
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 116 (130) (2024), 97–111 DOI: https://doi.org/10.2298/PIM2430097N

CERTAIN CURVATURE CONDITIONS ON

RIEMANNIAN MANIFOLDS ADMITTING

THE SPACE MATTER TENSOR

Fusun Nurcan, Sanjib Kumar Jana, and Bijita Biswas

Abstract. We extend the work applied to Einstein spaces by A. Z. Petrov to
some spaces that can be considered as modified forms of this space. For this
purpose, the first study which was done on the quasi Einstein manifold con-
tinued with the generalized quasi-Einstein and the pseudo generalized quasi-
Einstein manifolds in this article and our evidences are supported by several
examples in the last section.

1. Introduction

In 1949, the celebrated theorem [4] showing the existence of three types of
Einstein space with signature (−, −, −, +) and the corresponding three canonical
forms were established. During this study, the gravitation fields are classified on the
basis of the algebraic structures of the space-matter tensor. A. Z. Petrov proposed
and studied a (0,4) tensor field P as follows:

(1.1) P = R +
k

2
(g ∧ T ) − σG.

Here R, T , σ and k denote respectively the Riemann curvature tensor, the energy-
momentum tensor, the energy density and a cosmological constant. g ∧ T is the
well-known Kulkarni–Nomizu product of two (0,2) tensors g and T . The (0,4)
tensor G is given by

G(V1, V2, V3, V4) = g(V1, V4)g(V2, V3) − g(V1, V3)g(V2, V4)

for all V1, V2, V3, V4 ∈ χ(M), the Lie-algebra of smooth vector fields on M . The
(0,4) type tensor P is called the space-matter tensor (SMT) of M .

Einstein’s field equation (EFE) having cosmological constant λ is presented by

(1.2) kT = S +
(

λ −
r

2

)

g,
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where as usual r denotes the curvature scalar and S stands for the Ricci tensor.
Then (1.1) changes into

(1.3) P = R −
(

σ − λ +
r

2

)

G +
1

2
(g ∧ S),

by virtue of (1.2).
If T is of Codazzi type and σ is constant in our manifold, then the SMT satisfies

the second Bianchi identity [3] i.e.,

(∇XP )(U1, U2, U3, U4) + (∇U1
P )(U2, X, U3, U4) + (∇U2

P )(X, U1, U3, U4) = 0.

In Section 2 we deal with several characteristics of SMT satisfying different
curvature conditions on the Riemannian manifolds.

In 2001 Chaki introduced the notion of generalized quasi Einstein manifolds [1].
A Riemannian manifold of dimension greater than three is defined to be generalized
quasi-Einstein manifold iff its Ricci tensor S is non-zero and satisfies the relation

(1.4) S(X1, X2) = γ1g(X1, X2) + γ2ϑ(X1)ϑ(X2) + γ3[ϑ(X1)ν(X2) + ν(X1)ϑ(X2)],

where γ1, γ2(6= 0), γ3 are scalars and ϑ, ν are (non-zero) 1-forms such that ϑ(X1) =
g(ς3, X1), ν(X1) = g(ς4, X1) for all X1 and ς3, ς4 are the unit vector fields. This class
of manifolds is classified by the symbol G(QE)n. The significance of a G(QE)n rests
in the fact that such a four dimensional semi Riemannian manifold is applicable to
the study of a general relativistic fluid spacetime admitting heat flux [5], where ς3

is taken as the velocity vector field of the fluid and ς4 is considered as the heat flux
vector field.

Further the notion of G(QE)n was generalized by Shaikh and Jana [6]. A
Riemannian manifold of dimension greater than three is called a pseudo generalized
quasi-Einstein manifold [6] if S is non-zero and it satisfies

(1.5) S(X1, X2) = δ1g(X1, X2)+δ2H(X1)H(X2)+δ3F (X1)F (X2)+δ4D(X1, X2).

Here δ1, δ2, δ3, δ4 are non-zero scalars and H , F are (non-zero) 1-forms such that
H(X) = g(ς5, X), F (X) = g(ς6, X) for all X and ς5, ς6 are unit vector fields; D is
a symmetric (0,2) tensor with zero trace such that D(ς5, X) = 0 for all X . Such
type of manifold of dimension n is denoted by P (GQE)n. The significance of a
P (GQE)n lies in the fact that such a four dimensional semi Riemannian manifold
is applicable to the study of a general relativistic fluid spacetime admitting heat
flux and admitting EFE [6], where ς5 is taken as the velocity vector field of the
fluid, ς6 is considered as the heat flux vector field and D is taken as the anisotropic
pressure of the fluid.

Sections 3 and 4 deal with generalized quasi Einstein manifolds and pseudo
generalized quasi Einstein manifolds with SMT respectively. Some interesting ex-
amples are given in the last section.
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2. Preliminaries

Here we refer to some basic properties of P under certain curvature conditions.
Let {e1, e2, . . . , en} be an orthonormal frame field on M . Then we have

S(X1, X2) = g(QX1, X2) =

n
∑

α=1

R(eα, X1, X2, eα),

r =
n

∑

α=1

S(eα, eα) =
n

∑

α=1

g((Qeα), eα).

Here Q is the symmetric endomorphism related to S.
Let us discuss on Riemannian manifolds admitting different restrictions on the

space-matter tensor.

2.1. Vanishing SMT. Let M be of dimension at least three. If P vanishes
identically, then (1.3) reduces to

(2.1) R =
(

σ − λ +
r

2

)

G −
1

2
(g ∧ S).

Contracting (2.1) we get

nS + rg + 2
(

λ −
r

2
− σ

)

(n − 1)g = 0.

Further contraction of the last relation leads to the following relation

(2.2) r =
2(n − 1)

(n − 3)
(λ − σ).

Thus we have the following:

Lemma 2.1. In a Riemannian manifold with dimension greater than three if
SMT vanishes then the scalar curvature takes the form (2.2).

2.2. Symmetric SMT. If P is symmetric in a Riemannian manifold of di-
mension greater than three, then we know that

(2.3) ∇P = 0.

Covariant differentiation of (1.3) and then use of (2.3) yields

2(∇XR)(Y, Z, U, V ) + g(Z, U)(∇XS)(Y, V ) + g(Y, V )(∇XS)(Z, U)(2.4)

− g(Z, V )(∇XS)(Y, U) − g(Y, U)(∇XS)(Z, V )

− 2[dσ(X) +
1

2
dr(X)]G(Y, Z, U, V ) = 0.

Contracting (2.4) over V and Y , one obtains

(2.5) n(∇XS)(Z, U) − g(Z, U){2(n − 1)dσ(X) + (n − 2)dr(X)} = 0.

Putting Z = eα = U in (2.5) and then taking sum over α, we find

(2.6) 2(n − 1)dσ(X) + (n − 3)dr(X) = 0.
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Further contraction of (2.5) over X and U yields

(2.7) 2(n − 1)dσ(Z) + (n − 4)dr(Z) = 0.

By the virtue of (2.6) and (2.7), it follows

(2.8) dσ(X) = 0 = dr(X)

for all X ∈ χ(M). Again using (2.8) in (2.5), we have

(2.9) ∇S = 0.

Finally using (2.8) and (2.9) in (2.4), we obtain

(2.10) ∇R = 0.

If (2.10) holds, then the relations (2.9) and (2.8) also hold and consequently differ-
entiating (1.3) covariantly we obtain

(2.11) (∇XP ) = −dσ(X) ◦ G,

using (2.8) and (2.9). Thus it leads to the following:

Lemma 2.2. In a Riemannian manifold with dimension greater than three if
SMT is symmetric then the relation (2.11) holds.

2.3. Recurrent SMT. In a Riemannian manifold of dimension greater than
three admitting EFE we consider that the SMT is recurrent ∇P = L ◦ P, where L

is the (non-zero) 1-form of recurrence. By using the relations [2, (8)–(10)] and by
performing some calculations, we find

(2.12) r =
2(n − 1)

n − 3
(λ − σ), since L 6= 0.

Further contraction of [2, (9)] over X and U yields

(n − 4)dr(Z) − 4(n − 1)dσ(Z) = 2[(n − 2)r + 2(n − 1)(σ − λ)]L(Z) − 2nL(QZ),

which gives

(2.13) 2nL(QZ) = rL(Z) + dr(Z) + 6(n − 1)dσ(Z) for all Z ∈ χ(M),

by the virtue of [2, (10)]. By using the relation [2, (7)] in [2, (5)] and after some
calculations, we get

(2.14) L(QZ) =
r0

2n
L(Z), which yields S(Z, ρ) =

r0

2n
g(Z, ρ),

where r0 = (n − 1)[2(n − 2)(λ − σ) − (n − 4)r] and g(X, ρ) = L(X), by virtue of
(2.13). Thus we have the following:

Lemma 2.3. In a Riemannian manifold with dimension as greater than three,
admitting EFE and having recurrent SMT, the Ricci tensor satisfies the relation
(2.14).
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2.4. Weakly symmetric SMT. We assume that the SMT in a Riemannian
manifold of dimension greater than three admitting EFE, is weakly symmetric [7]
in nature. Then there exist three 1-forms A1, A2 and A3 (non-zero simultaneously)
such that the following relation holds:

(∇XP )(Y, Z, U, V ) = A1(X)P (Y, Z, U, V ) + A2(Y )P (X, Z, U, V )(2.15)

+ A2(Z)P (Y, X, U, V ) + A3(U)P (Y, Z, X, V )

+ A3(V )P (Y, Z, U, X).

Here ρ1, ρ2, ρ3 be metrically equivalent to A1, A2, A3 respectively.
Contracting Y and V on (2.15) and using [2, (4)], we have

(2.16) H2(QX) = −
n − 1

2n
[(n − 4)r + 2(n − 2)(σ − λ)]H2(X),

which gives

(2.17) S(X, τ2) = r1g(X, τ2),

where r1 = n−1
n

[(n − 2)(λ − σ) − n−4
2 r] and g(X, τ2) = H2(X) = (A2 − A3)(X) for

every X . So we have the following:

Lemma 2.4. In a Riemannian manifold with dimension as greater than three,
admitting EFE and having weakly symmetric SMT, the Ricci tensor satisfies rela-
tion (2.17).

3. Generalized quasi-Einstein manifold possessing SMT

In the present section we deal with generalized quasi-Einstein manifold [1],
with SMT having certain curvature restrictions.

From (1.4) it follows that

(3.1) S(ς3, ς3) = γ1 + γ2, S(ς4, ς4) = γ1, S(ς3, ς4) = γ3.

If possible let P = 0 in the considered manifold. Then by the virtue of (1.4), the
relation (2.1) reduces to

(3.2) R =
[

σ − λ +
r

2
− γ1

]

G −
γ2

2
g ∧ ϑ′ −

γ3

2
g ∧ ν′,

where ϑ′(X1, X2) = ϑ(X1)ϑ(X2) and ν′(X1, X2) = ϑ(X1)ν(X2) + ν(X1)ϑ(X2).
Taking contraction of (3.2), we have

(3.3) S(X1, X2) =
[

(n − 1)
(

σ − λ +
r

2
− γ1

)

−
1

2
(γ2 + γ3)

]

g(X1, X2)

−
n − 2

2
[γ2ϑ′(X1, X2) + γ3ν′(X1, X2)].

Replacing X1 and X2 by ς3 in (3.3), we get

(3.4) S(ς3, ς3) = (n − 1)
(

σ − λ +
r

2
− γ1

)

−
1

2
(γ2 + γ3) −

n − 2

2
γ2.

Again replacing both X1 and X2 by ς4 in (3.3), we find

(3.5) S(ς4, ς4) = (n − 1)
(

σ − λ +
r

2
− γ1

)

−
1

2
(γ2 + γ3).
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Now using (3.1), (3.4) and (3.5), we get γ2 = 0, which is not possible. Hence we
state the following:

Theorem 3.1. The SMT never vanishes in a G(QE)n (n > 3) admitting EFE,
if γ2 6= 0.

From (2.2) we obtain

(3.6) 2(n − 1)(σ − λ) + (n − 3)(nγ1 + γ2) = 0,

by the virtue of (1.4). Hence we have the following:

Theorem 3.2. σ, λ, γ1, γ2 are connected by the relation (3.6) in a G(QE)n

(n > 3) admitting EFE and non-vanishing SMT.

Using (1.4) and (2.8), we get n dγ1(X) + dγ2(X) = 0 for all X. Due to the
arbitrariness of X , this relation gives

(3.7) n grad γ1 + grad γ2 = 0,

which leads to the following:

Theorem 3.3. γ1 and γ2 are connected by (3.7) in a G(QE)n (n > 3) admitting
EFE and symmetric SMT.

Putting X = ρ in [2, (10)], we get

(3.8) (n − 3)[n dγ1(ρ) + dγ2(ρ) − nγ1 − γ2] + 2(n − 1)[dσ(ρ) − σ + λ] = 0.

Hence we get the following:

Theorem 3.4. ρ, σ, λ, γ1, γ2 are connected by (3.8) in a G(QE)n (n > 3)
admitting EFE and recurrent SMT.

In view of (1.4), we find that

(3.9) (n − 3)(nγ1 + γ2) + 2(n − 1)(σ − λ) = 0

from (2.12). We now get the following:

Theorem 3.5. If γ1, γ2 and σ are constants in a G(QE)n (n > 3) admitting
EFE and recurrent SMT, then they are connected by (3.9).

Using (1.4), the equation (2.14) can be converted into the following relation

L(QZ) = r2L(Z), i. e., S(Z, ρ) = r2g(Z, ρ),

where r2 = n−1
n

[(n − 2)(λ − σ) − n−4
2 (nγ1 + γ2)]. This gives the following:

Theorem 3.6. If T is of Codazzi type in a G(QE)n (n > 3) admitting EFE
and recurrent SMT, then r2 is an eigen value of S with respect to the eigen vector
ρ, defined by g(X, ρ) = L(X), provided that σ is constant.

Applying (1.4) in (2.16), we find

H2(QX) = r3H2(X), i. e., S(X, τ2) = r3g(X, τ2),

where r3 = n−1
n

[(n − 2)(λ − σ) − n−4
2 (nγ1 + γ2)] and H2(X) = g(τ2, X) = (A2 −

A3)(X) for all X . Hence we have the following:
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Theorem 3.7. r3 is an eigen value of S with respect to the eigen vector τ2 in
a G(QE)n (n > 3) admitting EFE and weakly symmetric SMT.

Now applying (2.16), (1.4) and [2, (21)], we get

(n2 − 2n − 4)[n dγ1(X) + dγ2(X)] + 2(n − 1)(n + 2)dσ(X)

= [(n2 − n − 4)(nγ1 + γ2) + (n − 1)(n + 2)(σ − λ)]H3(X) − 2nH3(QX),

where H3(X) = g(τ3, X) = (A1 + A2 + A3)(X) for all X . Now if γ1, γ2 and σ are
constants, then we have

H3(QX) =
1

2n
[(n2 − n − 4)(nγ1 + γ2) + (n − 1)(n + 2)(σ − λ)]H3(X),

from the above relation, i.e.,

S(X, τ3) =
1

2n
[(n2 − n − 4)(nγ1 + γ2) + (n + 2)(n − 1)(σ − λ)]g(X, τ3).

Again performing (2.16), (1.4) and [2, (21)], we get

(n2 − 4n + 4)[(n dγ1 + dγ2)(X)] + 2(n − 1)(n − 2)dσ(X)

= 2nH4(QX) + (n − 1)[(n − 4)(nγ1 + γ2) + 2(n − 2)(σ − λ)]H4(X),

where H4(X) = g(τ4, X) = (A1 − A2 − A3)(X) for all X . If γ1, γ2 and σ are
constants, then we also get, from the above relation,

H4(QX) = r4H4(X), i.e., S(X, τ4) = r4g(X, τ4),

where r4 = n−1
2n

[2(n − 2)(λ − σ) − (n − 4)(nγ1 + γ2)]. So it leads towards the
following theorem:

Theorem 3.8. If σ is constant in a G(QE)n (n > 3) admitting EFE and
weakly symmetric SMT, then r3 and r4 are the eigen values of S corresponding to
the eigen vectors τ3 and τ4 respectively, provided γ1, γ2 are constants.

4. Pseudo generalized quasi-Einstein manifolds possessing SMT

The section studies with pseudo generalized quasi-Einstein manifolds with SMT
satisfying some curvature restrictions.

Now from (1.5) we have

(4.1) S(ς5, ς5) = δ1 + δ2, S(ς6, ς6) = δ1 + δ3 + δ4D(ς6, ς6), S(ς5, ς6) = 0.

By virtue of (1.5), (2.1) becomes the following

(4.2) R =
[

σ − λ +
r

2
− δ1

]

G −
δ2

2
g ∧ H ′ −

δ3

2
g ∧ F ′ −

δ

2
g ∧ D,

where H ′(X1, X2) = H(X1)H(X2) and F ′(X1, X2) = F (X1)F (X2) for all X1, X2.
Contracting (4.2), we have

S(Z, U) =
[

(n − 1)(σ − λ +
r

2
− δ1) −

δ2 + δ3

2

]

g(Z, U)(4.3)

−
n − 2

2
[δ2H ′(Z, U) + δ3F ′(Z, U) + δ4D(Z, U)].
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Setting Z = ς5 = U in (4.3), we get

(4.4) S(ς5, ς5) = (n − 1)(σ − λ +
r

2
− δ1) −

1

2
(δ2 + δ3) −

(n − 2)

2
δ2.

Further setting Z = ς6 = U in (4.3), we get

(4.5) S(ς6, ς6) = (n − 1)(σ − λ +
r

2
− δ1) −

1

2
(δ2 + δ3) −

(n − 2)

2
[δ3 + δ4D(ς6, ς6)].

Using (4.1) in (4.4) and (4.5), we have S(ς5, ς5) = δ1 + δ2 = S(ς6, ς6).

Theorem 4.1. The scalar δ1 +δ2 is the Ricci curvature in the directions of both
the generators ς5 and ς6 in a P (GQE)n (n > 3) admitting EFE and vanishing SMT.

In view of (1.5), (2.2) reduces to the following equation

(4.6) (n − 1)(σ − λ) +
n − 3

2
(nδ1 + δ2 + δ3) = 0.

Thus we get:

Theorem 4.2. σ, λ, δ1, δ2 and δ3 are related by (4.6) in a P (GQE)n (n > 3)
admitting EFE and vanishing SMT.

In view of (1.5), (2.8) reduces to d(nδ1 + δ2 + δ3)(X) = 0 for each X . Since X

is arbitrary, from the above relation, we have

(4.7) n grad δ1 + grad δ2 + grad δ3 = 0,

which leads to the following:

Theorem 4.3. δ1, δ2 and δ3 are connected by the relation (4.7) in a P (GQE)n

(n > 3) admitting EFE and symmetric SMT.

Putting X = ρ in [2, (10)], we get

(4.8) (n − 3)d(nδ1 + δ2 + δ3)(ρ) + 2(n − 1)[dσ(ρ) − σ + λ]

= (n − 3)(nδ1 + δ2 + δ3).

So we have the following:

Theorem 4.4. ρ, σ, λ, δ1, δ2 and δ3 are connected by the relation (4.8), in a
P (GQE)n (n > 3) admitting EFE as well as recurrent SMT.

In the view of (1.5), (2.12) is reduced to the following form

(4.9) (n − 3)(nδ1 + δ2 + δ3) + 2(n − 1)(σ − λ) = 0.

This calculation directs to

Theorem 4.5. If δ1, δ2, δ3 and σ are constants in a P (GQE)n (n > 3) ad-
mitting EFE and recurrent SMT, then they are related by the relation (4.9).
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By the virtue of (1.5), (2.14) changes into the following form

L(QZ) =
n − 1

2n
[2(n − 2)(λ − σ) − (n − 4)(nδ1 + δ2 + δ3)]L(Z),

which implies

S(Z, ρ) =
n − 1

n

[

(n − 2)(λ − σ) −
n − 4

2
(nδ1 + δ2 + δ3)

]

g(Z, ρ).

This gives the following:

Theorem 4.6. If T is of Codazzi type in a P (GQE)n (n > 3) admitting EFE

and recurrent SMT, then (n−1)
2n

[2(n − 2)(λ − σ) − (n − 4)(nδ1 + δ2 + δ3)] is an eigen
value of S with respect to the eigen vector ρ, defined by g(ρ, X) = L(X), for all X,
provided that σ is constant.

In view of (1.5), (2.16) reduces to the following:

H2(QX) = −
n − 1

n

[n − 4

2
(nδ1 + δ2 + δ3) + (n − 2)(σ − λ)

]

H2(X),

which implies

S(X, τ2) =
n − 1

n

[

(n − 2)(λ − σ) −
n − 4

2
(nδ1 + δ2 + δ3)

]

g(X, τ2),

where H2(X) = g(X, τ2) = (A2−A3)(X) for all X . Hence it directs to the following:

Theorem 4.7. S possesses an eigen value n−1
n

[(n−2)(λ−σ)− n−4
2 (nδ1+δ2+δ3)]

corresponding to the eigen vector τ2 in a P (GQE)n (n > 3) equipped with EFE and
weakly symmetric SMT.

In view of (2.16), (1.5) and [2, (21)], we get

(n2 − 2n − 4)[n dδ1(X) + dδ2(X) + dδ3(X)] + 2(n − 1)(n + 2)dσ(X)

= [(n2 − n − 4)(nδ1 + δ2 + δ3) + (n − 1)(n + 2)(σ − λ)]H3(X) − 2nH3(QX),

where H3(X) = g(X, τ3) = (A + B + E)(X) for all X . If δ1, δ2, δ3 and σ are
constants, then from the above we have

H3(QX) =
1

2n
[(n2 − n − 4)(nδ1 + δ2 + δ3) + (n2 − 3n + 2)(σ − λ)]H3(X),

which gives

S(X, τ3) =
1

2n
[(n2 − n − 4)(nδ1 + δ2 + δ3) + (n − 1)(n + 2)(σ − λ)]g(X, τ3).

Again by (2.16), (1.5) and [2, (21)], we get

(n2 − 4n + 4)d(nδ1 + δ2 + δ3)(X) + 2(n − 1)(n − 2)dσ(X)

= 2nH4(QX) + (n − 1)[(n − 4)(nδ1 + δ2 + δ3) + 2(n − 2)(σ − λ)]H4(X),

where H4(X) = g(τ4, X) = (A1 − A2 − A3)(X) for all X . If δ1, δ2, δ3 and σ are
constants, then we get from the above relation

H4(QX) =
n − 1

2n
[2(n − 2)(λ − σ) − (n − 4)(nδ1 + δ2 + δ3)]H4(X),
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which implies

S(X, τ4) =
n − 1

2n
[2(n − 2)(λ − σ) − (n − 4)(nδ1 + δ2 + δ3)]g(X, τ4).

Hence we have the following:

Theorem 4.8. In a P (GQE)n (n > 3) satisfying EFE and weakly symmetric
SMT, then 1

2n
[(n2 − n − 4)(nδ1 + δ2 + δ3) + (n − 1)(n + 2)(σ − λ)] and n−1

2n
[2(n −

2)(λ − σ) − (n − 4)(nδ1 + δ2 + δ3)] are eigen values of S attached with the eigen
vectors τ3 and τ4, respectively, provided that σ, δ1, δ2 and δ3 are constants.

5. Some illustrative examples

Let us deal with various examples of Riemannian manifolds satisfying EFE and
SMT satisfying certain curvature restrictions.

Example 5.1. Let M4 be R
4 with coordinates (xi), i = 1, . . . , 4 and be en-

dowed with the Riemannian metric

(5.1) ds2 = gijdxidxj ,

where g11 = e2x2

= g33, g22 = 1, g44 = 4 and gij = 0, otherwise. Thus only
non-zero components of R, S and the curvature scalar are given by

(5.2)
R1212 = −e2x2

= R2323, R1313 = −e4x2

;

S11 = 2e2x2

= S33, S22 = 2; r = 6.

To verify that M4 is a G(QE)4 we consider the 1-forms ϑ, ν and the scalars γ1, γ2,
γ3 as follows:

ϑi =

{

4 for i = 4

0 otherwise,
νi =

{

1 for i = 4

0 otherwise,
(5.3)

γ1 = 2; γ2 = −2; γ3 = 3.(5.4)

Accordingly (1.4) is reduced to

(5.5) Sii = γ1gii + γ2ϑiϑi + 2γ3ϑiνi, for all possible i.

By virtue of (5.1)–(5.4), it follows that r.h.s. of (5.5) = 2gii−2ϑiϑi+6ϑiνi = 2e2x2

=
l.h.s. of (5.5) for i = 1. Putting similar arguments it can be shown that the relation
(5.5) holds for the remaining values of i. So M4 with considered g is a G(QE)4.

Now, considering σ as a constant, we calculate the (non-vanishing) components
of SMT.

P1221 = e2x2

(λ − σ) = P2332, P1331 = e4x2

(λ − σ),

P1441 = 4e2x2

(−2 + λ − σ) = −P3434, P2442 = 4(−2 + λ − σ)

and its covariant derivatives Phijk,l = 0 for all h, i, j, k, l. Also it can be calculated
that Rhijk,l = 0 for all h, i, j, k, l = 1, 2, 3, 4. Therefore here M4 is symmetric also.
Hence we have the theorem as follows:
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Theorem 5.1. The smooth manifold (M4, g) admitting EFE and symmetric
SMT and equipped with the Riemannian metric given in (5.1) is a G(QE)4 with
non-vanishing curvature scalar. It is also a symmetric manifold.

Example 5.2. Let M4 = R
4 with coordinates(xi), i = 1, . . . , 4 be endowed

with the Riemannian metric

(5.6) ds2 = ex1

(dx1)2 + e2x1

(dx2)2 + e2x1

(dx3)2 + e2x1

(dx4)2.

To verify that the manifold under consideration is a G(QE)4, we take the 1-forms
ϑ, ν and the scalars γ1, γ2, γ3 as follows:

ϑi =

{

−1 for i = 1

0 otherwise,
νi =

{

ex
1

−1
2 for i = 1

0 otherwise,
(5.7)

γ1 =
5e−x1

2
; γ2 = −e−x1

; γ3 = e−x1

.(5.8)

Thus (1.4) is reduced to the following equations

(5.9) Sii = γ1gii + γ2ϑiϑi + 2γ3ϑiνi, i ∈ {1, 2, 3, 4}.

By virtue of (5.6), (5.7), (5.8), it can be proved that (5.9) is true. Therefore M4

with the considered metric g in (5.6) is a G(QE)4. We take σ = λ (a constant) and
consider L as follows:

(5.10) L
( ∂

∂xi

)

= Li =

{

−1, i = 1

0 otherwise.

Calculating the non-zero components of SMT and its covariant derivatives, the va-
lidity of the following relations with the 1-form given by (5.10) can be checked easily:

P1j1j,1 = L1P1j1j , Pjkjk,1 = L1Pjkjk ,

where j and k run from 2 to 4 and j 6= k. Thus we have

Theorem 5.2. The smooth manifold (M4, g) admitting EFE and recurrent
SMT and equipped with the Riemannian metric given in (5.6) is a G(QE)4 with
non-vanishing curvature scalar and such that σ = λ.

Example 5.3. Let M4 be R
4 with coordinates (xi), i = 1, . . . , 4 and be en-

dowed with the Riemannian metric

(5.11) ds2 = gijdxidxj ,

where g11 = e2x1

= g22 = g33 = g44 and gij = 0, otherwise. Let us consider the
1-forms ϑ, ν and the scalars γ1, γ2, γ3 as follows:

ϑ
( ∂

∂xi

)

= ϑi =

{

−1, i = 1

0 otherwise,
ν
( ∂

∂xi

)

= νi =

{

e2x
1

−1
7 , i = 1

0 otherwise,

γ1 = 2e−2x1

; γ2 = −2e−2x1

; γ3 = 7e−2x1

.
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With these considerations it can be easily shown that M4 is a G(QE)4. Let us take

σ = λ − 2e−2x1

+ ve−4x1

, where v is an arbitrary(non-zero) constant and consider
the 1-forms as follows:

A
( ∂

∂xi

)

= Ai =

{

4e2x
1

−4v

−2e2x
1 +v

, i = 1

0 otherwise,
B

( ∂

∂xi

)

= Bi =

{

2
−2+ve−2x

1 , i = 1

0 otherwise,

E
( ∂

∂xi

)

= Ei =

{

2
−2+ve−2x

1 , i = 1

0 otherwise.

One can check easily find the non-zero components of SMT and its covariant deriva-
tives and also check the validity of the following relations with the above 1-forms:

P1j1j,1 = A1P1j1j + B1P1j1j + BjP111j + E1P1j1j + EjP1j11,

Pjkjk,1 = A1Pjkjk + BjP1kjk + BkPj1jk + EjPjk1k + EkPjkj1 ,

where j and k run from 2 to 4 and j 6= k. Hence we have

Theorem 5.3. The smooth manifold (M4, g) admitting EFE and weakly sym-
metric SMT and equipped with the Riemannian metric given in (5.11) is a G(QE)4

with non-zero curvature scalar and such that σ = λ − 2e−2x1

+ ve−4x1

, where v is
an arbitrary non-zero constant.

Example 5.4. Let M4 be R
4 with coordinates (xi), i = 1, . . . , 4 and be fur-

nished with the Riemannian metric

(5.12) ds2 = gijdxidxj ,

where g11 = 1 + sin x2 = g22 = g33 = g44, gij = 0, otherwise and sin x2 6= −1. Let
us consider the 1-forms H , F , a symmetric (0,2) tensor D and the scalars δ1, δ2,
δ3, δ4 as follows:

Hi =

{

[

3+sin x2

3

]
1

2 for i = 1

0 otherwise,

Fi =

{

[

3+sin x2

3

]
1

2 for i = 1

0 otherwise,

Dij =































2
7 for i = 1 = j

− 2
14 for i = 2 = j

− 2
28 for i = 3 = j

− 2
28 for i = 4 = j

0 otherwise,

δ1 =
1

4
; δ2 = δ3 = −

3

4
; δ4 =

7

2

With these considerations it can be easily shown that (M4, g) is a P (GQE)4. Now
taking σ as any arbitrary function of x1 only, it can be easily proved that Phijk,l = 0
for all h, i, j, k, l. Also it can be shown that Rhijk,l = 0 for all h, i, j, k, l. Thus our
manifold M4 is symmetric. Hence we have

Theorem 5.4. The smooth manifold (M4, g) admitting EFE and symmetric
SMT and equipped with the Riemannian metric given in (5.12) is a P (GQE)4 with
non-zero curvature scalar. It is also a symmetric manifold.
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Example 5.5. Let M4 be R
4 with coordinates (xi), i = 1, . . . , 4 and be fur-

nished with the Riemannian metric

(5.13) ds2 = gijdxidxj ,

where g11 = e2x1

, g22 = ex1

, g33 = g44 = 1, gij = 0, otherwise. Also let us consider
the 1-forms H , F , a symmetric (0,2) tensor D and the scalars δ1, δ2, δ3, δ4 as
follows:

Hi =

{

[

e2x
1

+ex
1

−1
3

]
1

2 for i = 1

0 otherwise,

Fi =

{

[

e2x
1

+ex
1

−1
3

]
1

2 for i = 1

0 otherwise,

Dij =



































3(e−x
1

−e−2x
1

)
10 for i = 1 = j

− 3e−x
1

10 for i = 2 = j

− 3e−2x
1

20 for i = 3 = j

− 3e−2x
1

20 for i = 4 = j

0 otherwise,

δ1 =
e−2x1

4
; δ2 = δ3 = −

3e−2x1

4
; δ4 =

5

3
.

With these it can be shown that our (M4, g) is a P (GQE)4. Let us take σ = λ,
and take the 1-form L as follows:

L
( ∂

∂xi

)

= Li =

{

−2, for i = 1

0 otherwise

at any point of M . Calculating the non-zero components of SMT and its covariant
derivatives, it can be verified easily the validity of the following relations with the
above 1-forms: P1j1j,1 = L1P1j1j , Pjkjk,1 = L1Pjkjk , where j and k run from 2 to
4 and j 6= k. So the considered manifold is recurrent. Hence we have

Theorem 5.5. The smooth manifold (M4, g) admitting EFE and recurrent
SMT such that σ = λ and equipped with the Riemannian metric given in (5.13) is
a P (GQE)4 with non-zero curvature scalar. It is also a recurrent manifold.

Example 5.6. Let M4 be R
4 with coordinates (xi), i = 1, . . . , 4 and be fur-

nished with the Riemannian metric

(5.14) ds2 = gijdxidxj ,

where g11 = x2ex1

, g22 = g33 = g44 = 1, gij = 0, otherwise and x2 > 0. Let us
suppose the 1-forms H , F and the scalars δ1, δ2, δ3, δ4 as follows:

H

(

∂

∂xi

)

=Hi =

{

[

3x2ex
1

+5
8

] 1

2 for i=1

0 otherwise,

F

(

∂

∂xi

)

=Fi =

{

[

3x2ex
1

+5
8

] 1

2 for i=1

0 otherwise,

D

(

∂2

∂xi∂xj

)

=Dij =



























5
4(x2)2 for i=1=j

−

3
4(x2)2 for i=2=j

−

1
4(x2)2 for i=3=j

−

1
4(x2)2 for i=4=j

0 otherwise,

δ1 =
1

8(x2)2 ; δ2 = δ3 = −
1

2(x2)2 ; δ4 =
1

2
.
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With these choices, our (M4, g) is a P (GQE)4. Lastly let us take σ = λ, and the
1-forms as

A
( ∂

∂xi

)

= Ai =

{

− 2
x2 for i = 2

0 otherwise,
B

( ∂

∂xi

)

= Bi =

{

1
7x2 for i = 2

0 otherwise,

E
( ∂

∂xi

)

= Ei =

{

− 1
7x2 for i = 2

0 otherwise.

One can now easily calculate the non-zero components of SMT and its covariant
derivatives. Also,the validity of the following relations can be verified with the
above 1-forms:

P1j1j,2 = A2P1j1j + B1P2j1j + BjP121j + E1P1j2j + EjP1j12,

Pjkjk,2 = A2Pjkjk + BjP2kjk + BkPj2jk + EjPjk2k + EkPjkj2 .

Hence we have

Theorem 5.6. The smooth manifold (M4, g) admitting EFE and weakly sym-
metric SMT such that σ = λ and equipped with the Riemannian metric given in
(5.14) is a P (GQE)4 with non-zero curvature scalar.

6. Conclusion

We have obtained several interesting results on the basis of purely geometric
view point. For example, there is no mathematical constraint which can force SMT
to vanish identically in case of generalized quasi-Einstein manifolds. We expect
that the results obtained will be useful in studying physical behaviours of different
cosmological models.

Acknowledgement. The authors express their sincere thanks and gratitude
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