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FRACTIONAL ORDER OPERATIONAL CALCULUS

AND EXTENDED HERMITE–APOSTOL TYPE

FROBENIUS–EULER POLYNOMIALS

Shahid Ahmad Wani and Mumtaz Riyasat

Abstract. The combined use of integral transforms and special classes of
polynomials provides a powerful tool to deal with models based on fractional
order derivatives. In this article, the operational representations for the ex-
tended Hermite–Apostol type Frobenius–Euler polynomials are introduced via
integral transforms. The recurrence relations and some identities involving
these polynomials are established. Finally, the quasi-monomial properties for
the Hermite–Apostol type Frobenius–Euler polynomials and for their extended
forms are derived.

1. Introduction and preliminaries

Various significant properties of the classical and generalized polynomials in-
cluding the recurrence and explicit relations; functional and differential equations,
summation formulae, symmetric and convolution identities, determinant forms etc.,
are useful and have potential for applications in certain problems of number theory,
combinatorics, classical and numerical analysis, theoretical physics, approximation
theory and other fields of pure and applied mathematics.

The Appell polynomials constitute an important class of polynomials because
of their remarkable applications in numerous fields. The interest in Appell poly-
nomials and their applications in different fields has significantly increased. The
recent applications of Appell polynomials are in probability theory and statistics.
The presentation of theoretic results provides new examples of applications of Ap-
pell polynomials and gives evidence to their central role as orthogonal polynomials.

The Appell class contains the Euler polynomials En(x) [10] as one of the im-
portant member. The Euler polynomials are presented in the Taylor expansion in
a neighborhood of the origin of the trigonometric and hyperbolic secant functions.
These polynomials are defined by the following generating function
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2

et + 1
ext =

∞
∑

n=0

En(x)
tn

n!
.

Various generalizations related to the Euler polynomials, namely the Frobenius–
Euler polynomials Fn(x; u) and later the Apostol type Frobenius–Euler polynomials
Fn(x; λ; u) were introduced [13,15]. The Apostol type Frobenius–Euler polynomi-
als are defined by

(

1 − u

λet − u

)

ext =
∞

∑

n=0

Fn(x; λ; u)
tn

n!
, u, λ ∈ C; u 6= 1,

which for λ = 1 reduces to the Frobenius–Euler polynomials.
Next, we recall that the 3-variable Hermite polynomials (3VHP) Hn(x, y, z) [8],

which are defined by the following generating function:

ext+yt2+zt3

=

∞
∑

n=0

Hn(x, y, z)
tn

n!
,

which for z = 0 reduce to the 2-variable Hermite Kampé de Fériet polynomials
(2VHKdFP) Hn(x, y) [2] and for z = 0, x = 2x and y = −1 become the classical
Hermite polynomials Hn(x) [1].

A hybrid class of the 3-variable Hermite–Apostol type Frobenius–Euler polyno-
mials denoted by HFn(x, y, z; λ; u) is introduced in [4] by considering the discrete
Apostol type Frobenius–Euler convolution of the 3-variable Hermite polynomials.
The Hermite–Apostol type Frobenius–Euler polynomials are defined by the follow-
ing operational rule

(1.1) HFn(x, y, z; λ; u) = exp

(

y
∂2

∂x2 + z
∂3

∂x3

)

{Fn(x; λ; u)}

and these polynomials possess the following generating function

(1.2)

(

1 − u

λet − u

)

ext+yt2+zt3

=

∞
∑

n=0

HFn(x, y, z; λ; u)
tn

n!
, u, λ ∈ C; u 6= 1.

Fractional order operators have been attracting the attention of mathemati-
cians and engineers from long time ago [14,18]. Special polynomials and fractional
operators have a noteworthy relationship within the realm of mathematics. Frac-
tional order operators introduce a new dimension for ordinary differentiation and
integration by extending these operations to non-integer orders, which are often
represented by fractional order exponents. Special polynomials, on the other hand,
are a class of mathematical functions with unique properties and generated expres-
sions. The combination of special polynomials with fractional order operators leads
to the development of more sophisticated and versatile mathematical tools [5,9]. By
applying fractional order operators to special polynomials, researchers can create
new families of fractional special polynomials, which can offer enhanced capabilities
in solving complex mathematical problems and the modeling of various phenomena.

In [9], Dattoli and coauthors explored the potential of using integral transforms
in a wider context. In their research, they use integral transforms beyond their
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typical limitations. A comprehensive foundation for increasing the applicability and
efficiency of integral transformations in numerous domains is provided by Euler’s
integral:

(1.3) a−ν =
1

Γ(ν)

∫

∞

0
e−attν−1dt, min{Re(ν), Re(a)} > 0,

Some of the integral transforms consequences of (1.3) (which can be also treated
as operational operators of fractional order) are given as:

(

α −
∂

∂x

)−ν

f(x) =
1

Γ(ν)

∫

∞

0
e−αttν−1 et ∂

∂x f(x) dt(1.4)

=
1

Γ(ν)

∫

∞

0
e−αttν−1 f(x + t) dt,

whereas for the cases involving second order derivatives, it is shown that
(

α −
∂2

∂x2

)−ν

f(x) =
1

Γ(ν)

∫

∞

0
e−αttν−1 et ∂

2

∂x2 f(x) dt.

These transforms of fractional operational calculus can be treated in an efficient
way by combining the properties of exponential operators and suitable integral
representations.

Many works are devoted to use of fractional operational calculus to investigate
extended families of polynomials, see for example [11, 17]. Motivated by this, in
this article, the extended Hermite–Apostol type Frobenius–Euler polynomials are
introduced and studied by means of generating function and operational defini-
tion by using fractional order operators. The recurrence relations and summation
formulae for the extended Hermite–Apostol type Frobenius–Euler polynomials are
also established.

2. Extended Hermite–Apostol type Frobenius–Euler polynomials

Here, we introduce the extended Hermite–Apostol type Frobenius–Euler poly-
nomials using Euler’s integral. For this, we have the following result.

Theorem 2.1. For the extended Hermite–Apostol type Frobenius–Euler poly-

nomials
νHFn(x, y, z; λ; u; α), the following operational connection holds true:

(2.1)

(

α −

(

y
∂2

∂x2 + z
∂3

∂x3

))−ν

Fn(x; λ; u) =
νHFn(x, y, z; λ; u; α).

Proof. Replacing a by α−
(

y ∂2

∂x2 + z ∂3

∂x3

)

in integral (1.4) and then operating

the resultant equation on Fn(x; λ; u), we find

(

α −

(

y
∂2

∂x2 + z
∂3

∂x3

))−ν

Fn(x; λ; u)

=
1

Γ(ν)

∫

∞

0
e−αttν−1 exp

(

yt
∂2

∂x2 + zt
∂3

∂x3

)

Fn(x; λ; u) dt,
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which in view of (1.1) gives
(2.2)
(

α −

(

y
∂2

∂x2 + z
∂3

∂x3

))−ν

Fn(x; λ; u) =
1

Γ(ν)

∫

∞

0
e−αttν−1

HFn(x, yt, zt; λ; u) dt.

The transform on the r.h.s. (2.2) defines a new family of polynomials. Denoting
this special family of polynomials by

νHFn(x, y, z; λ; u; α) and naming it as the
extended Hermite–Apostol type Frobenius–Euler polynomials, so that we have

(2.3)
ν HFn(x, y, z; λ; u; α) =

1

Γ(ν)

∫

∞

0
e−αttν−1

HFn(x, yt, zt; λ; u) dt.

In view of (2.2) and (2.3), assertion (2.1) follows. �

Remark 2.1. For λ = 1, the Apostol type Frobenius–Euler polynomials reduce
to the Frobenius–Euler polynomials. Therefore, taking λ = 1 in the l.h.s. of
(2.1) and denoting the resultant extended Hermite Frobenius–Euler polynomials
in the r.h.s. by

νHFn(x, y, z; u; α), we obtain the following operational connection
between the extended Hermite Frobenius–Euler polynomials and the Frobenius–
Euler polynomials

(

α −

(

y
∂2

∂x2 + z
∂3

∂x3

))−ν

Fn(x; u) =
νHFn(x, y, z; u; α).

Remark 2.2. We know that for λ = 1 and u = −1, the Apostol type Frobenius–
Euler polynomials reduce to the Euler polynomials. Therefore, taking λ = 1
and u = −1 in the l.h.s. of (2.1) and denoting the resultant extended Hermite–
Frobenius–Euler polynomials in the r.h.s. by

ν HFn(x, y, z; α), we obtain the follow-
ing operational connection between the extended Hermite–Euler polynomials and
the Euler polynomials

(

α −

(

y
∂2

∂x2 + z
∂3

∂x3

))−ν

En(x) =
νHEn(x, y, z; α).

Next, we derive the generating function of the extended Hermite–Apostol type
Frobenius–Euler polynomials

νHFn(x, y, z; λ; u; α) by proving the following result.

Theorem 2.2. For the extended Hermite–Apostol type Frobenius–Euler poly-

nomials
νHFn(x, y, z; λ; u; α), the following generating function holds true

(2.4)
(1 − u) exp(xw)

(λew − u) (α − (yw2 + zw3))ν
=

∞
∑

n=0
ν HFn(x, y, z; λ; u; α)

wn

n!
.

Proof. Multiplying both sides of (2.3) by wn

n! , then summing it over n and
making use of (1.2) in the r.h.s. of the resultant equation, we find

∞
∑

n=0
ν HFn(x, y, z; λ; u; α)

wn

n!
=

(1 − u) exp(xw)

(λew − u) Γ(ν)

∫

∞

0
e−

(

α−(yw2+zw3)
)

t tν−1dt,

which in view of integral (1.3) yields assertion (2.4). �
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Remark 2.3. We know that for λ = 1, the Apostol type Frobenius–Euler
polynomials reduce to the Frobenius–Euler polynomials. Therefore, by taking λ =
1 in generating equation (2.4), we obtain the following generating function for
extended Hermite–Frobenius–Euler polynomials [3,4]

(1 − u) exp(xw)

(ew − u) (α − (yw2 + zw3))ν
=

∞
∑

n=0
νHFn(x, y, z; u; α)

wn

n!
.

Remark 2.4. For λ = 1 and u = −1, the Apostol type Frobenius–Euler poly-
nomials reduce to the Euler polynomials. Therefore, by taking λ = 1 and u = −1 in
generating equation (2.4), we obtain the following generating function for extended
Hermite–Euler polynomials [3,4]

2 exp(xw)

(ew + 1) (α − (yw2 + zw3))ν
=

∞
∑

n=0
ν HEn(x, y, z; α)

wn

n!
.

Next, we derive the recurrence relations for the extended Hermite–Apostol
type Frobenius–Euler polynomials

ν HFn(x, y, z; λ; u; α) by taking into consideration
their generating relation. A recurrence relation is an equation that recursively
defines a sequence or multidimensional array of values, once one or more initial
terms are given: each further term of the sequence or array is defined as a function
of the preceding terms. Differentiating generating function (2.4), with respect to
x, y, z and α, we find the following recurrence relations for the extended Hermite–
Apostol type Frobenius–Euler polynomials

ν HFn(x, y, z; λ; u; α)

∂

∂x

(

ν HFn(x, y, z; λ; u; α)
)

= n
νHFn−1(x, y, z; λ; u; α),

∂

∂y

(

ν HFn(x, y, z; λ; u; α)
)

= ν n(n − 1)
ν+1HFn−2(x, y, z; λ; u; α),

∂

∂z

(

ν HFn(x, y, z; λ; u; α)
)

= ν n(n − 1)(n − 2)
ν+1HFn−3(x, y, z; λ; u; α),

∂

∂α

(

ν HFn(x, y, z; λ; u; α)
)

= −ν
ν+1HFn(x, y, z; λ; u; α).(2.5)

In view of the above relations, it follows that

∂

∂y

(

ν HFn(x, y, z; λ; u; α)
)

= −
∂3

∂x2∂α νHFn(x, y, z; λ; u; α),

∂

∂z

(

ν HFn(x, y, z; λ; u; α)
)

= −
∂4

∂x3∂α ν HFn(x, y, z; λ; u; α).

Several identities involving Frobenius–Euler polynomials are known. The oper-
ational formalism developed in the previous section can be used to obtain the identi-
ties for the extended Hermite–Frobenius–Euler polynomials

ν HFn(x, y, z; u; α). To
achieve this, we perform the following operation

(O) operating
(

α − (y ∂2

∂x2 + z ∂3

∂x3 )
)−ν

on both sides of a given relation.
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Consider the following identities for the Frobenius–Euler polynomials F
(α)
n (x; u)

from [12]

uFn(x; u−1) + Fn(x; u) = (1 + u)

n
∑

k=0

(

n

k

)

Fn−k(u−1)Fk(x; u),

1

n + 1
Fk(x; u) + Fn−k(x; u)

=

n−1
∑

k=0

(

n
k

)

n − k + 1

n
∑

l=k

((−u)Fl−k(u) Fn−l(u) + 2uFn−k(u))Fk(x; u)Fn(x; u),

Fn(x; u) =

n
∑

k=0

(

n

k

)

Fn−k(u)Fk(x; u) (n ∈ Z+).

Performing the operation (O) on both sides of the above equations yields the
results for the extended Hermite–Frobenius–Euler polynomials

ν HFn(x, y, z; u; α)

u
νHFn(x, y, z; u−1; α) +

ν HFn(x, y, z; u; α)

= (1 + u)

n
∑

k=0

(

n

k

)

Fn−k(u−1)
νHFk(x, y, z; u; α),

1

n + 1 νHFk(x, y, z; u; α) +
ν HFn−k(x, y, z; u; α)

=

n−1
∑

k=0

(

n
k

)

n − k + 1

n
∑

l=k

((−u)Fl−k(u) Fn−l(u) + 2uFn−k(u))

νHFk(x, y, z; u; α)
νHFn(x, y, z; u; α)

ν HFn(x, y, z; u; α) =

n
∑

k=0

(

n

k

)

Fn−k(u)
ν HFk(x, y, z; u; α).

In the next section, the quasi-monomial properties for the Hermite Apostol
type-Frobenius–Euler polynomials and for their extended forms are derived.

3. Quasi-monomial properties

The combination of monomiality principle along with operational techniques in
the case of multi-variable special polynomials yields new mechanism of analysis for
the solutions of a large class of partial differential equations usually experienced in
physical problems. The operational methods open new possibilities to deal with the
theoretical foundations of special polynomials and also to introduce new families of
special polynomials. The concept of monomiality principle arises from the idea of
poweroid suggested by Steffensen [16]. This idea is reformulated and systematically
used by Dattoli [7]. Ben Cheikh [6] has shown that every polynomial set is quasi-
monomial and the properties of a given polynomial set may be deduced from the
quasi-monomiality.
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According to the monomiality principle, there exist two operators M̂ and P̂

playing, respectively, the role of multiplicative and derivative operators for a poly-
nomial set {pn(x)}n∈N, that is, M̂ and P̂ satisfy the following identities, for all
n ∈ N

M̂{pn(x)} = pn+1(x),(3.1)

P̂ {pn(x)} = n pn−1(x).(3.2)

The polynomial set {pn(x)}n∈N is called a quasi-monomial. These multiplicative

and derivative operators satisfy the commutation relation [P̂ , M̂ ] = P̂ M̂ −M̂P̂ = 1̂
and therefore exhibits a Weyl group structure.

If the polynomial set {pn(x)}n∈N is quasi-monomial, its properties can be es-

tablished from those of the M̂ and P̂ operators. In fact the following holds

(i) If M̂ and P̂ have differential realizations, then the polynomials pn(x) satisfy
the differential equation

(3.3) M̂P̂{pn(x)} = n pn(x).

(ii) Assuming that p0(x) = 1, then pn(x) can be explicitly constructed as

(3.4) pn(x) = M̂n{1}.

(iii) In view of identity (3.4), the exponential generating function of pn(x) can be
cast in the form

etM̂ {1} =
∞

∑

n=0

pn(x)
tn

n!
, |t| < ∞.

In order to frame the polynomials HFn(x, y, z; λ; u) within the context of monomi-
ality principle, the following result is proved.

Theorem 3.1. The Hermite–Apostol type Frobenius–Euler polynomials

HFn(x, y, z; λ; u) are quasi-monomial with respect to the following multiplicative

and derivative operators

M̂HF = x + 2y∂x + 3z∂2
x −

λe∂x

λe∂x − u
(3.5)

P̂HF = ∂x; ∂x :=
∂

∂x
,(3.6)

respectively.

Proof. Differentiating (1.2) partially with respect to t, we get

(3.7)

(

x + 2yt + 3zt2 −
λet

λet − u

) (

1 − u

λet − u

)

=

∞
∑

n=0

HFn+1(x, y, z; λ; u)
tn

n!
.

Now, using identity

(3.8) ∂x{HFn(x, y, z; λ; u)} = t{HFn(x, y, z; λ; u)}
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and generating equation (1.2) in the l.h.s of (3.7), it follows that
(

x + 2y∂x + 3z∂2
x −

λe∂x

λe∂x − u

) ∞
∑

n=0

HFn(x, y, z; λ; u) =

∞
∑

n=0

HFn+1(x, y, z; λ; u),

which on equating the coefficients of the same powers of t in both sides, yields (3.5).
Again, in view of generating function (1.2) and identity (3.8), it follows that

∂x

{ ∞
∑

n=0

HFn(x, y, z; λ; u)
tn

n!

}

=

∞
∑

n=1

HFn−1(x, y, z; λ; u)
tn

(n − 1)!
.

Rearranging the terms in the above equation and then equating the coefficients of
same powers of t in both sides of the resultant equation, assertion (3.6) follows. �

Remark 3.1. Using (3.5) and (3.6) in (3.3), the following differential equa-
tion for the Hermite–Apostol type Frobenius–Euler polynomials HFn(x, y, z; λ; u)
is obtained

(

x∂x + 2y∂2
x + 3z∂3

x −
λe∂x

λe∂x − u
∂x − n

)

HFn(x, y, z; λ; u) = 0.

Next, by using integral transforms and quasi-monomiality of Hermite–Apostol
type Frobenius–Euler polynomials, we show that the extended Hermite–Apostol
type Frobenius–Euler polynomials

ν HFn(x, y, z; λ; u; α) are quasi-monomials.
Consider the operation:

(Θ) Replacement of y by yt and z by zt, multiplication by 1
Γ(ν) e−attν−1

and then integration with respect to t from t = 0 to t = ∞.
Now, operating (Θ) on (3.5) and (3.6) and then using (2.5) and further in view

of recurrence relations (3.1) and (3.2), we find that the polynomials
ν HFn(x, y, z; u;

λ; α) are quasi-monomial with respect to the following multiplicative and derivative
operators

M̂νHF = x + 2y∂x∂α + 3z∂2
x∂α −

λe∂x

λe∂x − u
,(3.9)

P̂νHF = ∂x,(3.10)

respectively. Further, use of (3.9) and (3.10) in (3.3) yields the following differen-
tial equation for the extended Hermite–Apostol type Frobenius–Euler polynomials

ν HFn(x, y, z; λ; u; α)
(

x∂x + 2y∂2
x∂α + 3z∂3

x∂α −
λe∂x

λe∂x − u
∂x − n

)

νHFn(x, y, z; λ; u; α) = 0.

We present certain special cases of the 3VHATFEP in Table 1, in which
∑

means
∑

∞

n=0.
The combined use of integral transforms and special polynomials provides a

powerful tool to deal with fractional order operators of operational calculus. To
bolster the contention of using this approach, the extended form of hybrid type
polynomials are introduced. The generating function and recurrence relations for
the extended Laguerre–Appell polynomials are derived here. These results may be
useful in the investigation of other useful properties of these polynomials and may



FRACTIONAL ORDER OPERATIONAL CALCULUS 95

Table 1. Special cases of HFn(x, y, z; λ; u)

S. Cases Name of polynomial Generating function

No.

I. λ = 1, Hermite Frobenius-
(

1−u

et
−u

)

ext+yt2+zt3

=
∑

HFn(x, y, z; u) tn

n!

Euler polynomials

u = −1, Hermite-Euler
(

2

et+1

)

ext+yt2+zt3

=
∑

H En(x, y, z) tn

n!

λ = 1 polynomials

II. z = 0 2-variable Hermite-
(

1−u

λet
−u

)

ext+yt2

=
∑

HFn(x, y; u; λ) tn

n!

Apostol type Frobenius
Frobenius-
Euler polynomials

z = 0, 2-variable Hermite-Frobenius-
(

1−u

et
−u

)

ext+yt2

=
∑

HFn(x, y; u) tn

n!

λ = 1 Euler polynomials

III. x = 2x, Hermite-Apostol type
(

1−u

λet
−u

)

e2xt−t2

=
∑

HFn(x; λ; u) tn

n!

y = −1; z = 0 Frobenius-Euler polynomials

x = 2x, y = −1, Hermite Frobenius-
(

1−u

et
−u

)

e2xt−t2

=
∑

HFn(x; u) tn

n!

z = 0; λ = 1 Euler polynomials

have applications in physics. Operational methods can be exploited to simplify
the derivation of the properties associated with ordinary and generalized special
functions and to define new families of special functions. The use of operational
techniques in the study of special functions provide explicit solutions for the fami-
lies of partial differential equations including heat and D′Alembert type equations.
The method proposed in this article can be used in combination with the monomi-
ality principle as a useful tool in analysing the solutions of a wide class of partial
differential equations often encountered in physical problems.
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