇒ y

β
⇒ z : A −→ B in

a 2-categoryK, we denote their vertical composition in equations by the fraction α
β
.

Theorem 3.2. The collection Zwl (E,K) forms a 2-category. For lax functors
F,G,H : ΣE −→ K, the horizontal composition is

◦F,G,H : Zwl (G,K,H) × Zwl (F,K,G) −→ Zwl (F,K,H)

((N, τ), (M,σ)) 7→
(

N ◦M,
idN ◦σ

τ ◦ idM

)

(g, f) 7→ (g ◦ f)

Proof. The first claim is merely a recapitulation of the fact that we have
Zwl (E,K) ∼= Laxclx(ΣE,K) and that Laxclx(ΣE,K) is a bicategory. By Theorem 3.1,
the objects and morphisms of any weak center are in correspondence with appro-
priate colax natural transformations and modifications. Applying this identifica-
tion, one immediately obtains the above formulas from their respective composition
rules. �

Analogous considerations hold for the bicategory of weak right centers, which
is Zwr (E,K) := Laxlx(ΣE,K).

The consequences of the above result are best exemplified by considering the
bicategory Zwl (E,E) of all twisted weak left centers Zwl (F,E, G) of E. The weak
left analogue Zwl (E) of the Drinfel’d center corresponds to the endo-category on

2We note that the latter bicategory was denoted by Bicat(B,B′) by Bénabou.
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the identity functor of E. The previous result recovers its monoidal structure.
Moreover, it implies that, if only the left or right action of E on itself is twisted, the
resulting center canonically becomes a right, respectively, left module category over
Zwl (E). This gives a theoretical justification to the constructions of [18] involving
the anti-Drinfel’d center and its opposite.

Let us consider the pseudo-pseudo version of the bicategories Laxlx(B,B
′) and

Laxclx(B,B
′). It is a bicategory that we denote by Psps(B,B

′) with hom-categories
Ps(F,G) for pseudofunctors F,G : B −→ B′. It is called Hom(B,B′) by Bénabou.
In the particular case when F = G = IdB we have the center category Z(B) of the
bicategory B introduced in [34].

3.3. The tricategory that encompasses strong center categories. We
write Bicat for the tricategory of bicategories, pseudofunctors, pseudonatural trans-
formations and modifications.

Theorem 3.3. Let Bicat∗ be the full sub-tricategory of Bicat whose objects
are bicategories with a single object. By delooping, its objects can be identified with
monoidal categories, strong monoidal functors correspond to its 1-cells, and for each
pair F,G : C −→ D of such functors the strong center Zsl (F,D, G)

∼= Zsr(F,D, G)
forms the hom-category.

Note that, as explained in [23] and [19, Chapter 11.3], one cannot replace the
1-cells or 2-cells of Bicat with their (co)lax variants.

By further restricting the tricategory Bicat∗ to finite tensor categories (in the
sense of [10]), one has that every hom-bicategory Bicat∗(C,D) is precisely the
bicategory TF(C,D) from [41, Section 3.2], of tensor functors between finite tensor
categories C and D. As the author works in a context of autonomous categories, he
shows that for every hom-category Zwl (F,G) of the bicategory TF(C,D) and every
object (V, σV ) ∈ Zwl (F,G) the transformation σV is invertible ([41, Lemma 3.1]),
and (V, σV ) has a left and a right dual object in Zwl (G,F ). We will generalize this
to 2-categories in Theorem 3.4 and Theorem 3.5.

The idea that half-braidings σ in presence of dual objects are invertible goes
back to [40], where an analogous result was proved for σ being a monoidal natural
transformation F ⇒ G between strong monoidal functors F,G, see also [48]. The
center of a monoidal category was generalized to the center of a monoidal object in
a braided monoidal bicategory B in [43], and in [27, Theorem 9.5], [28] its weak
version was considered. The result of [29, Corollary 5.6] that for a left autonomous
monoidal object in B weak and strong center coincide, generalizes the case of our
Theorem 3.4 when the pseudofunctors F,G are identities. In [43, Proposition 3.1]
it was even shown that when the monoidal bicategory B is moreover left closed
(thus also closed), the center of a monoidal object A in B can be realized as the
bicategorical limit of a certain pseudo-cosimplicial diagram CA defined on A. This
provides the center of a monoidal object in B, and henceforth the monoidal center,
with a Hochschild cohomological construction.

3.4. String diagrams in 2-categories. In Subsection 3.5 and throughout
Section 4 and Section 5 we will use string diagrams for 2-categories (again relying
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on the biequivalence of any bicategory with a 2-category). Our string diagrams are
read from top to bottom and (in the context of 2-categories) from right to left. The
domains and codomains of the strings stand for 1-cells, while the strings themselves
and boxes stand for 2-cells. The 0-cells are to be understood from the context
(reading the 1-cells from right to left). Observe that such string diagrams which
depict 2-cells in a 2-category K acting on the same underlying 0-cells A ∈ ObK

(that is, morphisms in the monoidal categories K(A,A) for every A) correspond
exactly to the string diagrams in the monoidal categories K(A,A).

Let F be a lax functor and G a colax functor. We depict their lax, respectively
colax structures by diagrams in the following way:

F(g) F(f)

✍ ✌
F(gf)

idF(A)

❞
F(idA)

G(gf)

✎ ☞
G(g) G(f)

G(idA)

❞
idF(A)

where g, f are composable 1-cells and A a 0-cell in the domain 2-category. We will
often simplify the notation ◦ for the composition of 1-cells by concatenation.

Observe that a colax transformation between two colax functors can be in-
terpreted as a distributive law between colax functor structures that is moreover
natural in 1-cells. In string diagrams we may write this as follows:

(3.2)

χC F(gf)

☛✟
χg

χf

G(g) G(f)χA

=

χC F(gf)

χgf☛✟
G(g) G(f)χA

;

χAF(idA)

χidA

❞
χA

=

χAF(idA)

❞

χA

;

χB F(x)

F(α)

χy

G(y) χA

=

χB F(x)

χx

G(α)

G(y) χA

for any 2-cell α : X ⇒ y : A −→ B.

3.5. Adjoints in 2-categories. Dualisability plays a prominent role in the
study of monoidal categories and the closely related subject of (extended) topolog-
ical quantum field theories, see [3]. For example, Section 2 of [9] and Section 4 of
[18] discuss and utilize ‘duals’ of bimodule categories and centers. In the follow-
ing, we want to provide a 2-categorical perspective on these constructions, thereby
giving a theoretical underpinning for some of the ad-hoc constructions of [18].

We start by briefly recalling the notion of adjoint 1-cells in 2-categories, see for
example [17, 24]. Let f : A −→ B be a 1-cell in a 2-category K. A left adjoint of
f is a 1-cell u : B −→ A together with two 2-cells η : idA −→ uf and ε : fu −→ idB
such that

Idf ◦η

ε ◦ Idf
= idf and

η ◦ Idu
Idu ◦ε

= idu .

Similarly, a right adjoint of f is a 1-cell v : B −→ A together with two 2-cells η̄ : idB
−→ fv and ε̄ : vf −→ idA such that

Idv ◦η̄

ε̄ ◦ Idv
= idf and

η̄ ◦ Idf
f ◦ ε̄

= idf .
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In string diagrams we will write η =
☛✟

and ε = ✡✠, and they satisfy the
laws:

u☛✟
✡✠

u

= Idu and

f

☛✟
✡✠

f

= Idf .

Pseudofunctors F : K −→ K′ preserve (and reflect) adjoints and we have:

(3.3)
F(f) F(u)

✍ ✌=

F(f) F(u)

✍ ✌
F(ε)

❞
,

✎ ☞
F(u) F(f)

=

❞
F(η)✎ ☞

F(u) F(f).

In the aforementioned [18], certain trace-like morphisms were considered in
order to implement pivotal structures on the Drinfel’d centers. This involves a
‘lift’ of the notion of duals, i.e., adjoints, to the setting of centers of bimodule
categories. With our interpretation of Zwl (E,K) = Laxclx(ΣE,K) in Theorem 3.2
as a bicategory, for a monoidal category E and a bicategory K, we can now derive
a more conceptual version of this construction.

Definition 3.5. We refer to a 2-category K as compact if all 1-cells in K have
left and right adjoints.

The most prominent example of a compact 2-category is given by the delooping
ΣE of an autonomous monoidal category E. We will prove at the end of this
section that the full sub-bicategory Z

w−ps
l (E,K) whose objects are pseudofunctors

is compact.
The following result is a 2-categorical interpretation of the fact that the half-

braidings over autonomous monoidal categories are automatically invertible, see
[41, Lemma 3.1].

Theorem 3.4. Let K be a compact 2-category and E an autonomous monoidal
category. For any pair of pseudofunctors F,G : ΣE −→ K, the weak and strong cen-
ters coincide. Moreover, the inverse of a left half-braiding is a right half-braiding,
that is: Z

w−ps
l (F,K,G) ∼= Z

s−ps
l (F,K,G) ∼= Zs−psr (F,K,G) ∼= Zw−ps

r (F,K,G).

Proof. For the first claim it suffices to show that the component 2-cells of
any colax natural transformation between pseudofunctors χ : F ⇒ G are invertible.
Hereto, we fix an object X ∈ E and write X∗ for its left adjoint. Starting from
the left-hand side below and applying the left equality in (3.3), the coherence of
χ with the functor’s multiplicativity, naturality of χ with respect to εX and the
coherence of χ with respect to the functor’s counitality we reach the equality with
the right-hand side:

DχF(X)F(X∗)

χX

χX∗

✡✠
Dχ

=

Dχ F(X) F(X∗)

✍ ✌

Dχ.
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Then the 2-cell:

γX :=

G(X) Dχ ☛✟
χX∗

✡✠
Dχ F(X)

is clearly a left inverse of χX : Dχ ◦ F(X) −→ G(X) ◦Dχ. The analogous reasoning,
but this time using the coherence of χ with the comultiplicativity and unitality of
the functors, shows that γX is also a right inverse of χX . The last statement is
proved directly. �

Our next result states that adjoints can be ‘lifted’ to weak centers.

Theorem 3.5. Suppose E to be an autonomous monoidal category and K to be
a compact 2-category. Then the full sub-bicategory Z

w-ps
l (E,K) ⊂ Zwl (E,K) whose

objects are pseudofunctors is compact.

Proof. Let(M,χ) ∈ Z
w-ps
l (F,K,G) be a 1-cell of Zw-psl (E,K). We show that

it has a right adjoint living in Z
w-ps
l (G,K,F). The case of left adjoints is analogous.

Due to Theorem 3.4, the half-braiding χ, i.e., the 2-cells χX : M◦F(X) −→ G(X)◦M ,
is invertible. We utilize this fact, to define a half-braiding on ∗M as shown in the
next diagram

σX :=

∗M G(X)

☛✟
χ
−1
X

✡✠
F(X) ∗M.

A direct computation shows that it satisfies the Equations (2.1) and (2.2). For
example, we have

∗M G(Y ) G(X)

☛✟
χ
−1
Y

☛✟
✡✠ χ

−1
X

✡✠
✍ ✌

F(Y⊗X) ∗M

=

∗M G(Y )G(X)

☛✟
χ
−1
X

χ
−1
Y

✡✠✡✠
F(Y⊗X) ∗M

=

∗M G(Y )G(X)

✍ ✌☛✟
χ
−1
Y⊗X

✡✠
F(Y⊗X)∗M.

To conclude the proof, we show that the unit η : id −→M ◦∗M as well as the counit
ε : ∗M ◦M −→ id lift to morphisms in the center category Z

w-ps
l (G,K,F). For the

counit this follows from the computation depicted below.
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∗M M F(X)

χX

☛✟
χ
−1
X

✡✠ ✡✠
F(X)

=

∗M M F(X)

χX

χ
−1
X

✡✠
F(X)

=

∗M M F(X)

✡✠

F(X)

An analogous argument shows that the unit also becomes a morphism in the center.
�

4. Bilax functors

We are interested in functors on bicategories that are both lax and colax but not
necessarily pseudofunctors. Likewise, we are interested in natural transformations
that are both lax and colax, but not necessarily pseudonatural transformations,
as well as in their modifications. In particular, we introduce the notions of a
bilax functors, bilax natural transformations and bilax modifications. We formulate
them for 2-categories, just to avoid the use of associators and unitors, but the
corresponding definitions for bicategories can be formulated in a straightforward
fashion. To that end, we fix 2-categories K and K′. In this section we introduce
bilax functors, and leave the remaining two notions for the next section.

4.1. Bilax functors. We reiterate that we will often simplify the notation ◦
for the horizontal composition of 1- and 2-cells by concatenation.

Definition 4.1. Let F : K −→ K′ be a 2-functor. A Yang–Baxter operator for
F consists of a collection of 2-cells νg,f : F(g)F(f) ⇒ F(f)F(g) in K′, natural in
1-endocells f, g of K, which satisfy the Yang–Baxter equation

(4.1)

F(h) F(g)F(f)

νh,g

νh,f

νg,f

F(f) F(g)F(h)

=

F(h)F(g) F(f)

νg,f

νh,f

νh,g

F(f)F(g) F(h)

for all 1-endocells f, g, h.
By a Yang–Baxter operator of K we mean a Yang–Baxter operator c for the

identity 2-functor Id: K −→ K, which additionally satisfies cidA,idA = IdidA for all
A ∈ ObK. We reserve the notation c for a Yang–Baxter operator on the identity
2-functor on K.

For 2-categories K = ΣC where C is a braided monoidal category, a class of
Yang–Baxter operators c is given by the braiding(s) of C.

Definition 4.2. Assume that K possesses a Yang–Baxter operator c. A bilax
functor is a pair (F, ν) : (K, c) −→ K′ where F : K −→ K′ is simultaneously a lax and
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a colax functor and ν is a Yang–Baxter operator of F, meaning that apart from
rule (4.1) two additional groups of rules hold: left and right lax distributive laws

(4.2)

F(h)F(g) F(f)

✡✠
νhg,f

F(f) F(hg)

=

F(h)F(g)F(f)

νg,f

νh,f

✡✠
F(f) F(hg)

,

F(f)

❞
ν1,f

F(f)F(id)

=

F(f)

❞

F(f)F(id)

;

F(h)F(g) F(f)

✡✠
νh,gf

F(gf) F(h)

=

F(h)F(g) F(f)

νh,g

νh,f

✡✠
F(gf) F(h)

,

F(f)

❞
νf,1

F(id)F(f)

=

F(f)

❞

F(id)F(f)

and left and right colax distributive laws

(4.3)

F(f) F(hg)

νf,hg☛✟
F(h)F(g)F(f)

=

F(f) F(hg)

☛✟
νf,h

νf,g

F(h)F(g)F(f)

,

F(f)F(id)

νf,1

❞
F(f)

=

F(f)F(id)

❞

F(f)

;

F(gf) F(h)

νgf,h☛✟
F(h)F(g) F(f)

=

F(gf) F(h)

☛✟
νf,h

νg,h

F(h)F(g) F(f)

,

F(id)F(f)

ν1,f

❞
F(f)

=

F(id)F(f)

❞

F(f)

,

and additionally the bilaxity condition

(4.4)

F(gf) F(hk)

☛✟☛✟
νf,h

✡✠✡✠
F(gh) F(fk)

=

F(gf) F(hk)

✍ ✌
F(1c1)✎ ☞

F(gh) F(fk)

,

❞ ❞

F(idA)F(idA)

=
❞

✎ ☞
F(idA)F(idA)

,

F(idA)F(idA)

❞ ❞
=

F(idA)F(idA)

✍ ✌
❞
,

❞
❞= IdidA

holds for 1-cells A
k
−→ B

h
−→ B

f
−→ B

g
−→ C.

Observe that the unit laws in (4.2) (or the counit laws in (4.3)) together with
the fourth rule in (4.4) imply

F(f)

❞
ν1,f

❞
F(f)

= IdF(f) =

F(f)

❞
νf,1

❞
F(f).
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We record for later use that the unit laws of (4.2) (or the counit laws of (4.3)) imply

(4.5)

F(id)

❞
ν1,1

❞
F(id)

=

F(id)

❞
❞

F(id)

=

F(id)

❞
ν1,1

❞
F(id).

The term ‘distributive law’ in Equations (4.2) and (4.3) is derived from [12,
Definition 3.1]. Furthermore, monads and lax monoidal functors on monoidal cate-
gories can both be interpreted as monoids: the former are monoids in endofunctor
categories, while the latter are monoids under Day convolution. In accordance with
this suggestive similarity we use the term ‘distributive law’ also for pseudonatural
transformations on lax/colax/bilax functors.

Let (K, c) and (K′, d) be 2-categories with their respective Yang–Baxter op-
erators, and assume that a bilax functor (F, ν) is given acting between them. If
νf,g = dF(f),F(g) for all composable 1-endocells f, g in K, we will say that F is a
bilax functor with a compatible Yang–Baxter operator, and we will simply write
F : (K, c) −→ (K′, d). In the case that the relation between ν and d is not known,
we will write (F, ν) : (K, c) −→ K′, as in Definition 4.2.

Given a bilax functor (F, ν) the functors on endo-hom-categories

(4.6) FA,A : K(A,A) −→ K′(F(A),F(A))

are pre-bimonoidal in the sense of [33, Section 2], where we rely on the strictification
theorem for monoidal categories. If instead of the Yang–Baxter operators one works
with braidings on the endo-hom categories, then the functors FA,A are bilax as in
[1, Section 19.9.1]. This inspired the terminology in Definition 4.2. While the
analogues of the coherence conditions (4.2) and (4.3) do not appear explicitly in
[33, Section 2], we incorporate them in accordance with the discussion in [1, Section
19.9.1] in our definition. Accordingly, we recover a ‘braided bialgebra’ from [45,
Definition 5.1], as we will show further below. In the situation F : (K, c) −→ (K′, d)
(i.e., that ν is compatible with d), the functors FA,A are bimonoidal in the sense of
[33, Section 2]. The other way around, we clearly have:

Example 4.1. Let (C,ΦC) and (D,ΦD) be braided monoidal categories. We
identify their braidings with Yang–Baxter operators c and d on their delooping
categories ΣC and ΣD, respectively. Any bilax functor F : (ΣC, c) −→ (ΣC, d) with
a compatible Yang–Baxter operator is a bimonoidal functor in the sense of [33,
Section 2].

Example 4.2. Let (C,Φ) be a braided monoidal category and 1 the trivial 2-
category (it has a single 0-cell and only identity higher cells). Any bilax functor F : 1
−→ ΣC with invertible ν which coincides with Φ can be identified with a bialgebra
in C. To see this, note that F determines and is determined by a 1-cell in ΣC, i.e.,
an object B of C, and a (co)multiplication and (co)unit on that 1-cell, which are
subject to (co)associativity and (co)unitality due to F being lax and colax. On
the other hand, c of the trivial 2-category is trivial: it is the identity 2-cell on the
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identity 1-cell on ∗. Then the equations (4.4) recover bialgebra axioms on F(id∗).
(The rest of axioms of the bilax functor are automatically fulfilled by the braiding,
and do not contribute any additional information.)

If moreover F is a pseudofunctor, then it is trivial: the obtained bialgebra
is isomorphic to the monoidal unit of C. This can be proved considering the lax
unitality structure of F.

The following result is straightforwardly proved, see also [33, Proposition 3.9].

Lemma 4.1. Let F : (K, c) −→ (K′, d) and G : (K′, d) −→ (K′′, e) be compatible
bilax functors. Then GF : (K, c) −→ (K′′, e) is a compatible bilax functor with a

Yang–Baxter operator νg,f := νG
F(g),F(f), where ν

G is a Yang–Baxter operator of G

and g, f are 1-endocells of K.

4.2. Bimonads. The theory of monads and comonads in the context of 2-
categories was introduced by Street in [42]. Recall that a monad in K, is a 1-
endocell t ∈ K(A,A) endowed with 2-cells µ : tt −→ t and η : idA −→ t subject
to associativity and unitality conditions. Dually, that is, swapping the direction
of the structure 2-cells, one obtains the notion of a comonad in K: a 1-endocell
endowed with a coassociative and counital comultiplication. In order to differenti-
ate notations for (co)lax functors and (co)monad structures, we will represent the
multiplication and unit of a monad as well as the comultiplication and counit of a
comonad by:

✡✠s
,

s
,

☛✟s
, s .

One shows in a straightforward manner that lax functors preserve monads and colax
functors preserve comonads. Specifically, for a monad t in K and a lax functor F : K
−→ K′, and a comonad d in K and a colax functor G we have the following monad
and comonad structures:

F(t) F(t)

✍ ✌s

F(t)

=

F(t) F(t)

✍ ✌
F(∇)

F(t)

,

s

F(t)

=

❞
F(η)

F(t)

,

F(d)

✎ ☞s

F(d) F(d)

=

F(d)

F(∆)✎ ☞
F(d) F(d)

,

F(d)

s
=

F(d)

F(ε)

❞
.

We are going to introduce bimonads in 2-categories with respect to Yang–
Baxter operators. Observe that their 1-categorical analogue is different from the
bimonads of [35] and [36] in ordinary categories, but they are a particular instance
of τ -bimonads and bimonads in 2-categories from [14]. Whereas bimonads in [36]
are opmonoidal monads on monoidal categories, bimonads in [35] are monads and
comonads on a not necessarily monoidal category with compatibility conditions
that involve a distributive law λ. The bimonads in [14, Definition 7.1] generalize
the latter to 2-categories and are equipped with an analogous 2-cell i.e., distributive
law λ. The τ -bimonads that we also introduced in [14], are a particular case of
bimonads, where the 2-cell λ is given in terms of a 2-cell τ which is a distributive
law both on the left and on the right, both with respect to monads and comonads.
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In the special case of a Yang–Baxter operator coming from a braiding one gets
examples à la [35].

Definition 4.3. Let (K, c) be a 2-category with a Yang–Baxter operator c and
suppose that b ∈ K is a 1-endocell endowed with a monad and comonad structure.
We call b a c-bimonad if cb,b is a distributive law both on the left and on the right,
both with respect to monads and comonads, and the following compatibilities hold:

(4.7)

b b

☛✟s ☛✟s
cb,b

✡✠s ✡✠s

b b

=

b b

✍ ✌s
✎ ☞s

b b

,

b b

s s
=

b b

✡✠s
s
,

s s

b b

=

s

☛✟s

b b

,
s
s = IdidA .

Obviously, for any object A ∈ (K, c) one has that idA is a c-bimonad. The
following observation is inspired by Bénabou:

Lemma 4.2. There exists a bijection between c-bimonads in (K, c) and compat-
ible bilax functors 1 −→ (K, c). It is given by mapping any c-bimonad b : A −→ A in
(K, c) to the bilax functor T : 1 −→ K with T(id∗) = b, whose bilax structure 2-cells
agree with the respective 2-cells of the c-bimonad b.

Proof. As observed by Bénabou, a lax functor from 1 to K defines and is
defined by a monad in K. Likewise, the colaxity of T : 1 −→ K is equivalent to T(id∗)
being a comonad. Equations(4.2) and (4.3) correspond to the four distributive
laws of cb,b with b = T(id∗) and the bilaxity conditions given in (4.4) correspond
to conditions (4.7). Such a bilax functor is also a τ -bimonad in the sense of [14,
Definition 7.1] (it is a monad and a comonad with a monad-morphic and a comonad-
morphic distributive law on both sides, in the sense of (4.2) and (4.3)). �

Similarly, we clearly have:

Lemma 4.3. Any bilax functor (T, ν) : 1−→K determines a ν-bimonad T(id∗)=b.

Theorem 4.1. Let (F, ν) : (K, c) −→ K′ be a bilax functor and b ∈ K a c-
bimonad. Then F(b) is a ν-bimonad in K′. That is, it satisfies the last three
axioms of (4.7) and a variant of the first axiom shown below:

F(b) F(b)

☛✟s ☛✟s
νb,b

✡✠s ✡✠s

F(b) F(b)

=

F(b) F(b)

✍ ✌s
✎ ☞s

F(b) F(b).

Moreover, F(b) is a τ-bimonad in the sense of [14].
Similarly, for F : (K, c) −→ (K′, d) a compatible bilax functor F(b) is a d-bimonad.
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Proof. The claim follows by the naturality of the (co)lax structure of F with
respect to the 2-cells from the (co)monad structures of b. (For the three compat-
ibilities of the (co)unit structures for F(b), alternatively, apply F(ηb) and F(εb)
at suitable places in the last three equations in (4.4) and use the naturality of the
(co)lax structure of F.) The penultimate statement follows from (4.2) and (4.3). �

Example 4.3. Given a bilax functor (F, ν) : (K, c) −→ K′, or a compatible bilax
functor F : (K, c) −→ (K′, d), we have for all A ∈ ObK that F(idA) is a ν-bimonad,
respectively d-bimonad in K′.

Given that the notion of a Yang–Baxter operator is more general than that of
a braiding, a ν-bimonad generalizes the notion of a bialgebra. Moreover, we have
that the notion of a bilax functor F : K −→ K′ recovers that of a ‘braided bialgebra’
from [45, Definition 5.1], in the case K = ΣC, where C is a monoidal category
with a single object. (Another direction of generalization of the notion of a braided
bialgebra of Takeuchi can be found in [2] in the notion of a weak braided bialgebra
in a monoidal category.)

Example 4.4. Let (K, c) and (K′, d) be two 2-categories with their respective
Yang–Baxter operators, and let b : A0 −→ A0 be a d-bimonad in K′. We define
Fb(A) = A0,Fb(x) = b,Fb(α) = Idb for all objects A, 1-cells x and 2-cells α
in K. Then Fb is a bilax functor with νf,g = db,b for all 1-endocells f, g in K.
(Alternatively, instead of the Yang–Baxter operator d in K′ one could require a
Yang–Baxter operator ν on Fb, take a ν-bimonad b and obtain a bilax functor
(Fb, ν).)

The following claim is directly proved:

Lemma 4.4. For a comonad d : A −→ A and a colax transformation between
two colax functors χ : F ⇒ G it holds:

χA F(d)

☛✟s
χd

χd

G(d) G(d)χA

=

χA F(d)

χd☛✟s

G(d) G(d)χA

;

χA F(d)

χd

s
χA

=

χA F(d)

s

χA

.

Monads and comonads in K can act on other 1-cells of K. That is, for example
a left module over a bimonad b : A −→ A is a 1-cell x : A′ −→ A endowed with
a left action ⊲ : bx ⇒ x of b (in [13, Definition 2.3] the axioms are expressed in
string diagrams). Note that in category theory, what we call a b-(co)module is also
referred to as a b-(co)algebra, see for example [25].

Theorem 4.2. Let F,G be two bilax functors and b : A −→ A a c-bimonad in
K (indeed, a monad and comonad satisfying the two last identities in (4.7)).

For a colax transformation φ : F ⇒ G of colax functors, (4.8) defines a left
G(b)-comodule structure on φ(A).
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Dually, for a lax transformation ψ : F ⇒ G of lax functors, (4.9) defines a left
G(b)-module structure on ψ(A).

(4.8)

φA

✏✏

G(b) φA

: =

φA

❞
φidA

G(η)

G(b) φA

nat.
=

φA

s
φb

G(b) φA

(4.9)

G(b) ψA

PP

ψA

: =

G(b) ψA

G(ε)

ψidA❞
ψA

nat.
=

G(b) ψA

ψb

s
ψA

Proof. We indicate the steps of the proof for the comodule structure. Start-

ing from

✏✏

✏✏

apply first the second rule in (4.4), then the first rule in (3.2),

naturality of
☛✟

, naturality of χ, third rule in (4.7) for b, and lastly naturality
of χ.

For the counitality, starting from

✏✏

s apply first the fourth rule in (4.7), the

second rule in (3.2), and lastly the fourth rule in (4.4). �

For F = G acting on the trivial 2-category K = 1, and φ and ψ being endo-
transformations, Theorem 4.2 recovers [13, Proposition 2.4], proved for 2-(co)mon-
ads and their distributive laws. The latter is a 2-categorical formulation for a fact
possibly used in (braided) monoidal categories by different authors, but we are not
aware of an exact reference.

It is important to note that modules/comodules over a c-bimonad in K do not
form a monoidal category (unless the Yang–Baxter operator c is a half-braiding).

4.3. Module comonads, comodule monads and relative bimonad mo-
dules. In [25] the notion of a wreath was introduced as monad in the free com-

pletion 2-category EMM (K) of the 2-category Mnd(K) of monads in K under the

Eilenberg–Moore construction. Dually, cowreaths are comonads in EMC(K), where
the latter is the analogous completion of the 2-category Comnd(K) of comonads. In
[13] the first author introduced the 2-category bEM(K) so that there are forgetful

2-functors bEM(K) −→ EMM (K) and bEM(K) −→ EMC(K). Moreover, in loc. cit.
biwreaths were introduced as bimonads in bEM(K). Biwreaths as a notion inte-
grate both wreaths and cowreaths as well as their mixed versions: mixed wreaths
and mixed cowreaths. In particular, a biwreath also behaves like a ‘(co)module
(co)monad’ with respect to monad-morphic or comonad-morphic distributive law
in K, where the highlighted notions in the 2-categorical setting were introduced in
[13].
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In the present paper, similarly to the above-mentioned idea (see diagrams (67)
and (65) of loc. cit.), but now with respect to Yang–Baxter operators, we will
consider the notions that we introduce in the definition below.

For the sake of examples that we will study further below, we record that in
[13] the 2-category Bimnd(K) of bimonads in K (with respect to distributive laws)
was defined, so that there are inclusion and projection 2-functors EB : Bimnd(K)
−→ bEM(K) and π : bEM(K) −→ Bimnd(K) which are identities on 0- and 1-cells.
In [14] we have considered a variation of the 2-category Bimnd(K) We will recall
it in Example 5.1.

Definition 4.4. Let b : A −→ A be a c-bimonad in a 2-category (K, c) with
a Yang–Baxter operator. Let d : A −→ A be a comonad and a right b-module,
and t : A −→ A a monad and a right b-module. We say that d is a (right) module
comonad if the two equations

d b

☛✟s ☛✟s
cd,b

✏✏ ✏✏

d d

=

d b

✏✏

✎ ☞s

d d

,

d b

✏✏

s
=

d b

s s

hold. We say that t is a (right) comodule monad if the two equations below hold:

t t

PP PP

cb,t

✡✠s ✡✠s

t b

=

t t

✍ ✌s

PP

t b

,

s
PP

t b

=

s s

t b.

The left-hand side versions of these notions can be clearly deduced.
We continue with some simple yoga of (co)lax and bilax functors. Consider

1-cells:
✲t

A A✲

d
B✲x in K, where t is a monad, d is a comonad and x is a right

t-module (via a 2-cell ⊳) and a right d comodule (via a 2-cell ρ). Recall that, as we
have already used before, lax functors preserve monads and colax functors preserve
comonads. Given a lax functor F and a colax functor G one has that F(x) is a right
F(t)-module and a right G(d)-comodule with structure 2-cells:

(4.10)

F(x) F(t)

✏✏

F(x)

=

F(x) F(t)

✍ ✌
F(⊳)

F(x)

,

G(x)

PP

G(x) G(d)

=

G(x)

F(ρ)✎ ☞
G(x) G(d).

The analogous claims hold on left sides.

Theorem 4.3. Bilax functors F : (K, c) −→ (K′, d) with compatible Yang–
Baxter operators preserve module comonads and comodule monads.
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Proof. The arguments for showing that F preserves comodule monads are
analogous to proving that it maps module comonads to module comonads. There-
fore, we will restrict ourselves to the latter. Let b : A −→ A be a bimonad in (K, c)
and x : A −→ A a b-module comonad. The bilaxity of F implies that F(b) is a
d-bimonad with an action on the comonad F(x). Hence, we only have to show that
the first two compatibility conditions in Definition 4.4 hold. Using the functoriality
of F we have:

F(x) F(b)

☛✟s ☛✟s
dx,b

✏✏ ✏✏

F(x) F(x)

=

F(x) F(b)

F(∆d) F(∆b)

✍ ✌
F(1c1)✎ ☞

F(⊳) F(⊳)

F(x) F(x)

=

F(x) F(b)

✍ ✌
F(∆d∆b)

F(1c1)

F(⊳⊳)✎ ☞
F(x) F(x)

=

F(x) F(b)

✍ ✌
F(⊳)

F(∆d)✎ ☞
F(x) F(x)

=

F(x) F(b)

✏✏✎ ☞s

F(x) F(x).

The compatibility of the action of F(b) with the counit of F(x) is an immediate
consequence of F being lax. �

For the next property we introduce the following notion:

Definition 4.5. Let b : A −→ A be a c-bimonad in a 2-category (K, c) with a
Yang–Baxter operator and let t : A −→ A be a right b-comodule monad. A right
t-module and a right b-comodule x : A −→ B is a right relative t-b-module if the
following relation holds:

x t

PP PP

cb,t

✏✏ ✡✠s
x b

=

x t

✏✏

PP

x b.

Morphisms of right relative t-b-modules are right t-linear and right b-colinear 2-cells
in K. Analogously, one defines a left relative t-b-module. If t = b we call x a relative
bimonad module.

The above notions correspond to those of relative Hopf modules [7] and Hopf
modules [30] in braided monoidal categories, which in turn are categorifications of
Hopf modules introduced in [26]. Obviously, b itself is a relative bimonad module.

Example 4.5. Let F : (K, c) −→ (K′, d) be a bilax functor with compatible
Yang–Baxter operator. For any 1-cell x : A −→ B the 1-cell F(x) is a left relative
bimonad module over F(idB) and a right relative bimonad module over F(idA).
This follows from the first equation in (4.4) by setting idB, idB, idB, x, respectively
x, idA, idA, idA for the 1-cells g, f, h, k.

Analogously to Theorem 4.3 we get the following result:

Theorem 4.4. Bilax functors F : (K, c) −→ (K′, d) with compatible Yang–
Baxter operators preserve relative bimonad modules.
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Hopf bimodules, for Hopf algebras over a field, appeared in the construction of
bicovariant differential calculi over a Hopf algebra in [47]. They were generalized
in [5, Section 4.2] to the context of a braided monoidal category C. For a bialgebra
B in C a Hopf bimodule is a B-bimoduleM in C which is moreover a B-bicomodule
in the monoidal category of B-bimodules BCB (for the structures on B itself the
regular (co)action on B and the diagonal action on tensor product of comodules
are used). This means that both left and right B-comodule structures of M are
left and right B-bimodule morphisms, meaning that there are four conditions to
be fulfilled. Together with simultaneously B-linear and B-bicolinear morphisms
Hopf bimodules make a category denoted by B

BC
B
B . We mark that the name ‘Hopf

bimodules’ is somewhat misleading, as the Hopf structure on the bialgebra B is not
necessary here.

Substituting a braided monoidal category C and a bialgebra B in it with a
monoidal category with a Yang–Baxter operator c and a c-bimonad in it, we can
consider the analogous category of Hopf bimodules BB(C, c)

B
B, where C and B now

have these new meanings.

Corollary 4.1. Let F : (K, c) −→ (K′, d) be a bilax functor with compatible
Yang–Baxter operator. Functors (4.6) for every A ∈ ObK factor through the cate-
gory of Hopf bimodules over the d-bimonads F(idA) in (K′(F(A),F(A)), d).

Proof. For any 1-endocell x : A −→ A we should check if F(x) satisfies the
four relations. Two of them are satisfied by Example 4.5, which means that the
left coaction is left linear and that the right coaction is right linear. The other
two, meaning the two mixed versions of compatibilities, one gets by setting x = f ,
respectively x = h, and the resting three 1-cells to be identities, in the first equation
in (4.4).

To check the claim on morphisms, observe that for any 2-cell α : X −→ y in
K, i.e., morphism in K(A,A), F(α) is F(idA)-(co)linear by the naturality of the
(co)lax structure of F. �

We record here some direct consequences for a bilax functor (F, ν) from the
first equation in (4.4). For simplicity, we may consider F : (K, c) −→ (K′, d) to have
a compatible Yang–Baxter operator. By (4.10) note that F(x) is a bi(co)module
over F(id) for any 1-cell x (acting among suitable 0-cells). Then we may write:

F(id) F(fk)

☛✟☛✟
ν1,f

PP PP

F(f) F(k)

=

F(id) F(fk)

PP✎ ☞
F(f) F(k)

,

F(f) F(k)

✏✏ ✏✏

νf,1

✡✠✡✠
F(id) F(fk)

=

F(f) F(k)

✍ ✌
✏✏

F(id) F(fk)

F(gh) F(id)

☛✟☛✟
νh,1

✏✏ ✏✏

F(g) F(h)

=

F(gh) F(id)

✏✏✎ ☞
F(g) F(h)

,

F(g) F(h)

PP PP

ν1,h

✡✠✡✠
F(gh) F(id)

=

F(g) F(h)

✍ ✌
PP

F(gh) F(id)

for 1-cells A
k
−→ B

h
−→ B

f
−→ B

g
−→ C.
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5. 2-category of bilax functors

In this section we introduce the rest of the ingredients to construct a 2-category
of bilax functors.

5.1. Bilax natural transformations. Among bilax functors we introduce
bilax natural transformations. Recall that for a lax transformation ψ and a colax
transformation φ, both acting between (bilax) functors F ⇒ F′, for every 1-cell
f : A −→ B there are 2-cells

ψf : F
′
A,B(f) ◦ ψ(A) ⇒ ψ(B) ◦ FA,B(f),

φf : φ(B) ◦ FA,B(f) ⇒ F′
A,B(f) ◦ φ(A)

natural in f . For the sake of the following definition we introduce the notation:

λxy,z :=

F(xy) F(z)

☛✟
νy,z

✡✠
F(xz) F(y)

for a bilax functor F and 1-cells A
z
−→ A

y
−→ A

x
−→ B. Then the first equation in

(4.4) can be expressed also as:

F(gf) F(hk)

☛✟
λgf,h

✡✠
F(gh) F(fk)

=

F(gf) F(hk)

✍ ✌
F(1c1)✎ ☞

F(gh) F(fk)

Observe that by (4.5) and the rules of the (co)lax structures of F, one has:

(5.1)

F(x)

❞
λxid,id

❞
F(x)

= IdF(x) .

Definition 5.1. A bilax natural transformation χ : F ⇒ F′ between bilax
functors is a pair (ψ, φ) consisting of a lax natural transformation ψ of lax functors
and a colax natural transformation φ of colax functors, which agree on the 1-cell
components, i.e., ψ(A) = φ(A) := χ(A) for every A ∈ ObK, and whose 2-cell
components are related through the relation:

(5.2)

F
′(xy) χ(A) F(z)

ψxy

λxy,z

φxz

F′(xz) χ(A) F(y)

=

F
′(xy) χ(A) F(z)

φz

λ′
xy,z

ψy

F′(xz) χ(A) F(y)
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for composable 1-cells: A
z
−→ A

y
−→ A

x
−→ B. We will denote it shortly as a triple

(χ, ψ, φ).

In particular, if y = z = idA and one applies the unity of the lax structure of F
on the top right in (5.2), and the counity of the colax structure of F on the bottom
right, one obtains (by (5.1) and Theorem 4.2):

(5.3)

F
′(x) χ(A)

ψx

φx

F
′(x) χ(A)

=

F
′(x) χ(A)

✏✏

λ′
xid,id

PP

F′(x) χ(A)

=

F
′(x) χ(A)

☛✟
✏✏

νid,id

✡✠PP

F′(x) χ(A)

which will be called the Yetter–Drinfel’d condition on the bilax natural transforma-
tion χ. Observe that the left module and comodule structures of χ(A) above are
over F′(idA).

Example 5.1. Let K and K′ be 2-categories with Yang–Baxter operators c
and d, respectively. We fix two d-bimonads b0 : A0 −→ A0 and b1 : A1 −→ A1 in K′

and define bilax functors F0,F1 : K −→ K′ by F0 := Fb0 and F1 := Fb1 with νi = d

for i = 1, 2, as in Example 4.4.
A bilax natural transformation (χ, ψ, φ) between bilax functors χ : F0 ⇒ F1

consists of a family of 2-cells

ψA : b1χ(A) ⇒ χ(A)b0 and φA : χ(A)b0 −→ b1χ(A),

indexed by A ∈ ObK, where ψA (respectively φA) are distributive laws with respect
to the monad (resp. comonad) structures of b0, b1 (by (3.2) and its vertical dual),
and it holds:

(5.4)

b1 χA b0

ψA

λ0

φA

b1 χA b0

=

b1 χA b0

φA

λ1

ψA

b1 χA b0,

and consequently

b1 χA

ψA

φA

b1 χA

=

b1 χA☛✟
✏✏

d

✡✠PP

b1 χA.

Note that λ0 and λ1 have the form:

λ0 =

b0 b0☛✟
d

✡✠
b0 b0

and λ1 =

b1 b1☛✟
d

✡✠
b1 b1

and that the third equation in (3.2) is now trivial. For every A ∈ ObK, the triple
(χ(A), ψA, φA) is a 1-cell in the 2-category Bimnd(K′) from [14, Section 7], which
we mentioned at the beginning of Subsection 4.3. The 0-cells of Bimnd(K) are
bimonads in K defined via a distributive law 2-cell λ, 1-cells are triples (F, ψ, φ)
where (F, ψ) is a 1-cell in Mnd(K) and (F, φ) is a 1-cell in Comnd(K) with a
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compatibility condition between ψ, φ and λ (as in (5.4) on the left), and a 2-cell is
a single 2-cell ζ in K which is simultaneously a 2-cell in Mnd(K) and in Comnd(K).

Example 5.2. If K = ΣC in the above Example is induced by a braided
monoidal category C, the above bilax natural transformation χ : F0 ⇒ F1 : ΣC
−→ K′ is precisely a single 1-cell in Bimnd(ΣC).

Example 5.3. By Lemma 4.3 actually any two bilax functors (T0, ν), (T1, ν
′) : 1

−→ K determine two bimonads in K: T0 yields a ν-bimonad b0 := T(id∗) on A =
T(∗) and T1 a ν′-bimonad b1 := T1(id∗) on A′ = T′(∗). Then analogously as in
Example 5.2, any bilax natural transformation χ : T0 ⇒ T1 : 1 −→ K′ is precisely a
single 1-cell in Bimnd(K).

Example 5.4. Consider a bilax transformation χ : (T, ν) ⇒ (T′, ν′) : 1 −→ K

from the trivial 2-category to a 2-categoryK. Let B := T(id∗) be the ν-bimonad on
A = T(∗) and B′ := T′(id∗) the ν

′-bimonad on T′(∗) as in Lemma 4.3. Let m(B)
denote the monad part of B and c(B) the comonad part of B, and set χ(∗) = X .
We find that ψ : m(B′)X ⇒ Xm(B) is a distributive law with respect to monads,
and that φ : Xc(B) ⇒ c(B′)X is a distributive law with respect to comonads.

It is a nice exercise to prove the following lemma that we will use to pursue
with this example.

Lemma 5.1. Let B be both a monad (to which we refer to as m(B)) and a
comonad (we refer to it as c(B)) and suppose that ν : BB ⇒ BB is a distributive
law, both on left and right side, with respect to monad m(B) and with respect to
comonad c(B) (this means four distributive laws). Then

λ : =

m(B) c(B)

☛✟
ν

✡✠
c(B) m(B)

is a distributive law on the left both with respect to monads and comonads, that is:

(5.5)

m(B)m(B)c(B)

✡✠
λ

c(B)m(B)

=

m(B)m(B)c(B)

λ

λ

✡✠
c(B)m(B)

,

c(B)

❞
λ

c(B)m(B)

=

c(B)

❞

c(B)m(B)

;

m(B)c(B)

☛✟
λ

λ

c(B) c(B)m(B)

=

m(B)c(B)

λ☛✟
c(B) c(B)m(B)

,

m(B)c(B)

λ

❞
m(B)

=

m(B)c(B)

❞

m(B).
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Continuing with the Example, we have that similarly ν′ induces λ′. Moreover,
the compatibilities

(5.6)

m(B′)Xc(B)

ψ

λ

φ

c(B′)Xm(B)

=

m(B′)Xc(B)

φ

λ′

ψ

c(B′)Xm(B)

and

m(B′) X

ψ

φ

c(B′) X

=

m(B) X

✏✏

λ′

PP

c(B′) X

hold. Then (X,ψ, φ) : (A,m(B), c(B), λ) −→ (A′,m(B′), c(B′), λ′) is a 1-cell in the
2-category of mixed distributive laws Dist(K) of [39, Definition 6.2]. (In the specific
case when X is a leftm(B′)-module and left c(B′)-comodule, and ψ and φ are given

by ψ =

m(B′)X

PP

gu1 Xm(B)

and φ =

Xc(B)

✏✏ ❞
c(B′)X

, the two expressions in (5.6) are equivalent and

one recovers a particular form of λ-bialgebras by Turin and Plotkin, [46, Section
7.2].)

Suppose that B is a bialgebra in a braided monoidal category C. A (left) Yetter–
Drinfel’d module over B is an object M together with a (left) action B⊗M −→M

and a (left) coaction M −→ B ⊗M of B subject to the compatibility condition:

(5.7)

B M☛✟

PP

✏✏

✡✠
B M

=

B M☛✟
✏✏

✡✠PP

B M.

The category of (left) Yetter–Drinfel’d modules over B in C and left B-linear and
B-colinear morphisms we denote by B

BYD(C).

Remark 5.1. Observe that the antipode, i.e., a Hopf algebra structure on
a bialgebra in the context of Yetter–Drinfel’d modules, is used in the following
two instances. One is to construct the inverse for the braiding of the respective
category. Another one is to formulate an equivalent condition to (5.7). Thus, the
category of Yetter–Drinfel’d modules over a bialgebra is monoidal and even it has
a pre-braiding (non-invertible), given by:

M N

✏✏

PP

N M.

Example 5.5. Consider two braided monoidal categories C and D and two
bialgebras B0, B1 in D. These give rise to two bilax (and bimonoidal) functors
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FB0 , FB1 : ΣC −→ ΣD as in Example 4.4. The bilax natural transformation χ : F0 ⇒
F1 : K −→ K′ from Example 5.1 corresponds to a generalized notion of a Yetter–
Drinfel’d module over B1.

Theorem 5.1. Any Yetter–Drinfel’d moduleM over a bialgebra B′ in a braided
monoidal category (C,Φ) comes from a bilax natural transformation of Example 5.5
where ψ and φ are given by

(5.8) ψ =

B′ M☛✟

PP j−1

M B

, φ =

M B

✏✏ j

✡✠
B′ M

,

for any bialgebra isomorphism j : B −→ B′. (More precisely, from a bilax endo-
transformation with j = idB in (5.8).)

Proof. The notation in these two diagrams is the usual one for braided monoi-
dal categories, concretely ✡✠and

☛✟
stand for the (co)multiplication of B′.

That the given ψ and φ are desired distributive laws (i.e., (co)lax natural transfor-
mations) it was proved at the beginning of [13, Section 5.1], though for B = B′

and trivial j. The algebra (resp. coalgebra) morphism property of j−1 (resp. j)
makes (5.8) the desired distributive laws for nontrivial j. The first claim now fol-
lows from [14, Proposition 7.5], whose conditions are fulfilled since C is braided.
Set νF,X = (M ⊗ j−1)ΦF ′,X and νX,F = ΦX,F ′(M ⊗ j). The second claim follows
from [14, Corollary 7.6]. �

We record that another direction of generalization of Yetter–Drinfel’d modules
was carried out in [8, Section 8] in the enriched setting. There a (left-right) Yetter–
Drinfel’d C-module is defined as a certain V-functor F : C −→ V for a comonoidal
V-category C, where V is at least a braided monoidal closed category.

Example 5.6. Let (χ, ψ, φ) be a bilax natural transformation between bilax
functors with compatible Yang Baxter operators χ : F ⇒ F′ : ΣC −→ ΣD where C

and D are braided monoidal categories with braidings ΦC and ΦD, respectively.
Then F : = F∗,∗ and G : = F′

∗,∗ are bimonoidal functors C −→ D as in Example
4.1, χ(∗) =M is an object in D and there are morphisms

ψX : G(X)⊗M −→M ⊗ F (X) and φX : M ⊗ F (X) −→ G(X)⊗M

natural in X ∈ C, where ψ is a distributive law for the monoidal functor structures,
and φ is a distributive law for the comonoidal functor structures, so that the left
identity below holds, and consequently the one next to it:

G(XY ) M F (Z)

ψXY

λXY,Z

φXZ

G(XZ) M F (Y )

=

G(XY ) M F (Z)

φZ

λ′
XY,Z

ψY

G(XZ) M F (Y ),

G(X)M

ψX

φX

G(X)M

=

G(X) M☛✟
✏✏

✡✠PP

G(X) M,

with λXY,Z : =

F (XY ) F (Z)

☛✟

✡✠
F (XZ)F (Y ).
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For bialgebras B in C by Theorem 4.1 F (B), G(B) are bialgebras in D, and if ψB ,
φB are of the form as in (5.8), we recover classical Yetter–Drinfel’d modules in C.

The bilax natural transformations, i.e., identities (5.2) and (5.3), offer the fol-
lowing point of view. Given any monoidal category D, when one considers the
center category Zwl (D), one is given a family of colax transformations φ. In partic-
ular, when D = HC the category of modules over a bialgebra or a Hopf algebra H
in a braided monoidal category C, one is able to construct lax transformations ψ
(as in (5.8)) so that the given φ and this ψ obey (5.3) – since φ is H-linear, being a
morphism in HC. Similarly, considering Zwr (

HC) one is given ψ’s and one constructs
φ’s, so that they together obey (5.3). As in the proof of the above Theorem (that is,
as proved in [14, Proposition 7.5]), in this setting the bilax condition (5.2) follows.

5.2. Bilax modifications. We finally introduce:

Definition 5.2. Let χ, χ′ : (F, ν) ⇒ (F′, ν′) : (K, c) −→ K′ be bilax natu-
ral transformations. A bilax modification a : χ ⇛ χ′ is a collection of 2-cells
(a(A))A∈Ob (K) satisfying equations:

χB F(x)

φx

a(A)

F
′(x) χ′

A

=

χB F(x)

a(B)

φ′
x

F
′(x) χ′

A

,

F
′(x) χA

ψx

a(B)

χ′
B F(x)

=

F
′(x) χA

a(A)

ψ′
x

χ′
B F(x).

Equivalently, a bilax modification is a modification both of lax and colax nat-
ural transformations: a : ψ ⇛ ψ′ and a : φ ⇛ φ′, where (ψ, φ) constitute χ and
(ψ′, φ′) constitute χ′.

Example 5.7. Pursuing Example 5.3 a bilax modification between bilax nat-
ural transformations of bilax functors 1 −→ K is precisely a 2-cell in Bimnd(K).

Example 5.8. Recall Example 5.4 where bilax natural transformations are 1-
cells in the 2-category of mixed distributive laws Dist(K) of [39, Definition 6.2].
In this setting a bilax modification of bilax natural transformations is a 2-cell
ζ : X ⇒ Y in K that satisfies:

m(B′)X

ψ

ζ

Y m(B)

=

m(B′)X

ζ

ψ′

Ym(B)

and

Xc(B)

φ

ζ

c(B′)Y

=

Xc(B)

ζ

φ′

c(B′)Y.

As such it is a 2-cell in the 2-category Dist(K) of [39, Definition 6.2].

Example 5.9. In the setting of Example 5.5, where bilax natural transforma-
tions are generalized Yetter–Drinfel’d modules, a bilax modification of bilax natural
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transformations is a morphism f in D satisfying:

B′ M

ψ

f

N B

=

B′ M

f

ψ′

N B

and

M B

φ

f

B′ N

=

M B

f

φ′

B′ N.

By (4.8) and (4.9) this means that f is both a morphism of left B′-modules and left
B′-comodules. This is a morphism of generalized Yetter–Drinfel’d modules from
Example 5.5.

Now we may formulate:

Theorem 5.2. The category of Yetter–Drinfel’d modules BBYD(D) over a bial-
gebra B in a braided monoidal category (D,ΦD) is a full subcategory of the cat-
egory Bilax(FB) of bilax endo-transformations on a bilax functor FB : (ΣC,ΦC)
−→ (ΣD,ΦD) with compatible Yang–Baxter operator as in Example 5.5 and bilax
modifications.

Similarly one has:

Theorem 5.3. The category B
BYD(D) is isomorphic to the category Bilax(TB)

of bilax endo-transformations on a bilax functor TB : 1 −→ (ΣD,ΦD) with compati-
ble Yang–Baxter operator as in Lemma 4.2 and bilax modifications.

5.3. 2-category of bilax functors. We finish this section by concluding that
bilax functors (with compatible Yang–Baxter operator) K −→ K′, bilax natural
transformations and bilax modifications form a 2-category Bilax(K,K′). (Strictly
speaking, we should differentiate a 2-category whose objects are bilax functors
(F, ν) : (K, c) −→ K′, and another one with objects compatible bilax functors of the
form F : (K, c) −→ (K′, d). Though for both of them the following results hold, so
we will abstract this small difference in that we will use the same notation for both
2-categories, but the reader should be aware of this subtlety.) The composition of
bilax transformations (χ, ψ, φ) : F ⇒ G and (χ′, ψ′, φ′) : G ⇒ H is easily seen to be
induced by the vertical compositions of the (co)lax transformations ψ′ · ψ, φ′ · φ,
namely by:

(ψ′ · ψ)f =

H(f) ψ′(A) ψ(A)

ψ′
f

ψf

ψ′(B) ψ(B) F(f)

and (φ′ · φ)f =

φ′(B) φ(B) F(f)

φf

φ′
f

H(f) φ′(A) φ(A).

Bilax modifications compose both horizontally and vertically, in the obvious and
natural way.
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We comment for the record that although the lax and colax natural transfor-
mations compose horizontally by:

(ψ′ ◦ ψ)f =

G
′
G(f) ψ′

G(A) F
′ψ(A)

ψ′
G(f)

✍ ✌
F

′(ψf )✎ ☞
ψ′G(B) F′ψ(B) F′F(f)

and (φ′ ◦ φ)f =

φ′
G(B) F

′φ(B) F
′
F(f)

✍ ✌
F

′(φf )✎ ☞
φ′
G(f)

G′G(f) φ′G(A) F′φ(A),

the horizontal composition of lax and colax natural transformations does not induce
a bilax transformation. Namely, in order for this to work, the (co)lax structures
should be identities.

We finally compare the 2-category Bilax(K,K′), more precisely its special case
Bilax(1,K), with two other existing 2-categories in the literature, namely Dist(K)
and Bimnd(K) mentioned before. From Lemma 4.3, Example 5.3 and Example 5.7
we clearly have:

Theorem 5.4. There is a 2-category isomorphism Bilax(1,K) ∼= Bimnd(K).

From Lemma 4.3, Example 5.4 and Example 5.8, it can be appreciated that
on the level of 1- and 2-cells there is a faithful assignment Bilax(1,K) →֒ Dist(K).
Since the 0-cells of Dist(K) are given by tuples (A, T,D, λ), where T is a monad
and D a comonad on a 0-cell A in K, and λ : TD ⇒ DT is a distributive law with
respect to monad and comonad as in (5.5), we clearly have:

Theorem 5.5. There is a faithful 2-functor Bilax(1,K) →֒ Dist(K), which is

defined on 0-cells by (F, ν)
∼=
7→ (F(∗)=A,F(id∗)=B, ν) 7→ (A,m(B), c(B), λ), with

λ being

λ(ν) : =

B B☛✟
ν

✡✠
B B.

Observe that Theorem 5.3 is a consequence of the above 2-category isomor-
phism Bilax(1,K) ∼= Bimnd(K).

We finish with the following remark. Although bilax natural transformations
generalize Yetter–Drinfel’d modules, they do it only in the case of bilax functors
from the trivial 2-category, and so that this generalization is in the form of (mixed)
distributive laws (ψ and φ), which are a priori not braidings (of the category of
Yetter–Drinfel’d modules). Passing from these distributive laws to modules and
comodules over the bimonad (see [13, Proposition 2.4]) and to a sub-2-category
Bilax∗(1,K) of Bilax(1,K) in which distributive laws are of a specific form (as
in [14, Proposition 7.5]), one gets to 2-categorical Yetter–Drinfel’d modules, due
to [14, Proposition 7.5]. Then one can prove that the endo-hom-categories of
Bilax∗(1,K) (i.e., the categories of Yetter–Drinfel’d modules in this setting) are
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isomorphic to (certain subcategories of) the monoidal centers (of the categories of
(co)modules over the bimonads), by taking the left-left version of [15, Proposition
7.1]. (One can also get a 2-category isomorphism including bimonad isomorphisms
analogous to j in Theorem 5.1.) In view of this one could call the sub-2-category
Bilax∗(1,K) a bilax center 2-category of K. The strong center of K would corre-
spond to a sub-2-category of the latter where not only are bilax transformations
moreover pseudotransformations, but also bilax functors posses an antipode 2-cell
S : F(id∗) ⇒ F(id∗) in K satisfying the axiom

F(id∗)☛✟
❤S

✡✠
F(id∗)

=

F(id∗)

❞
❞

F(id∗)

=

F(id∗)☛✟
❤S
✡✠

F(id∗).

In the case of the center categories considered in the first part of the paper
for lax functors F,G : ΣE −→ K, one has monads F(IE) and G(IE), but no module
structure on objects χ∗ ofK for transformations χ (since monads do not have counit
2-cells). For those centers no relation to some kind of a Yetter–Drinfel’d module is
established.
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