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NEW FORMULAS FOR BERNOULLI POLYNOMIALS

WITH APPLICATIONS OF MATRIX EQUATIONS

AND LAPLACE TRANSFORM

Ezgi Polat and Yilmaz Simsek

Abstract. We give a linear transformation on the polynomial ring of ratio-
nal numbers. A matrix representation of this linear transformation based on
standard bases is constructed. For some special cases of this matrix, ma-
trix equations including inverse matrices related to the Bell polynomials and
Diophantine equation are obtained. With the help of these equations, new
formulas containing different polynomials with the Bernoulli polynomials are
found. In order to compute these polynomials, a computational algorithm is
given. Finally, by applying the Laplace transform to the generating function
for the Bernoulli polynomials, we derive some novel formulas involving the
Hurwitz zeta function and infinite series.

1. Introduction

It is well known that in recent years many different applications of linear trans-
formations have been given not only in the algebraic field of mathematics but also in
other applied sciences. To give an example of these different applications, geometric
transformations implemented in computer graphics also occur; that is translation,
rotation and scaling of 2D or 3D objects can be done using a transformation matrix.
Therefore, linear transformations are also used as a tool to describe change. Many
examples can be given for these, some of which are well known to be used in analy-
sis as transformations corresponding to derivatives, transformations corresponding
to integrals, or in relativity as a device to keep track of local transformations of
reference frames. In addition, other implementation examples can be given, in-
cluding compiler optimizations of nested loop code and parallelization of compiler
techniques.

In recent years, it has been also seen that generating functions for the Bernoulli
numbers and polynomials were given by different methods. For example, in complex
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analysis, generating functions of these numbers and polynomials can be constructed
using the Cauchy derivative formula, Cauchy residue theorem and meromorphic
functions. These numbers and polynomials are also used in algebraic topology and
number theory, as criteria of regular prime numbers or their appearance in the
Todd class which can be seen on complex vector bundles in topological space, the
values of zeta functions on even integers, in Milnor’s homotopy group related to the
characteristic class. They can also appear in K-theory, the Euler-Maclaurin sum-
mation formula, Bessel functions, trigonometric functions, cylindrical functions,
hypergeometric functions etc. In addition, it is also well-known that these numbers
and polynomials are given by the Volkenborn integral on the set of p-adic integers.
Perhaps their definitions are also given on other spaces or sets that we have not
seen before. Therefore, the main motivation of this paper is to give different com-
putational formulas of polynomials containing the Bernoulli polynomials using not
only the linear transformation defined on the polynomials ring of rational numbers
and its matrix equations, but also the Laplace transform and the Hurwitz zeta
function.

We can use the following notations and definitions. Let N, Q, R, and C denote
a set of positive integers, the ring of rational integers, a set of real numbers, and a
set of complex numbers. N0 = N ∪ {0}.

The Bernoulli numbers and polynomials are respectively given by

F (t) =
t

et − 1
=

∞
∑

n=0

Bn

tn

n!
,(1.1)

F (t, x) = etxF (t) =

∞
∑

n=0

Bn(x)
tn

n!
(1.2)

(cf. [1,16,22]).
The Stirling numbers of the first kind and the second kind, which are denoted

by S1(n, k) and S2(m,n), respectively, are defined by

(log(1 + t))k

k!
=

∞
∑

n=0

S1(n, k)
tn

n!
,

(et − 1)n

n!
=

∞
∑

m=0

S2(m,n)
tm

m!
(1.3)

(cf. [5,16,22]).
The array polynomials are defined by the following generating function:

(1.4)
(et − 1)vetx

v!
=

∞
∑

m=0

Sm
v (x)

tm

m!

(cf. [3,4,17]).
The results of this article, including all sections, are briefly stated as follows:
In Section 2, we defined Q-linear transformation on the polynomial ring Q[x].

By using this transformation, we give its matrix representation with respect to the
basis {1, x, x2, x3, . . . } of Q[x]. By using matrix representation, we find some new
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classes of special polynomials involving Bernoulli polynomials and Bell polynomials.
We also give a computational algorithm for the polynomials obtained with the help
of this Q-linear transformation.

In Section 3, we give linear transformation. By applying Cayley–Hamilton
theorem, we also give inverse matrix formulas involving the Bell polynomials for
this linear transformation. Using this inverse matrix formula, we derive matrix
representation for the Bernoulli polynomials.

In Section 4, we give a derivative formula for linear transformation.
In Section 5, we define a new family of polynomials and its matrix. We give

some applications of these polynomials. We also define a new family of polynomials
by a matrix representation. By using this matrix with its inverse, we also derive
the Bernoulli numbers.

In Section 6, applying the Laplace transform to generating function for the
Bernoulli polynomials, we give not only infinite series representation for the
Bernoulli polynomials, but also we derive some novel formulas including the Stirling
numbers and the array polynomials.

2. A class of Q-linear transformation on the polynomials ring Q[x]

In this section, we define not only the following Q-linear transformation on the
polynomials ring Q[x], but also construct its matrix representation with respect to
the basis {1, x, x2, x3, . . . } of Q[x]. By using this transformation and its matrix,
we derive some new classes of special polynomials involving the Bernoulli polyno-
mials, the Bell polynomials etc. We also give a computational algorithm for the
polynomials obtained with the help of this Q-linear transformation.

Let L
c,d
a,b : Q[x] → Q[x], where a, b, c, d ∈ Q. Note that since L

c,d
a,b is a linear

transformation, Lc,d
a,b[0] = 0. Let Pn(x) be any polynomial defined on the polynomial

ring Q[x]. Then, we define the following generalized linear transformation on the
polynomials ring Q[x]:

(2.1) L
c,d
a,b[Pn(x)] =

∫ cx+d

ax+b

Pn(u) du,

Substituting Pn(x) = xn into (2.1), we obtain

(2.2) L
c,d
a,b[x

n] =

∫ cx+d

ax+b

undu =
(cx+ d)n+1 − (ax+ b)n+1

n+ 1
.

Remark 2.1. Substituting a = c = d = 1 and b = 0 into (2.2), L1,1
1,0[x

n] reduces

to Q-linear transformation, which is given by Arakawa et al. [1, p. 55].

Using (2.2) for any polynomial defined on the polynomial ring Q[x]

(2.3) Pn(x) =
n
∑

j=0

αjx
j

we give the following formulas for the generalized linear transformation L
c,d
a,b:
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L
c,d
a,b[Pn(x)] =

n
∑

j=0

(

j + 1

0

)

αj

j + 1
(dj+1 − bj+1)(2.4)

+

n
∑

j=0

(

j + 1

1

)

αj

j + 1
(cdj − abj)x

+

n
∑

j=1

(

j + 1

2

)

αj

j + 1
(c2dj−1 − a2bj−1)x2

+
n
∑

j=2

(

j + 1

3

)

αj

j + 1
(c3dj−2 − a3bj−2)x3

+

n
∑

j=3

(

j + 1

4

)

αj

j + 1
(c4dj−3 − a4bj−3)x4 + . . .

+

n
∑

j=k

(

j + 1

k − 1

)

αj

j + 1
(ck+1dj−k − ak+1bj−k)xk+1 + · · ·

+ αn−1

(

n
n

)

n
(cnd− anb)xn + αn

(

n+1
n+1

)

n+ 1
(cn+1 − an+1)xn+1.

With the aid of (2.4), (n+1)× (n+2) matrix representation of the generalized

linear transformation L
c,d
a,b[Pn(x)] with respect to basis of {1, x, x2, x3, . . . } is given

by the following theorem.

Theorem 2.1. We have

(2.5) M
{

L
c,d
a,b[Pn(x)]

}

= [Mij ],

where i = 1, 2, 3, . . . , n+ 1, j = 0, 1, 2, . . . , n+ 1, Mij =
(

i
j

)

cjdi−j
−ajbi−j

i
for i > j,

and Mij = 0 for i < j.

Substituting a = c into (2.4), we get

L
a,d
a,b [Pn(x)] =

n
∑

j=0

(

j + 1

0

)

αj

j + 1
(dj+1 − bj+1) + a

n
∑

j=0

(

j + 1

1

)

αj

j + 1
(dj − bj)x

+ a2
n
∑

j=1

(

j + 1

2

)

αj

j + 1
(dj−1 − bj−1)x2

+ a3
n
∑

j=2

(

j + 1

3

)

αj

j + 1
(dj−2 − bj−2)x3

+ · · ·+ anαn−1

(

n+1
n

)

n+ 1
(d− b)xn.

Similarly to the above, the matrix representation with respect to the standard basis
is given as follows

(2.6) M
{

L
a,d
a,b [Pn(x)]

}

= [Mij ],
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where i = 1, 2, 3, . . . , n+1, j = 0, 1, 2, . . . , n, where Mij =
(

i
j

)

aj(di−j
−bi−j)
i

for i > j,

and Mij = 0 for i 6 j.
It is noted that since all entries in the last column of matrix (2.5) are 0 except

for one, this last column is omitted by taking c = a and a new matrix is reduced
to a square matrix.

Next, by (2.6), we define a new family of polynomials by the following definition.

Definition 2.1. Let det
(

M
{

L
a,d
a,b [Pn(x)]

})

6= 0; we define Qn(x; a, b, a, d)

polynomial sequences with respect to basis {1, x, x2, x3, . . . } of Q[x] by

(2.7)



















Q0(x; a, b, a, d)
Q1(x; a, b, a, d)
Q2(x; a, b, a, d)

...
Qn−1(x; a, b, a, d)
Qn(x; a, b, a, d)



















= M−1
{

L
a,d
a,b [Pn(x)]

}



















1
x

x2

...
xn−1

xn



















,

where M−1 denotes inverse of the matrix M .

Example 2.1. Putting n = 1 in (2.7), we get

M
{

L
c,d
a,b[P1(x)]

}

=

[

d− b c− a 0
d2

−b2

2 cd− ab c2 − a2

]

,

det
(

M
{

L
a,d
a,b [P1(x)]

})

= a(b− d)2 = ab2 − 2abd+ ad2,

M−1
{

L
a,d
a,b [P1(x)]

}

=

[

−1
b−d

0
(b+d)

2(ab−ad)
−1

ab−ad

]

.

We have
[

Q0(x; a, b, a, d)
Q1(x; a, b, a, d)

]

=

[

−1
b−d

0
(b+d)

2a(b−d)
−1

a(b−d)

]

[

1
x

]

.

From the above equation, we get the following polynomials

Q0(x; a, b, a, d) = −
1

b− d
, Q1(x; a, b, a, d) =

(b + d)

2a(b− d)
−

1

a(b− d)
x.

Example 2.2. Putting n = 2 in (2.7), we get

M
{

L
c,d
a,b[P2(x)]

}

=







(d− b) (c− a) 0 0
(d2

−b2)
2 (cd− ab) (c2−a2)

2 0
(d3

−b3)
3 (cd2 − ab2) (c2d− a2b) (c3−a3)

3






.

By using inverse matrix method, we get

M−1
{

L
a,d
a,b [P2(x)]

}

=









−1
b−d

0 0
(b+d)

2a(b−d)
−1

a(b−d) 0

−

(

b2+d2

6
+ 2bd

3

)

a2(b−d)
(b+d)

a2(b−d)
−1

a2(b−d)









.
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We have





Q0(x; a, b, a, d)
Q1(x; a, b, a, d)
Q2(x; a, b, a, d)



 =









−1
b−d

0 0
(b+d)

2a(b−d)
−1

a(b−d) 0

−

(

b2+d2

6
+ 2bd

3

)

a2(b−d)
(b+d)

a2(b−d)
−1

a2(b−d)













1
x

x2



 .

Therefore from the above, we get the following polynomials:

Q0(x; a, b, a, d) =
−1

b− d

Q1(x; a, b, a, d) =
(b+ d)

2a(b− d)
−

1

a(b− d)
x

Q2(x; a, b, a, d) =
−
(

b2+d2

6 + 2bd
3

)

a2(b − d)
+

(b + d)

a2(b− d)
x+

−1

a2(b− d)
x2.

2.1. Algorithm. Here we give an algorithm (Algorithm 1) for obtaining the
polynomials Qn(x; a, b, a, d) polynomial sequence defined in Definition 2.1.

Algorithm 1 The following procedure FIND Q POLY SEQ will return an (n +
1) × 1 column matrix whose entries are the terms of the polynomial sequence
{

Q0(x;a, b, a, d), Q1(x; a, b, a, d), Q2(x; a, b, a, d), . . . , Qn−1(x; a, b, a, d), Qn(x; a, b, a, d)
}

.

procedure FIND Q POLY SEQ(a, b, c, d : rational numbers, {α0, α1, . . . , αn} :
a list of n rational numbers)

Local variables: n, PolyP
Step 1: Assign initial values to local variables
n← size{α0, α1, . . . , αn} − 1
PolyP← α0 + α1x+ · · ·+ αnx

n ⊲ See (2.3)

Step 2: Apply the generalized linear transformation L
c,d
a,b to the polynomial

PolyP. ⊲ See (2.1)
Step 3: Write the result of Step 2 in the form provided by (2.4).
Step 4: Create an (n + 1) × (n + 2) matrix representation with respect to
basis of {1, x, x2, x3, . . . } from the form obtained in Step 3. ⊲ See (2.5)
Step 5: Substitute a = c into the matrix obtained in Step 4, and by deleting
its last column extract its (n+ 1)× (n+ 1) submatrix M . ⊲ See (2.6)
if det(M) 6= 0 then

Step 6: Find the inverse M−1 of the submatrix M .
Step 7: Multiply the inverse matrix M−1 by the (n + 1) × 1 column
matrix of the standard basis {1, x, x2, . . . , xn} ⊲ See (2.7)
Return the product matrix obtained in Step 7 as an
(n + 1) × 1 column matrix of the polynomial sequence
{Q0(x; a, b, a, d), Q1(x; a, b, a, d), Q2(x; a, b, a, d), . . . , Qn−1(x; a, b, a, d),
Qn(x; a, b, a, d)}. ⊲ Definition 2.1

else

Return exit

end if

end procedure



NEW FORMULAS FOR BERNOULLI POLYNOMIALS WITH APPLICATIONS. . . 65

3. Applications of the generalized linear transformation L
c,d
a,b[Pn(x)]

In this section, we give some special values of the generalized linear transformation

L
c,d
a,b[Pn(x)]. By applying the Cayley–Hamilton theorem, we also give inverse matrix

formulas involving the Bell polynomials. By aid of the inverse matrix formula, we
give matrix representation for the Bernoulli polynomials.
Substituting a = c and d = b+ 1 into (2.4), we also get

L
a,b+1
a,b [Pn(x)] =

n
∑

j=0

(

j + 1

0

)

αj

j + 1
(((b + 1)j+1 − bj+1)(3.1)

+ a(j + 1)((b+ 1)j − bj)x)

+ a2
n
∑

j=1

(

j + 1

2

)

αj

j + 1
((b+ 1)j−1 − bj−1)x2 + . . .

+ an
n
∑

j=n−1

(

j + 1

n

)

αj

j + 1
((b+ 1)j−n+1 − bj−n+1)xn.

We assume that j−n+1 > 0, otherwise when j−n+1 < 0, these power’s numbers
omitted in the related sums.
With the aid of (3.1), (n+1)× (n+1) matrix representation of the linear transfor-

mation L
a,b+1
a,b [Pn(x)] with respect to the basis of {1, x, x2, x3, . . . } is given by the

following corollary.

Corollary 3.1. We have

(3.2) M
{

L
a,b+1
a,b [Pn(x)]

}

= [Mij ],

where i = 1, 2, 3, . . . , n+ 1, j = 0, 1, 2, . . . , n, Mij =
(

i
j

)

aj((b+1)i−j
−bi−j)

i
for i > j,

and Mij = 0 for i 6 j.

By applying the Cayley–Hamilton theorem to (3.2) and using inverse matrix for-
mula, given in formula (cf. [12, (B.10) and (B.11)]), we show that inverse matrix

of the matrix M
{

L
a,b+1
a,b [Pn(x)]

}

is given by the following theorem.

Lemma 3.1. If c = a, M
{

L
a,b+1
a,b [Pn(x)]

}

is a diagonal n+ 1 dimension of matrix,

then we have

M−1
{

L
a,b+1
a,b [Pn(x)]

}

=
1

det
(

M
{

L
a,b+1
a,b [Pn(x)]

})

n
∑

j=0

M j
{

L
a,b+1
a,b [Pn(x)]

}

(3.3)

×
∑

a1,a2,...,an

n
∏

v=1

(−1)av+1

vavav!

(

tr
(

Mv
{

L
a,b+1
a,b [Pn(x)]

}))av

where det(M{La,b+1
a,b [Pn(x)]}) and tr(Mv{La,b+1

a,b [Pn(x)]}) are the determinant and

the trace of Mv{La,b+1
a,b [Pn(x)]} respectively, and

∑

a1,a2,a3,...,an
is taken over j and

the sets of all av > 0 satisfying j +
∑n

m=0 m.am = n.
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Lemma 3.2. If c = a, M{La,b+1
a,b [Pn(x)]} is a diagonal matrix, then

(3.4) M−1
{

L
a,b+1
a,b [Pn(x)]

}

=
1

det
(

M
{

L
a,b+1
a,b [Pn(x)]

})

×

n
∑

j=1

M j−1
{

L
a,b+1
a,b [Pn(x)]

} (−1)n−1

(n− j)!
Bn−j(w1, w2, . . . , wn−j),

where wk = −(k− 1)! tr
{

Mk
{

L
a,b+1
a,b [Pn(x)]

}}

and Bn(w1, w2, . . . , wn) denotes the

nth complete exponential Bell polynomials, defined by (see [2,5])

Bn(w1, w2, . . . , wn) = n!
∑

n=1k1+2k2+···+nkn

n
∏

j=1

w
kj

j

(j!)kjkj !
.

By using equations (3.3) and (3.4), we give a new family of polynomials by the
following theorem.

Theorem 3.1. We have


















Q0(x; a, b, a, b+ 1)
Q1(x; a, b, a, b+ 1)
Q2(x; a, b, a, b+ 1)

...

Qn−1(x; a, b, a, b+ 1)
Qn(x; a, b, a, b+ 1)



















= M−1
{

L
a,b+1
a,b [Pn(x)]

}



















1
x

x2

...

xn−1

xn



















.

Under the conditions a = 1, b = 0 in equation (3.2), the Bernoulli polynomials are
also given by the following corollary.

Corollary 3.2. We have

(3.5)



















B0(x)
B1(x)
B2(x)

...

Bn−1(x)
Bn(x)



















= M−1
{

L
1,1
1,0[x

n]
}



















1
x

x2

...

xn−1

xn



















,

where

M
−1

{

L
1,1
1,0[x

n]
}

=

n
∑

j=0

M j{L1,1
1,0[x

n]}

det(M{L1,1
1,0[x

n]})

∑

a1,a2,...,an

n
∏

v=1

(−1)av+1

vavav!

(

tr
(

M
v
{

L
1,1
1,0[x

n]
}))av

.

Remark 3.1. When a = 1 and b = 0, with the aid of (3.5), we see that

Bn(x) =
(

L
1,1
1,0[x

n]
)

−1

(cf. [1, p. 55]), where Bn(x) is the inverse image under the L transformation of xn.
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4. Derivative formula for generalized linear transformation L
c,d
a,b[Pn(x)]

Now, we give derivative formula of the linear transformation L
c,d
a,b[Pn(x)]. Taking

derivative of Lc,d
a,b[Pn(x)] with respect to x, we obtain

d

dx

{

L
c,d
a,b[Pn(x)]

}

=

n
∑

j=0

(

j + 1

1

)

αj(cd
j − bja)

j + 1

+ 2

n
∑

j=1

(

j + 1

2

)

(c2dj−1 − a2bj−1)αj

j + 1
x

+ 3

n
∑

j=2

(

j + 1

3

)

(c3dj−2 − a3bj−2)αj

j + 1
x2

+ 4

n
∑

j=3

(

j + 1

4

)

(c4dj−3 − a4bj−3)αj

j + 1
x3

+ · · ·+

n
∑

j=k

(

j + 1

k − 1

)

(k + 1)(ck+1dj−k − ak+1bj−k)αj

j + 1
xk

+ · · ·+ (cnd− anb)αn−1x
n−1 + (cn+1 − an+1)αnx

n.

Putting a = c = d = 1 and b = 0 in the above equation, we have

d

dx

{

L
1,1
1,0[Pn(x)]

}

=

n
∑

j=0

(

j + 1

1

)

αj

j + 1
+ 2

n
∑

j=1

(

j + 1

2

)

αj

j + 1
x

+ 3
n
∑

j=2

(

j + 1

3

)

αj

j + 1
x2 + 4

n
∑

j=3

(

j + 1

4

)

αj

j + 1
x3

+ · · ·+
n
∑

j=k

(

j + 1

k − 1

)

(k + 1)αj

j + 1
xk + · · ·+ αn−1x

n−1.

Combining (3.5) with the above equation and its matrix representation, after some
elementary calculations, we have the following well-known derivative formula for
the Bernoulli polynomials: d

dx
{Bn(x)} = nBn−1(x) (cf. [22]).

5. Another family of polynomials and their matrix representation

In this section, in line with the method of the previous section, we give another
new family of polynomials. By using these polynomials, we derive a matrix repre-
sentation of the coefficients of these polynomials. We show that special values of
this matrix with its inverse produce the Bernoulli numbers.
By using (2.2), we set the following polynomials:

Yn(x; a, b, c, d) := (cx+ d)n+1 − (ax+ b)n+1(5.1)

=

n+1
∑

j=0

(

n+ 1

j

)

(cjdn+1−j − ajbn+1−j)xj .
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Due to the generalized linear transformation given in (2.2), the above relation can
be easily represented by the following integral formula:

Yn(x; a, b, c, d) = (n+ 1)Lc,d
a,b[x

n] = (n+ 1)

∫ cx+d

ax+b

undu.

By (5.1), some values of Yn(x; a, b, c, d) are computed as follows:

Y0(x; a, b, c, d) = (c− a)x+ d− b

Y1(x; a, b, c, d) = (c2 − a2)x2 + 2(cd− ab)x+ (d2 − b2)

Y2(x; a, b, c, d) = (c3 − a3)x3 + 3(c2d− a2b)x2 + 3(cd2 − ab2)x+ (d3 − b3)

...

Yn(x; a, b, c, d) = (cn+1 − an+1)xn+1 +

(

n+ 1

n

)

(cnd− anb)xn + · · ·

+ (dn+1 − bn+1).

We now define matrix representation by aid of coefficients of the above polynomials
as follows:

(5.2) M{Yn(x; a, b, c, d)} = [Mij ],

where i = 1, 2, 3, . . . , n + 1, j = 0, 1, 2, . . . , n + 1, Mij =
(

i
j

)

(cjdi−j − ajbi−j) for

i > j, and Mij = 0 for i < j. Thus we get


















Y0(x; a, b, a, d)
Y1(x; a, b, a, d)
Y2(x; a, b, a, d)

...
Yn−1(x; a, b, a, d)
Yn(x; a, b, a, d)



















= M−1{Yn(x; a, b, a, d)}



















1
x

x2

...
xn−1

xn



















.

The first row of the inverse of the matrixM{Yn(x; a, b, a, d)} given by equation (5.2)
can also be considered as the generating function for a special family of numbers,
including Bernoulli numbers maybe other certain family of special numbers. That
is, substituting a = c = d = 1 and b = 0 into inverse matrix M−1{Yn(x; 1, 0, 1, 1)},
given by equation (5.2), all entries of the matrix M−1{Yn(x; 1, 0, 1, 1)} are reduced
to the Bernoulli numbers, respectively.
Some well-known examples are given as follows:

M{Y6(x; 1, 0, 1, 1)} =





















1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 3 3 0 0 0 0
1 4 6 4 0 0 0
1 5 10 10 5 0 0
1 6 15 20 15 6 0
1 7 21 35 35 21 7





















.
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By using (3.3) inverse matrix method we get

M−1 {Y6(x; 1, 0, 1, 1)} =





















1 0 0 0 0 0 0
− 1

2
1
2 0 0 0 0 0

1
6 − 1

2
1
3 0 0 0 0

0 1
4 − 1

2
1
4 0 0 0

− 1
30 0 1

3 − 1
2

1
5 0 0

0 − 1
12 0 5

12 − 1
2

1
6 0

1
42 0 − 1

6 0 1
2 − 1

2
1
7





















,

where we obtained the Bernoulli numbers up to n = 6 in the first column of the
M{Y6(x; a, b, a, d)} matrix. For details, see A027642; and also see [9–21]. On the
other hand, other columns or rows of the above matrix also represent different
number families. These number sequences may be also in the class of other known
families of special number. For this, it is recommended to examine Sloane’s On-Line
Encyclopedia of Integer Sequences (OEIS). See, for details, [20].

6. Applications of the Laplace transform to generating function

for the Bernoulli polynomials

In this section, by applying the Laplace transform and the Mellin transformation
to (1.2), we give a relation between the Bernoulli polynomials and the Hurwitz
zeta function. We also give infinite series representation involving the Bernoulli
polynomials.
Let x ∈ C with x = a+ ib and x̄ = a− ib with a > 0 and b > 0. We set

F (−u, x̄) =

∞
∑

n=0

(−1)nBn(a− ib)
un

n!
.

Therefore

(6.1)
ue−ua

1− e−u
= e−uib

∞
∑

n=0

(−1)nBn(a− ib)
un

n!
,

which can be also written as

(6.2) e−ua

∞
∑

n=1

(1− e−u)n−1

n
= e−uib

∞
∑

n=0

(−1)nBn(a− ib)
un

n!
.

Combining the above equation with (1.3), we get

∞
∑

m=0

m
∑

v=0

(

m

v

) v
∑

n=1

(−1)m+n−1(n− 1)!am−vS2(v, n− 1)

n

um

m!

=

∞
∑

m=0

(−1)m
m
∑

v=0

(

m

v

)

(ib)m−vBv(a− ib)
um

m!
.

Substituting the following well-known formula into the right-hand side of the above
equation

m
∑

v=0

(

m

v

)

xm−vBv(y) = Bm(x+ y),
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we obtain
∞
∑

m=0

m
∑

v=0

(

m

v

) v
∑

n=1

(−1)m+n−1(n− 1)!am−vS2(v, n− 1)

n

um

m!
=

∞
∑

m=0

(−1)mBm(a)
um

m!
.

By comparing the coefficients um

m! on both sides of the above equation, we arrive at
the following theorem:

Theorem 6.1. Let m ∈ N. Then we have

(6.3) Bm(a) =
m
∑

v=1

(

m

v

) v
∑

n=1

(−1)n−1(n− 1)!am−vS2(v, n− 1)

n
.

By combining (1.4) with (6.2), by the same method of Cakić and Milovanović [3],
Chang and Ha [4], Simsek [17], we have

∞
∑

m=0

∞
∑

n=1

(−1)n−1(n− 1)!

n
Sm
n−1(a)

(−u)m

m!
=

∞
∑

m=0

m
∑

v=0

(

m

v

)

(ib)m−vBv(a− ib)
(−u)m

m!
.

After some calculation, we have the following result, which was also proved in [4]:

(6.4)

m
∑

n=1

(−1)n−1(n− 1)!

n
Sm
n−1(x) =

m
∑

v=0

(

m

v

)

(ib)m−vBv(a− ib).

Combining the above equation with (6.3) yields

(6.5)

m
∑

v=1

v
∑

n=1

(−1)n−1
(

m
v

)

(n− 1)!am−vS2(v, n− 1)

n
=

m
∑

n=0

(−1)nn!

n+ 1
Sm
n (x).

Combining (6.4) and (6.5) with

(−1)nn!

n+ 1
=

n
∑

v=0

S1(n, v)Bv,

(cf. [5,11,16,19]), we arrive at the following theorem:

Theorem 6.2. Let m ∈ N0. Then we have

Bm(a) =
m
∑

n=0

n
∑

v=0

S1(n, v)BvS
m
n (a),

m
∑

v=0

(

m

v

)

(ib)m−vBv(a− ib) =

m
∑

n=0

n
∑

v=0

S1(n, v)BvS
m
n (a).

We note that a different proof of (6.5) was also given by Chang and Ha [4].
By applying the Laplace transform to generating functions involving Bernoulli poly-
nomials, recently many interesting studies have been published (cf. [7,8,10,22]).
Therefore, by using (6.1), we have

∞
∑

n=0

ue−u(a+n) = e−uib

∞
∑

n=0

(−1)nBn(a− ib)
un

n!
.
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By integrating the above equation with respect to u from 1 to ∞, we get

(6.6)

∞
∑

n=0

∫

∞

0

ue−u(a+n)du =

∞
∑

n=0

(−1)n

n!
Bn(a− ib)

∫

∞

0

une−ibudu

with a > 0. Then, applying the Laplace transform of the function g(u) = un:

L{g(u)} =
n!

yn+1

(where y > 0) to both sides of (6.6), we obtain the following theorem:

Theorem 6.3. Let b > 0 and a > 0. Then we have

(6.7) ζ(2, a) =
∞
∑

n=0

in−1Bn(a− ib)

bn+1
.

By using (6.1), we have

ue−au = (e−ibu − e−(1+ib)u)

∞
∑

n=0

(−1)nBn(a− ib)
un

n!
.

Applying the Laplace transform to the above equation, for a > 0 and b > 0, we get

∫

∞

0

ue−audu =

∞
∑

n=0

(−1)nBn(a− ib)
1

n!

∫

∞

0

une−ibudu

−
∞
∑

n=0

(−1)nBn(a− ib)
1

n!

∫

∞

0

une−(1+ib)udu.

After some calculations, for b > 1, we arrive at the following theorem:

Theorem 6.4. Let a > 0 and b > 1. Then we have

(6.8)

∞
∑

n=0

n
∑

j=0

(−1)n
(

n

j

)

((1 + ib)n+1 − (ib)n+1)(a− ib)n−jBj

(ib− b2)n+1
=

1

a2
.

Remark 6.1. Putting n = 1 into equation (17) in [7], a relationship can be estab-
lished with equation (6.8).

Substituting a = 1 into (6.7), and combining with the following known formula

ζ(2) := ζ(2, 1) =
∞
∑

n=1

1

n2
=

π2

6
,

we get the following corollary:

Corollary 6.1. Let b > 1 and a > 0. Then we have

∞
∑

n=0

in−1Bn(a− ib)

bn+1
=

π2

6
.
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Replacing t, x by −t, y − x in (1.2) yields

F (−t, y − x) =
−te−t(y−x)

e−t − 1
=

∞
∑

n=0

(−1)nBn(y − x)
tn

n!
.

Taking partial derivative k times with respect to y in the above equation, we get

∂k

∂yk
{F (−t, y − x)} =

(−1)k+1tk+1e−t(y−x)

e−t − 1
.

After some calculations, we obtain

(−1)k+1tk+1e−ty

e−t − 1
= e−tx

∞
∑

n=0

(−1)n ∂k

∂yk {Bn(y − x)}

n!
tn.

Integrating the above equation with respect to u from 1 to ∞, we get

(−1)k+1

∫

∞

0

tk+1e−ty

e−t − 1
dt =

∞
∑

n=0

(−1)n ∂k

∂yk {Bn(y − x)}

n!

∫

∞

0

tne−txdt,

which yields

(−1)k+1(k + 1)!

∞
∑

n=0

1

(y + n)k+2
=

∞
∑

n=0

(−1)n

xn+1

∂k

∂yk
{Bn(y − x)}.

After some calculations, we arrive at the following theorem:

Theorem 6.5. Let k ∈ N0. Let y > 0. Then we have

(6.9) ζ(k + 2, y) =
(−1)k+1

(k + 1)!

∞
∑

n=0

(−1)n

xn+1

∂k

∂yk
{Bn(y − x)}.

Substituting k = 0 into (6.9), we arrive at (6.7).
Let the ratio of two convergent series be given such that when the first term of the
series in the denominator is different from zero, using (1.1), we have the following
result:

1 + 0t+ 0t2 + · · ·

1 + 1
2! t+

1
3! t

2 + 1
4! t

3 + · · ·
=

∞
∑

n=0

Bn

tn

n!
.

From the above equation, we get

1 =
(

1 +
1

2!
t+

1

3!
t2 +

1

4!
t3 + · · ·

)(

B0 +
B1

1!
t+

B2

2!
t2 +

B3

3!
t3 + · · ·

)

.

Using the Cauchy product rule on the right-hand side of the above equation yields
an infinite system of linear equations with unknown Bk. So, this system is of a
special form since every k ∈ N0 the first k+1 equations contain only the first k+1
unknowns Bk. Therefore, the solution of the system of linear equations is given by
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the following determinant, by which the Bernoulli numbers are calculated outside
the influence of their generating function:

Bn = (−1)nn!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2! 1 0 0 0 . . . 0
1
3!

1
2! 1 0 0 . . . 0

1
4!

1
3!

1
2! 1 0 . . . 0

...
...

...
...

...
. . . 0

1
(n+1)!

1
n!

1
(n−1)!

1
(n−2)!

1
(n−3)! . . . 1

2!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(cf. [14, p. 149], [6]).

7. Conclusion

We defined Q-linear transformation on the polynomials ring Q[x]. By using
this transformation, we gave its matrix representation with respect to the basis
{1, x, x2, x3, . . . } of Q[x]. Using matrix representation, we obtained some new
classes of special polynomials involving Bernoulli polynomials and Bell polynomials.
We also defined other linear transformations. By applying the Cayley–Hamilton
theorem, we gave their inverse matrix formulas involving the Bell polynomials.
Using this inverse matrix formula, we gave matrix representation for the Bernoulli
polynomials. We gave a computational algorithm for the polynomials obtained with
help of this Q-linear transformation. Moreover, applying the Laplace transform to
generating function for the Bernoulli polynomials, we obtained both infinite series
representation for the Bernoulli polynomials and many new formulas associated
with the Stirling numbers and the array polynomials.
The results of this article may potentially be used both in applied sciences and in
many branches of mathematics.

References

1. T. Arakawa, T. Ibukiyama, M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer,
2014.

2. E. T. Bell, Exponential polynomials, Ann. Math. 35(2) (1934), 258–277.
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