
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 116 (130) (2024), 75–85 DOI: https://doi.org/10.2298/PIM2430075C

EXTENSION OF TURÁN-TYPE INEQUALITIES
FOR POLAR DERIVATIVES OF POLYNOMIALS

INTO INTEGRAL MEAN VERSION

Barchand Chanam

Abstract. Let p(z) be a polynomial of degree n and let Dαp(z) = np(z) +
(α − z)p′(z) denote the polar derivative of the polynomial p(z) with respect
to a real or complex number α. If p(z) is a polynomial of degree n having all
its zeros in |z| 6 k, k > 1, then for a real or complex number α with |α| > k,

Aziz and Rather [J. Math. Ineq. Appl. 1 (1998), 231–238] proved

max
|z|=1

|Dαp(z)| > n

(

|α| − k

1 + kn

)

max
|z|=1

|p(z)|.

We first extend the above inequality into integral mean without applying sub-
ordination property. As an application of our result, we prove another integral
mean inequality. Our results have interesting consequences to the earlier well-
known inequalities.

1. Introduction and Statement of Results

Experimental observations and investigations in various fields of science and
engineering are often converted into mathematical notations and mathematical
models. Almost every branch of mathematics, from algebraic number theory and
algebraic geometry to applied analysis, Fourier analysis, numerical analysis and
computer sciences, has its own corpus of theory arising from the study of polyno-
mials. Historically, the question relating to polynomials, for example, the solution
of polynomial equations and the approximation by polynomials, give rise to some
of the most important problems of the day. The well-known Russian mathemati-
cian Chebyshev (1821–1894) studied some properties of polynomials with the least
deviation from a given continuous function and introduced the concept of best ap-
proximation in mathematical analysis. Various interesting inequalities in both di-
rections relating the norm of the derivative and the polynomial itself play a key role
in the literature for proving the inverse theorems in approximation theory and, of
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course, have their own intrinsic interests. The first result in this area was connected
with some investigation of the well-known Russian chemist Mendeleev [19]. In fact,
Mendeleev’s problem was to determine max−16x61 |p′(x)|, where p(x) is a quadratic
polynomial of real variable x with real coefficients and satisfying −1 6 p(x) 6 1 for
−1 6 x 6 1. He himself was able to prove that if p(x) is a quadratic polynomial
and |p(x)| 6 1 on [−1, 1], then |p′(x)| 6 4 on the same interval. Markov [18] gen-
eralized this result for a polynomial of degree n in the real axis. In fact, he proved
that if p(x) is an algebraic polynomial of degree at most n with real coefficients,
then

max
−16x61

|p′(x)| 6 n2 max
−16x61

|p(x)|.

After about twenty years, Bernstein [3] needed the analogue of Markov’s theo-
rem for the unit disc in the complex plane instead of the interval [−1, 1] in order to
prove the inverse theorem of approximation (see Borwein and Erdélyi [5, p. 241]).
This leads to the famous well-known result known as Bernstein’s inequality which
states that if p(z) is a polynomial of degree n, then

max
|z|=1

|p′(z)| 6 n max
|z|=1

|p(z)|.

The above inequalities show how fast a polynomial of degree at most n or its deriv-
ative can change, and are of interest both in mathematic specially in approximation
theory and in the application areas such a physical systems. Various analogues of
these inequalities are known in which the underlying intervals, the sup-norms, and
the family of functions are replaced by more general sets, norms, and families of
functions, respectively. One such generalization is replacing sup-norm by factor
involving integral mean.

Let p(z) be a polynomial of degree n over the set of complex numbers and for
real number r > 0. We define

‖p‖r =

{

1

2π

∫ 2π

0
|p(eiθ)|rdθ

}1/r

.

If we take limit as r → ∞ and make use of the well-known fact from analysis [27,31]
that

lim
r→∞

{

1

2π

∫ 2π

0
|p(eiθ)|rdθ

}1/r

= max
|z|=1

|p(z)|,

we can suitably denote ‖p‖∞ = max|z|=1 |p(z)|. On the other hand Turán’s [32]
classical inequality provides a lower bound estimate to the size of the derivative of
a polynomial on the unit circle relative to the size of the polynomial itself when
there is a restriction on its zeros. It states that if p(z) is a polynomial of degree n

having all its zeros in |z| 6 1, then

(1.1) ‖p′‖∞ >
n

2
‖p‖∞.

Inequality (1.1) is sharp and equality holds for p(z) = αzn + β, where |α| = |β|.
Inequality (1.1) of Turán [32] has been of considerable interest and applications,
and it would be of interest to seek its generalization for polynomials having all their
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zeros in |z| 6 k, k > 0. The case when 0 < k 6 1 was settled by Malik [16] and
proved

(1.2) ‖p′‖∞ >
n

1 + k
‖p‖∞,

while the case when k > 1 by Govil [9] and proved

(1.3) ‖p′‖∞ >
n

1 + kn
‖p‖∞.

Equality in (1.3) holds for p(z) = zn + kn, k > 1.
For the first time, in 1984 Malik [15] extended inequality (1.1) proved by Turán

[32] into integral mean and proved that if p(z) is a polynomial of degree n having
all its zeros in |z| 6 1, then for each r > 0 we have ‖1 + z‖r‖p′‖∞ > n‖p‖r. The
result is sharp and equality holds for p(z) = (z + 1)n.

In 1988 Aziz [1] obtained the integral mean extension of inequality (1.3) and
proved

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in |z| 6 k,

k > 1, then for each r > 1 we have ‖1 + knz‖r‖p′‖∞ > n‖p‖r. The result is sharp

and equality holds for p(z) = αzn + βkn, |α| = |β|.
Further, in the same paper [1] he also established an integral mean extension

of inequality (1.2) of Malik [16] and proved that if p(z) is a polynomial of degree
n having all its zeros in |z| 6 k, k 6 1, then for each r > 0,

(1.4) ‖1 + kz‖r‖p′‖∞ > n‖p‖r.

Equality in (1.4) holds for the polynomial p(z) = (αz + βk)n where |α| = |β|.
Inequalities on ordinary derivative have been extended widely in the literature

to polar derivative of polynomials. For a polynomial p(z) of degree n and a real or
complex number α, let Dαp(z) = np(z) + (α − z)p′(z) denote the polar derivative
of the polynomial p(z) with respect to α.

Note that Dαp(z) is a polynomial of degree at most n−1, and it generalizes the

ordinary derivative in the sense that limα→∞
Dαp(z)

α = p′(z). Shah [28] extended
Turán’s inequality (1.1) to polar derivative of a polynomial p(z) by proving

Theorem 1.2. If p(z) is a polynomial of degree n having all its zeros in |z| 6 1,

then for any complex number α with |α| > 1,

(1.5) max
|z|=1

|Dαp(z)| > n(|α| − 1)

2
max
|z|=1

|p(z)|.

The result is sharp and extremal polynomial is p(z) = (z − 1)n with real α > 1.

Aziz and Rather [2] first extended inequality (1.2) due to Malik [16] to the
polar derivative and proved

Theorem 1.3. If p(z) is a polynomial of degree n having all its zeros in |z| 6 k,

k 6 1, then for every complex number α with |α| > k, k 6 1,

(1.6) ‖Dαp(z)‖∞ > n
( |α| − k

1 + k

)

‖p(z)‖∞.
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In the same paper [2] they also extended (1.3) to polar derivative.

Theorem 1.4. If p(z) is a polynomial of degree n having all its zeros in |z| 6 k,

k > 1, then for every real or complex number α with |α| > k,

(1.7) max
|z|=1

|Dαp(z)| > n
|α| − k

1 + kn
max
|z|=1

|p(z)|.

Inequality (1.7) is best possible and equality occurs for p(z) = (z − k)n with real

α > k.

Further, Govil and Mctume [12] improved Theorem 1.4 by involving min|z|=k |p(z)|.

Theorem 1.5. If p(z) is a polynomial of degree n having all its zeros in |z| 6 k

k > 1, then for every real or complex number α with |α| > 1 + k + kn,

(1.8) max
|z|=1

|Dαp(z)| > n
|α| − k

1 + kn
max
|z|=1

|p(z)| + n
{ |α| − (1 + k + kn)

1 + kn

}

min
|z|=k

|p(z)|.

There is enough literature which deals with the integral mean extensions of
Turán-type inequalities concerning ordinary as well as polar derivative for polyno-
mials having all its zeros in |z| 6 k, k 6 1 (see [7, 21, 33, 34]). It would indeed
be interesting to note that in such extensions, the techniques used are more or
less similar. A typical example is that of Dewan et al. [7], where they proved the
following integral mean extension of (1.6) due to Aziz and Rather [2].

Theorem 1.6. If p(z) is a polynomial of degree n having all its zeros in |z| 6 k,

k 6 1, then for every complex number α with |α| > k and for each r > 0

‖1 + kz‖r‖Dαp‖∞ > n(|α| − k)‖p‖r.

The result is sharp and equality holds for p(z) = (z − k)n.

In an attempt to obtain the integral versions of Turán-type inequalities of the
above class of polynomials with k > 1 by following the usual techniques mentioned
above, it was only in 2017 that Rather and Bhat [25] gave extension of Theorem
1.4 in integral mean setting. If we examine closely the paper due to Rather and
Bhat [25], it may be noticed that even though they have proved three theorems,
in which Theorems 1 and 2 are obtained in the same lines by applying two similar
results of Rather et al. [26, Theorems 1 and 3]. Moreover, their Theorem 3 is a
better form of the first theorem in the sense that in it, the factor max|z|=1 |Dαp(z)|
is replaced by integral mean of |Dαp(z)| for |z| = 1. Because of the similarities,
their paper is mainly about Theorem 3. But in the current paper, we have proved
the same result (Theorem 3, Corollary 3) in a simpler approach entirely based on
some existing inequalities on polynomials. Some main differences in the proof of
Theorem 3 of Rather and Bhat [25] with Theorem 2.1 of the current paper are:

1. They have obtained their inequality (26) by applying a result of De-Bruijin
[6, Theorem 1, p. 1265] concerning an inequality for the derivatives between two
polynomials on a convex region whereas the same inequality namely, (4.2) follows
from Lemma 3.1.
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2. They also applied the well-known Gauss–Lucas theorem in order to consider
a rational function on which a well-known property of subordination [14, p. 422]
is used to obtain an important integral mean inequality which plays a central role
in deriving their desired result through further application of Holder’s inequality,
while all these concerns have been simply compensated with the use of a result due
to Govil [9] (i.e., Lemma 3.2).

3. We also give an application of Theorem 2.1, which provides the integral
analogue of a result proved by Govil and Mctume [12].

For a better insight into both Bernstein and Turán-type inequalities, one can
refer the recently published monograph of Gardner et al. [8] (also see Marden [17],
Milovanović et al. [22], Rahman and Schmeisser [24] and some recently published
papers [11,20,29,30]).

2. Main Results

In mathematics, it is of interest to seek other methods of proof and in this
regard, as mentioned above, in this paper, first we present an alternative proof of
the result due to Rather and Bhat [25, Theoram 3] simply based on some existing
inequalities on polynomials.

Theorem 2.1. If p(z) is a polynomial of degree n having all its zeros in |z| 6 k,

k > 1, then for every real or complex number α with |α| > k and real number r > 0,

(2.1) ‖Dαp‖r >
|α| − k

2

n

Er
‖p‖r, where Er =

‖1 + knz‖r

‖1 + z‖r
.

Remark 2.1. Taking limit as r → ∞ on both sides of (2.1) and noting that

Er → 1+kn

2 , then (2.1) reduces to (1.7).

Remark 2.2. Putting k = 1, Theorem 2.1 gives the following corollary which
matches the integral mean version of Theorem 1.2.

Corollary 2.1. If p(z) is a polynomial of degree n having all its zeros in

|z| 6 1, then for every real or complex number α with |α| > 1 and real number

r > 0,

(2.2) ‖Dαp‖r > n
|α| − 1

2
‖p‖r.

Remark 2.3. Taking limit as r → ∞, inequality (2.2) of Corollary 2.1 becomes
inequality (1.5) due to Shah [28].

Further, as an application of Theorem 2.1, we prove the following result, which
is the integral mean analogue of Theorem 1.5. More precisely, we obtain

Theorem 2.2. If p(z) is a polynomial of degree n having all its zeros in |z| 6 k,

k > 1, then for every real or complex number α, β with |α| > 1 + k + kn, |β| < 1
and for any r > 0,

(2.3) ‖Dαp(z) + nβm‖r >
|α| − k

Er

n

2
‖p(z) + βm‖r,

where m = min|z|=k |p(z)| and Er is as defined in Theorem 2.1.



80 CHANAM

Remark 2.4. We are interested to verify that Theorem 2.2 is the integral
mean analogue of Theorem 1.5 due to Govil and Mctume [12] and we do as follows.
Taking limit as r → ∞ on both sides of inequality (2.3) of Theorem 2.2, we have

(2.4) max
|z|=1

|Dαp(z) + nβm| > n
|α| − k

1 + kn
max
|z|=1

|p(z) + βm|.

If z0 be a point on |z| = 1 such that |p(z0)| = max|z|=1 |p(z)|, then (2.4) becomes

(2.5) max
|z|=1

|Dαp(z) + nβm| > n
|α| − k

1 + kn
|p(z0) + βm|.

If we choose the argument of β such that |p(z0) + βm| = |p(z0)| + |β|m, then from
(2.5), we have

max
|z|=1

|Dαp(z) + nβm| > n
|α| − k

1 + kn
{|p(z0)| + |β|m},

which implies

(2.6) max
|z|=1

|Dαp(z)| + n|β|m > n
|α| − k

1 + kn
{|p(z0)| + |β|m}.

Inequality (2.6) is equivalent to

(2.7) max
|z|=1

|Dαp(z)| > n
|α| − k

1 + kn
max
|z|=1

|p(z)| + n|β|
{ |α| − (1 + k + kn)

1 + kn

}

m,

and (2.7) further gives if we take |β| → 1,

max
|z|=1

|Dαp(z)| > n
|α| − k

1 + kn
max
|z|=1

|p(z)| + n
{ |α| − (1 + k + kn)

1 + kn

}

m,

which is (1.8).

Remark 2.5. Dividing both sides of inequality (2.3) by |α| and taking limit as
|α| → ∞, we have the following integral mean analogue of a best possible inequality
proved by Govil [10].

Corollary 2.2. If p(z) is a polynomial of degree n having all its zeros in

|z| 6 k, k > 1, then for every real or complex number β with |β| < 1 and for any

r > 0,

‖p′‖r >
‖1 + z‖r

‖1 + knz‖r
‖p(z) + βm‖r,

where m = min
|z|=k

|p(z)|.

Remark 2.6. Following the similar arguments of Remark 2.4, it would be
evident that Corollary 2.2 is the integral mean version of an inequality due to
Govil [10].

Remark 2.7. Putting k = 1, Corollary 2.2 reduces to an improved integral
mean analogue of inequality (1.1) of Turán [32].
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Example 2.1. Let p(z) = z4 + 4, with all zeros {1 − i, 1 + i, −1 − i, −1 + i} on
the circle |z| =

√
2, so that Theorem 2.2 holds for |z| 6

√
2. For this polynomial, we

have m = min|z|=
√

2 |p(z)| = 0. And we take any α such that |α| = 2. For r = 1
2 , we

have ‖p(z)‖1/2 = 4.036 and E1/2 = 3.465. Then, it is easy to see that by inequality
(2.3) for m = 0, we have ‖Dαp‖ 1

2

> 1.365. For r = 2, we have ‖p(z)‖2 = 4.123 and

E2 = 2.915. By inequality (2.3) for m = 0, we have ‖Dαp‖2 > 1.657. For r → ∞,
we have ‖p(z)‖∞ = 5. By inequality (1.8) for m = 0, we have ‖Dαp‖∞ > 2.343.

Here, in this example, we illustrate the estimates of ‖Dαp‖r for different values of
r > 0 rather than sup-norms.

3. Lemmas

We shall need the following lemmas in order to prove the above theorems. For

a polynomial p(z) of degree n we will use p̃(z) = znp
(

1
z̄

)

.

Lemma 3.1. (Malik [16]) If p(z) is a polynomial having all its zeros in |z| 6 k,

k 6 1, then for |z| = 1 we have |p̃′(z)| 6 k|p′(z)|.

Lemma 3.2. (Govil [9]) If p(z) is a polynomial having all its zeros in |z| 6 k,

k > 1, then for |z| = 1 we have |p′(z)| > n
1+kn

|p(z)|.

Lemma 3.3. If p(z) is a polynomial of degree n having no zeros in |z| < 1, then

for every R > 1 and r > 0 we have

‖p(Rz)‖r 6 Er‖p‖r, where Er =
‖1 + Rnz‖r

‖1 + z‖r
.

This lemma was proved by Boas and Rahman [4] for r > 1. Later, Rahman
and Schmeisser [23] showed the validity for 0 < r < 1 as well.

Lemma 3.4. If p(z) is a polynomial of degree n, then for every R > 1 and

r > 0,

(3.1) ‖p(Rz)‖r 6 Rn‖p‖r.

As far as Lemma 3.4 is concerned, it is difficult to trace its origin. It was
deduced from the well-known result of Hardy [13], according to which for every
function f(z) analytic in |z| < t0, and for every r > 0 we have

{
∫ 2π

0
|f(eiθ)|rdθ

}1/r

is a nondecreasing function of t for 0 < t < t0. If p(z) is a polynomial of degree

n, then f(z) = znp
(

1
z̄

)

is again a polynomial, that is, an entire function and by
Hardy’s result for r > 0,

{
∫ 2π

0
|f(teiθ)|rdθ

}1/r

6

{
∫ 2π

0
|f(eiθ)|rdθ

}1/r

,

for t = 1
R 6 1. This is equivalent to (3.1).
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4. Proofs of Theorems

Proof of Theorem 2.1. By hypothesis p(z) has all its zeros in |z| 6 k,
k > 1, then the polynomial R(z) = p(kz) has all its zeros in |z| 6 1. It is easy to
see that for |z| = 1

(4.1) |R̃′(z)| = |nR(z) − zR′(z)|,

where R̃(z) = znR
(

1
z̄

)

.
Further applying Lemma 3.1 for k = 1 to R(z), we have for |z| = 1

(4.2) |R̃′(z)| 6 |R′(z)|.
Now for

∣

∣

α
k

∣

∣ > 1 and |z| = 1, we have

|Dα/kR(z)| =
∣

∣

∣
nR(z) +

(α

k
− z

)

R′(z)
∣

∣

∣
(4.3)

>

∣

∣

∣

α

k

∣

∣

∣
|R′(z)| − |nR(z) − zR′(z)|

=
∣

∣

∣

α

k

∣

∣

∣
|R′(z)| − |R̃′(z)| [by (4.1)]

>

(
∣

∣

∣

α

k

∣

∣

∣
− 1

)

|R′(z)| [by (4.2)].

Further, applying Lemma 3.2 with k = 1 to R(z), we have for |z| = 1

(4.4) |R′(z)| > n

2
|R(z)|.

Using (4.4) in inequality (4.3), we have

|Dα/kR(z)| > |α| − k

k

n

2
|R(z)|.

Replacing R(z) by p(kz) in the above inequality, we get

∣

∣

∣
np(kz) +

(α

k
− z

)

kp′(kz)
∣

∣

∣
>

|α| − k

k

n

2
|p(kz)|,

which is equivalent to

|np(kz) + (α − kz)p′(kz)| > |α| − k

k

n

2
|p(kz)|,

therefore, for any θ ∈ [0, 2π) and r > 0, we have

|Dαp(keiθ)|r >

( |α| − k

k

n

2

)r

|p(keiθ)|r, 0 6 θ < 2π,

and hence

(4.5)

{
∫ 2π

0
|Dαp(keiθ)|rdθ

}1/r

>
|α| − k

k

n

2

{
∫ 2π

0
|p(keiθ)|rdθ

}1/r

.

Since R(z) has all its zeros in |z| 6 1, then R̃(z) is a polynomial of degree at most
n having no zeros in |z| < 1 and applying Lemma 3.3 with R = k > 1 to R̃(z), we
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get

(4.6)

{
∫ 2π

0
|R̃(keiθ)|rdθ

}1/r

6 Er

{
∫ 2π

0
|R̃(eiθ)|rdθ

}1/r

,

where

Er =

{
∫ 2π

0
|1 + kneiθ|rdθ

}1/r{
∫ 2π

0
|1 + eiθ|rdθ

}−1/r

.

Now, it can be easily obtained that |R̃(keiθ)| = kn|p(eiθ)| and |R̃(eiθ)| = |p(keiθ)|.
With the above two relations, (4.6) takes the form

(4.7) kn

{
∫ 2π

0
|p(eiθ)|rdθ

}1/r

6 Er

{
∫ 2π

0
|p(keiθ)|rdθ

}1/r

.

Since Dαp(z) is a polynomial of degree at most (n − 1), on applying Lemma 3.4 to
Dαp(z) with R = k > 1, we have

(4.8)
1

kn−1

{
∫ 2π

0
|Dαp(keiθ)|rdθ

}1/r

6

{
∫ 2π

0
|Dαp(eiθ)|rdθ

}1/r

.

Using (4.8) in (4.5), we get

(4.9) kn−1
{

∫ 2π

0
|Dαp(eiθ)|rdθ

}1/r

>
|α| − k

k

n

2

{
∫ 2π

0
|p(keiθ)|rdθ

}1/r

.

Combining (4.7) and (4.9), we have
{

∫ 2π

0
|Dαp(eiθ)|rdθ

}1/r

>
|α| − k

Er

n

2

{
∫ 2π

0
|p(eiθ)|rdθ

}1/r

,

which completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Without loss of generality, we can assume that p(z)
has all its zeros in |z| < k, k > 1, for if p(z) has a zero on |z| = k, then m = 0 and,
in view of Theorem 2.1, the theorem follows trivially. Since p(z) has all its zeros
in |z| < k, k > 1, by Rouche’s theorem, for every real or complex number β with
|β| < 1, the polynomial F (z) = p(z) + βm also has all its zeros in |z| < k, k > 1.
We apply Theorem 2.1 to the polynomial F (z), thus for |β| < 1 and any r > 0,

(4.10)

{
∫ 2π

0
|Dα{p(eiθ) + βm}|rdθ

}1/r

>
|α| − k

Er

n

2
×

{
∫ 2π

0
|p(eiθ) + βm|rdθ

}1/r

,

where Er is as defined in Theorem 2.1. Also (4.10) is equivalent to
{

∫ 2π

0
|Dαp(eiθ) + nβm|rdθ

}1/r

>
|α| − k

Er

n

2

{
∫ 2π

0
|p(eiθ) + βm|rdθ

}1/r

,

and hence the proof of Theorem 2.2 is complete. �
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Conclusion

Studying the extremal problems of functions of a complex variable and gener-
alizing the classical polynomial inequalities is typical in geometric function theory.
In the past few years, a series of papers related both to Bernstein and Turán-type
inequalities have been published and significant advances in terms of extension,
improvement as well as generalization have been achieved in different directions.
One such generalization is replacing the sup-norm by a factor involving integral
means. These types of inequalities are of interest both in mathematics and in the
application areas such as physical systems. More precisely, the author contributes
a vital work in establishing integral mean extension of some Turán-type inequalities
for the polar derivatives of a class of polynomials by following some new approach.
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