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PSEUDO-LINEAR COMBINATION OF FUZZY METRICS

Neboǰsa M. Ralević, Bratislav D. Iričanin, and Dejan Ćebić

Abstract. We explore a new fuzzy metric constructed from already defined
fuzzy metrics over the same set using pseudo-linear combination. Operations
used in pseudo-linear combination are triangular norm and conorm. The fuzzy
space thus obtained is proved to be complete. Additional features related to
this space are also presented. A fuzzy metric obtained in this way can be
used to construct an image denoising procedure, from the fuzzy metrics used
for the spatial distance and the color similarity measure between the pixels
in the image. The goal is to enhance the sharpness and quality of the image,
expressed and measured by the image quality index.

1. Introduction

The advent of Zadeh’s theory of fuzzy sets in 1965 produced an extraordinary
number of researches studies in the literature on fuzziness. It is safe to say that
this concept is applied in all fields of science and technology. The concept of fuzzy
metric space was first defined in 1975 by Kramosil and Mihalek [8]. Unlike classic
metric space, the distance between two objects is not expressed as a definite real
number in fuzzy metric spaces. Given that one fuzzy metric does not generate
Hausdorff topology, George and Veeramani [1–3], introduced a new definition of
fuzzy metrics by inserting more stringent conditions into the existing definition.

By modifying this approach, in the theory of fuzzy metric spaces, the results
published by the group of authors Gregory, Morillas, Sapena, Romaguera [4–6]
play a significant role. The work of Ralević, Karaklić, Pǐstinjat [13] also belongs
to that class of works that introduce the notions T and S fuzzy metric spaces.

The second section contains a list of known notions and their properties, which
are used in other sections. The term fuzzy metric space and the examples we use in
applications are in the third section. It also looks at the main result regarding the
pseudo-linear combination of fuzzy metrics and the structure of the corresponding
space. A crucial part of image processing is removing noise from the image. Re-
cently there has been a proliferation of filters that employ fuzzy metrics. One such
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is presented in the fourth section and is based on a pseudo-linear combination of
the distances used in that area.

2. Preliminaries

Some of the properties of the norms (triangular norms and conorms) are listed
(see e.g. Klir, Yuan [7]) to make it easier to follow the topic discussed in the pa-
per. The concept of pseudo linear combination was also introduced, superdistribu-
tiveness and subdistributiveness (i.e., superdistributivity and subdistributivity) of
norms and it is demonstrated that the class of such norms is not empty.

Definition 2.1. The binary operation N : [0, 1]2 → [0, 1] is a norm, if N

is nondecreasing (in both components), commutative and associative and has a
neutral element e ∈ {0, 1}.

If e = 1, then N is the triangular norm (shorter t-norm), and instead of N we
write T . If e = 0, then N is the triangular conorm (shorter t-conorm), and instead
of N we write S.

Example 2.1. The most used t-conorms are:

standard union SM (a, b) = max(a, b) = a ∨ b;
probabilistic sum SP (a, b) = a+ b− ab;
bounded sum SL(a, b) = min(1, a+ b);

drastic union SW (a, b) =
{max(a,b), min(a,b)=0

1, else ,

and to them corresponding t-norms:

standard intersection TM (a, b) = min(a, b) = a ∧ b;
algebraic product TP (a, b) = ab;
finite difference TL(a, b) = max(0, a+ b− 1);

drastic intersection TW (a, b) =
{min(a,b), max(a,b)=1

0, else .

For all a, b ∈ [0, 1]

T (a, b) 6 min{a, b}, S(a, b) > max{a, b},

holds. Clearly, T (a, a) 6 a, S(a, a) > a for all a ∈ [0, 1].
A norm N is an Archimedean norm if N(a, a) < a for all a ∈ (0, 1), for t-norm

N and for all a ∈ (0, 1), N(a, a) > a for t-conorm N . If N(a, a) = a for all
a ∈ [0, 1], then N is idempotent norm N .

If, in the definition of the norm, instead of the axiom of monotonicity, a strict
monotonicity is valid, i.e., a1 < a2 ∧ b1 < b2 ⇒ N(a1, b1) < N(a2, b2), for all
a1, a2, b1, b2 ∈ [0, 1], then the norm is strict.

Definition 2.2. The power of the norm N is given by

N1(a1, a2)=N(a1, a2), Nn(a1, . . . , an, an+1)=N(Nn−1(a1, . . . , an), an+1) (n>2).

Definition 2.3. The power of element (with respect norm N) a ∈ [0, 1] is
defined by: a(1) = a, a(2) = N(a, a), a(n) = N(a(n−1), a) (n > 3).

The following properties are easy to check (see [12]).
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Remark 2.1. If N is a norm, then Nn is nondecreasing, commutative and
associative operation. If N is a strict norm, then Nn is an increasing function.

Remark 2.2. If T is a t-norm, then:

T (a1, a2) = 1 ⇔ a1 = a2 = 1,

T n(a1, a2, . . . , an+1) = 1 ⇔ a1 = · · · = an+1 = 1.

Remark 2.3. If T is a strict t-norm, then:

T (a1, a2) = 0 ⇔ a1 = 0 ∨ a2 = 0,

T n(a1, a2, . . . , an+1) = 0 ⇔ a1 = 0 ∨ · · · ∨ an+1 = 0.

Remark 2.4. If S is a t-conorm, then:

S(a1, a2) = 0 ⇔ a1 = a2 = 0,

Sn(a1, a2, . . . , an+1) = 0 ⇔ a1 = · · · = an+1 = 0.

Remark 2.5. If S is a strict t-conorm, then:

S(a1, a2) = 1 ⇔ a1 = 1 ∨ a2 = 1,

Sn(a1, a2, . . . , an+1) = 1 ⇔ a1 = 1 ∨ · · · ∨ an+1 = 1.

Remark 2.6. From associativity and commutativity of Nn−1, we have

Nn−1(a1, . . . , an) = Nk−1
(

Nn1−1(ap(1), . . . , ap(n1)),

Nn2−1(ap(n1+1), . . . , ap(n1+n2)), . . . , N
nk−1(ap(n1+···+nk−1+1), . . . , ap(n))

)

,

where p is arbitrary permutation of set I = {1, . . . , n} and n1 + · · ·+ nk = n.

So, N0(a) = a, a(2) = N(a, a), a(3) = N(a(2), a) = N(N(a, a), a) = N2(a, a, a),
a(4) = N(a(3), a) = N(N2(a, a, a), a) = N3(a, a, a, a), . . . ,

a(n) = Nn−1(a, . . . , a)

= Nk−1(Nn1−1(a, . . . , a), Nn2−1(a, . . . , a), . . . , Nnk−1(a, . . . , a))

= Nk−1(a(n1), a(n2), . . . , a(nk)).

Definition 2.4. Let Ni : [0, 1]
2 → [0, 1], i = 1, 2, be two norms. We say that

the subdistributivity of N1 according to N2 is valid, if for all a, b, c ∈ [0, 1]:

N2(N1(a, b), N1(a, c)) > N1(a,N2(b, c)).

Definition 2.5. Let Ni : [0, 1]
2 → [0, 1], i = 1, 2, be two norms. We say that

the superdistributivity of N1 according to N2 is valid, if for all a, b, c ∈ [0, 1]:

N2(N1(a, b), N1(a, c)) 6 N1(a,N2(b, c)).

Lemma 2.1. If S is a t-conorm, then the subdistributivity of operation min
according to S hold, i.e., S(min{a, b},min{a, c}) > min{a, S(b, c)}.
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Proof. Because of commutativity of the operations min and S, it is sufficient
to examine three cases: (1) a 6 b 6 c, (2) b 6 a 6 c, (3) b 6 c 6 a.

(1) ⇒ S(min{a, b},min{a, c}) = S(a, a) > a > min{a, S(b, c)} ⇔ ⊤;
(2) ⇒ S(min{a, b},min{a, c}) = S(b, a) > a > min{a, S(b, c)} ⇔ ⊤;
(3) ⇒ S(min{a, b},min{a, c}) = S(b, c) > min{a, S(b, c)} ⇔ ⊤. �

Lemma 2.2. If T is a t-norm, then the superdistributivity of operation max
according to S hold, i.e., T (max{a, b},max{a, c}) 6 max{a, T (b, c)}.

Proof. Because of commutativity of the operations max and T , it is sufficient
to examine three cases: (1) a 6 b 6 c, (2) b 6 a 6 c, (3) b 6 c 6 a.

(1) ⇒ T (max{a, b},max{a, c}) = T (b, c) 6 max{a, T (b, c)} ⇔ ⊤;
(2) ⇒ T (max{a, b},max{a, c}) = T (a, c) 6 a 6 max{a, T (b, c)} ⇔ ⊤;
(3) ⇒ T (max{a, b},max{a, c}) = T (a, a) 6 a 6 max{a, T (b, c)} ⇔ ⊤. �

Distributivity (superdistributivity and subdistributivity) of min according to
max, and max according to min hold, i.e.,

max{min{a, b},min{a, c}} = min{a,max{b, c}},

min{max{a, b},max{a, c}} = max{a,min{b, c}}.

Definition 2.6. Let Ni : [0, 1]
2 → [0, 1], i = 1, 2, be two norms. The function

F : X → [0, 1], X 6= ∅, is (N1, N2) pseudo-linear combination of functions fj : X →
[0, 1], j = 1, . . . , n, if there are constants αj ∈ [0, 1], j = 1, . . . , n, so for all x ∈ [0, 1]
the following holds

F (x) = Nn−1
1

(

N2(α1, f1(x)), N2(α2, f2(x)), . . . , N2(αn, fn(x))
)

.

3. Fuzzy metrics

This section will present a theorem for constructing new fuzzy metrics from
existing fuzzy metrics as their pseudo-linear combination. The goal is for such
metrics to be sufficiently good to use in image filtering to construct new ones for
noise removing. Here we rely on research from [13] related to fuzzy S-metric and
fuzzy T -metric. Relying on concepts from [5,6] we have proved, using appropriate
assumptions, the completeness of the fuzzy metric space thus obtained.

Definition 3.1. [13] Let X 6= ∅, S be a continuous t-conorm, T be a contin-
uous t-norm, and d be a fuzzy set defined on X ×X × (0,+∞), and satisfies the
following conditions for all x, y, z ∈ X , α, β > 0:

(1) (i) d(x, y, α) ∈ [0, 1), (ii) d(x, y, α) ∈ (0, 1];
(2) (i) d(x, y, α) = 0 ⇔ x = y, (ii) d(x, y, α) = 1 ⇔ x = y;
(3) (i), (ii), d(x, y, α) = d(y, x, α);
(4) (i) S(d(x, y, α),d(y, z, β)) > d(x, z, α+ β),

(ii) T (d(x, y, α),d(y, z, β)) 6 d(x, z, α+ β);
(5) (i), (ii) d(x, y,−) : (0,+∞) → [0, 1] is a continuous function.

The fuzzy set d is called
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(i) a fuzzy S-metric and a triple (X,d, S) is fuzzy S-metric space (where d sat-
isfies axioms (1)–(5)(i));

(ii) a fuzzy T -metric and a triple (X,d, T ) is fuzzy T -metric space (where d sat-
isfies axioms (1)–(5)(ii)).

If instead of (1), it holds that d(x, y, α) ∈ [0, 1], the fuzzy set d is a fuzzy

S-metric (fuzzy T -metric) in the broader sense, and (X,d, S) ((X,d, T )) is a fuzzy

S-metric (fuzzy T -metric) space in the broader sense.

We will denote the fuzzy S-metric with s and the fuzzy T -metric with t, and
we will write the mark d if some statement is valid in both cases and use the term
fuzzy metric.

Definition 3.2. [13] Fuzzy metric d is stationary on X if d does not depend
on α, i.e. if for all fixed x, y ∈ X , the function dx,y(α) = d(x, y, α) is a constant.

Remark 3.1. Fuzzy S-metric s(x, y,−) : (0,+∞) → [0, 1] is nondecreasing
function, and fuzzy T -metric S(x, y,−) : (0,+∞) → [0, 1] is nonincreasing function.

Example 3.1. [5,13] The mapping tK : R+ ×R
+ → R defined by tK(x, y) =

min{x,y}+K
max{x,y}+K , where K > 0, is a fuzzy T -metric with respect to multiplication,

and sK(x, y) = |x−y|
max(x,y)+K is a fuzzy S-metric with respect to the algebraic sum,

S(x, y) = 1− (1 − x)(1 − y) = x + y − xy, dual to T with respect to the standard
fuzzy complement.

Example 3.2. [13] The mapping tp : R
+ × R

+ → R, p > 0, defined by

tp(x, y) =
(12 (x

p + yp))1/p +K

max{x, y}+K
,

where K > 0, is a fuzzy T -metric with respect to multiplication. Specially, for

p = 1 that is t1(x, y) =
1

2
(x+y)+K

max{x,y}+K , and s1(x, y) =
|x−y|

2(max(x,y)+K) is the fuzzy S-

metric with respect to the algebraic sum, dual to T with respect to standard fuzzy
complement.

Example 3.3. [5] If (X, d) is a metric space, then the mapping t : X ×X ×
R

+ → R defined by

t(x, y, t) =
t

t+ d(x, y)
,

and its dual (with respect to the standard fuzzy complement) s(x, y, t) = 1 −

t(x, y, t) = d(x,y)
t+d(x,y) is a fuzzy S-metric with respect to the algebraic sum.

Definition 3.3. Let (X,di), i = 1, 2 be (i) fuzzy T -metric spaces, (ii) fuzzy
S-metric spaces. The function f : X → Y , D ⊂ X is continuous in x0 ∈ D if

(i) (∀ε ∈ (0, 1))(∃δ ∈ (0, 1))(∀x ∈ D)d1(x, x0, α) > 1− δ ⇒ d2(f(x), f(x0), α)
> 1− ε.

(ii) (∀ε ∈ (0, 1))(∃δ ∈ (0, 1))(∀x ∈ D)d1(x, x0, α) < δ ⇒ d2(f(x), f(x0), α) < ε.

for each α > 0.
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Theorem 3.1. Let T and S are continuous strict triangular norm and conorm,

respectively, where the superdistributivity of S according to T hold. If di : Xi×Xi →
(0, 1], i ∈ I = {1, . . . , n}, n ∈ N, are fuzzy T -metrics with respect to the norm T

and κi ∈ [0, 1), i ∈ I, then the function d defined by

d(x, y, α) = T n−1(S(κ1,d1(x1, y1, α)), . . . , S(κn,dn(xn, yn, α))),(3.1)

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X = X1 × · · · ×Xn,

is the fuzzy T -metric with respect to the norm T . If T is not a strict norm, then d

is a fuzzy metric in a broader sense.

Proof. κi ∈ [0, 1), di(xi, yi, α) ∈ (0, 1], i ∈ I ⇒ S(κi,di(xi, yi, α)) ∈ [0, 1],
i ∈ I ⇒ d(x, y, α) ∈ [0, 1].

If it is d(x, y, α) = 0, based on Remark 2.3 (T strictly) must for some i be
S(κi,di(xi, yi, α)) = 0. But because of Remark 2.4: κi = 0 and di(xi, yi, α) = 0 ⇔
⊥. So, d(x, y, α) ∈ (0, 1].

From Remark 2.2 it follows d(x, y, α) = 1 ⇔ (∀i ∈ I) S(κi,di(xi, yi, α)) = 1,
and from Remark 2.5 we have (∀i ∈ I) (κi = 1 ∨ di(xi, yi, α) = 1). But, (∀i ∈ I)
κi 6= 1, imply (∀i ∈ I) di(xi, yi, α) = 1, and then xi = yi, for each i ∈ I, i.e., x = y.

d(x, x, α) = T n−1(S(κ1,d1(x1, x1, α)), . . . , S(κn,dn(xn, xn, α)))

= T n−1(S(κ1, 1), . . . , S(κn, 1)) = T n−1(1, . . . , 1) = 1,

d(x, y, α) = T n−1(S(κ1,d1(x1, y1, α)), . . . , S(κn,dn(xn, yn, α)))

= T n−1(S(κ1,d1(y1, x1, α)), . . . , S(κn,dn(yn, xn, α))) = d(y, x, α).

Using commutativity and associativity T n−1, from Remark 2.6:

T (d(x, z, α),d(z, y, β)) = T
(

T n−1(S(κ1,d1(x1, z1, α)), . . . , S(κn,dn(xn, zn, α))),

T n−1(S(κ1,d1(z1, y1, β)), . . . , S(κn,dn(zn, yn, β)))
)

= T 2n−1
(

S(κ1,d1(x1, z1, α)), . . . , S(κn,dn(xn, znα)),

S(κ1,d1(z1, y1, β)), . . . , S(κn,dn(zn, yn, β))
)

= T 2n−1
(

S(κ1,d1(x1, z1, α)), S(κ1,d1(z1, y1, β)),

. . . , S(κn,dn(xn, znα)), S(κn,dn(zn, yn, β))
)

= T n−1
(

T (S(κ1,d1(x1, z1, α)), S(κ1,d1(z1, y1, β))),

. . . , T (S(κn,dn(xn, zn, α)), S(κn,dn(zn, yn, β)))
)

.

From the superdistributivity of S according to T :

T (S(κi,di(xi, zi, α)), S(κi,di(zi, yi, β))) 6 S(κi, T (di(xi, zi, α),di(zi, yi, β))), i∈I,

and from triangle inequality for di, i ∈ I, and the monotonicity of S:

S(κi, T (di(xi, zi, α),di(zi, yi, β))) 6 S(κi,di(xi, yi, α+ β)).

Now, because of the monotonicity of T n−1, it follows

T (d(x, z, α),d(z, y, β)) 6 T n−1(S(κ1,d1(x1, y1, α+ β)), . . . ,
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S(κn,dn(xn, yn, α+ β))) = d(x, y, α+ β).

Triangular norm T , triangular conorm S and the metrics di(x, y,−) : (0,+∞) →
[0, 1], i ∈ I, are continuous, then d(x, y,−) : (0,+∞) → [0, 1] is a continuous func-
tion. �

Analogously, [1]:

Definition 3.4. Let (X,d) be (i) fuzzy T -metric space, (ii) fuzzy S-metric
space. Then a sequence {xn} in X , converges to x ∈ X if for each ε ∈ (0, 1) and
each α > 0, there is n0 ∈ N, for all n > n0, such that

(i) d(xn, x, α) > 1− ε, (ii) d(xn, x, α) < ε.

Definition 3.5. Let (X,d) be fuzzy metric space. Then a sequence {xn} in
X is said to be Cauchy if for each ε ∈ (0, 1) and each α > 0, there is n0 ∈ N, for
all n,m > n0, such that

(i) d(xn, xm, α) > 1− ε, (ii) d(xn, xm, α) < ε.

Definition 3.6. The fuzzy metric space (X,d) be is complete, if every Cauchy
series is convergent.

We give a sufficient condition for the space completeness the fuzzy metric of
which is defined in the previous theorem.

Theorem 3.2. Let T and S are continuous strict triangular norm and conorm,

respectively, where the superdistributivity of S according to T hold. If (Xi,di),
i ∈ I = {1, . . . , n}, n ∈ N, are complete fuzzy T -metrics spaces with respect to the

norm T and κi ∈ [0, 1), i ∈ I, then (X,d) is complete fuzzy T -metric space, where

the function d : X2 → [0, 1], X = X1 × · · · ×Xn, defined by (3.1).

Proof. Let {x(k)}, x(k) = (x
(k)
1 , . . . , x

(k)
n ), be a Cauchy sequence in (X,d),

i.e.,

(3.2) (∀η ∈ (0, 1))(∃k0 ∈ N)(∀k, ℓ ∈ N) k, ℓ > k0 ⇒ d(x(k), x(ℓ), α) > 1−η, α > 0.

Suppose (see Remark 3.2) ε < 1 − max{κi | i ∈ I}, i.e., ε < 1 − κi, i ∈ I. Now,
from

T n−1(S(κ1,d1(x
(k)
1 , x

(l)
1 , α)), . . . , S(κn,dn(x

(k)
n , x(l)

n , α))) 6

min{S(κ1,d1(x
(k)
1 , x

(ℓ)
1 , α)), . . . , S(κn,dn(x

(k)
n , x(ℓ)

n , α))},

it follows S(κi,di(x
(k)
i , x

(ℓ)
i , α)) > 1− η, for all i ∈ I, and for all k, ℓ > k0.

From the continuity of the strict t-conorm S follows the continuity its projec-
tions, i.e., functions σ : [0, 1] → [0, 1] defined by y = σ(x) = S(κi, x), κi ∈ (0, 1] as
well as that σ is an increasing function. It is also valid that it is σ(0) = S(κi, 0) = κi

and σ(1) = S(κi, 1) = 1, i.e., σ([0, 1]) = [κi, 1]. But then σ has an inverse the func-
tion σ−1 : [κi, 1] → [0, 1] which is also continuous and increasing. From continuity
at x0 = 1 (y0 = 1), is (∀ε > 0)(∃δ > 0)(∀y ∈ [κi, 1])|y − y0| = |S(κi, x) − 1| =
1− S(κi, x) < δ ⇒ |x− 1| = 1− x < ε, i.e.,

(∀ε > 0)(∃δ > 0)S(κi, x) > 1− δ ⇒ x > 1− ε.
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Hence, for arbitrary ε ∈ (0,maxκi), there exists δi > 0, assuming in (3.2) that
it is η = δi, we get there is k0(i) ∈ N so that it is true:

S(κi,di(x
(k)
i , x

(ℓ)
i , α)) > 1− δi ⇒ di(x

(k)
i , x

(ℓ)
i , α) > 1− ε,

for all k, ℓ > k0(i) and i ∈ I. Therefore, the sequences {x
(k)
i }, i ∈ I are Cauchy

ones.
The completeness of spaces (Xi,di), i ∈ I = {1, . . . , n}, implies the convergence

of sequences x
(k)
1 , . . . , x

(k)
n to x1, . . . , xn, respectively, i.e., for i ∈ I:

(3.3) (∀εi ∈ (0, 1))(∃ki ∈ N)(∀k ∈ N) k > ki ⇒ di(x
(k)
i , xi, α) > 1− εi, α > 0.

Let’s show that x(k) → x = (x1, . . . , xn), i.e.,

(3.4) (∀ε ∈ (0, 1))(∃k0 ∈ N)(∀k ∈ N) k > k0 ⇒ d(x(k), x, α) > 1− ε, α > 0.

As the function F : [0, 1]n → [0, 1], is defined by

F (a1, . . . , an) = T n−1(S(κ1, a1), . . . , S(κn, an))

continuous, as a composition of continuous functions, due to F (1, . . . , 1) = 0 holds
(∀ε > 0)(∃δi > 0, i ∈ I)(∀(a1, . . . , an) ∈ [0, 1]n)(a1, . . . , an) ∈ (1− δ1, 1+ δ1)× · · · ×
(1− δn, 1 + δn) ⇒ F (a1, . . . , an) ∈ (1 − ε, 1 + ε), i.e.,

(∀ε > 0)(∃δi > 0, i ∈ I)(∀(a1, . . . , an) ∈ [0, 1]n)

ai ∈ (1− δi, 1], i ∈ I ⇒ F (a1, . . . , an) ∈ (1− ε, 1].

Taking that εi = δi < 1−κi, i ∈ I in (3.3) follows there exists ki ∈ N, such that

di(x
(k)
i , xi, α) > 1−εi, for all k > ki, α > 0, i ∈ I, i.e., for arbitrary ε ∈ (0, 1), exists

k0 = max{k1, . . . ., kn} ∈ N so that for all k > k0, from ai = di(x
(k)
i , xi, α) > 1− εi,

follows F (a1, . . . , an) = d(x(k), x, α) > 1− ε, i.e., we get (3.4).
Therefore, every Cauchy sequence of the space (X,d) is convergent, i.e., space

is complete. �

Remark 3.2. The function f : X → Y , D ⊂ X (where (X,d1) and (X,d2) are
fuzzy T -metric spaces) is continuous in x0 ∈ D if there exists ε0 ∈ (0, 1) such that
for each α > 0, valid

(∀ε ∈ (0, ε0])(∃δ ∈ (0, 1))(∀x ∈ D) d1(x, x0, α) > 1−δ ⇒ d2(f(x), f(x0), α) > 1−ε.

Theorem 3.3. Let T and S are continuous strict triangular norm and conorm,

respectively, where the subdistributivity of T according to S hold. If di : Xi ×Xi →
[0, 1), i ∈ I = {1, . . . , n}, n ∈ N, are fuzzy S-metrics with respect to the conorm S,

and κi ∈ (0, 1], i ∈ I, then d defined by

d(x, y, α) = Sn−1(T (κ1,d1(x1, y1, α)), . . . , T (κn,dn(xn, yn, α))),(3.5)

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X = X1 × · · · ×Xn,

is the fuzzy S-metric with respect to the conorm S. If S is not a strict norm, then

d is a fuzzy metric in a broader sense.
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Theorem 3.4. Let T and S zzbe continuous strict triangular norm and conorm,

respectively, where the subdistributivity of T according to S hold. If (Xi,di), i ∈ I =
{1, . . . , n}, n ∈ N, are complete fuzzy S-metrics spaces with respect to the conorm

S and κi ∈ (0, 1], i ∈ I, then (X,d) is complete fuzzy S-metric space, where the

function d : X2 → [0, 1], X = X1 × · · · ×Xn, defined by (3.5).

4. Filtering images using fuzzy metrics

The distance between objects is a key feature in image processing, especially im-
age filtering. The distance defined above over the non-empty set X is the mapping
d : X ×X → R

+
0 which is symmetric. Metrics are most often used, but also the so-

called similarities (that is, differences) where it is in the definition metrics triangle
inequality replaced by d(x, z) > T (d(x, y), d(y, z)) or d(x, z) 6 S(d(x, y), d(y, z)),
(for some triangulated norm T , i.e., conorm S). Due to the nature of the imaging,
there has been much research over in the last two decades where a fuzzy metric
replaces the metric.

When filtering digital color images (with color components red, green and blue
(RGB)), the pixels will be denoted by (i,F i), where i = (i1, i2) ∈ I × I, is a
vector with spatial coordinates of pixel i1, i2 (points on the screen with integer
coordinates), F i is a three-dimensional vector, the first coordinate of which is a
quantity of red color, the second coordinate is a quantity of green color, while the
third is a quantity of blue color, i.e., (F 1

i ,F
2
i ,F

3
i ).

When filtering an image, a window (a set of square-shaped pixels) is used, most
often denoted by W , the size of which is n × n, where n is an odd number. The
essence of image filtering is to replace the noise-generating pixel with a noiseless
pixel, which can be achieved by replacing a middle pixel in window W with a pixel
that represents the other pixels from window W in the best possible way, i.e., with
a pixel that is the closest match in color and spatial distance to all the other pixels
in W .

It is essential to choose a robust criterion for selecting the noiseless pixel, which
will replace the noisy pixel in a given window W , because the choice of pixels affects
the image quality, i.e., the degree of the removed noise.

Key to selecting that criterion will be a broad selection of fuzzy metric c. On
the set of all pixels in the given window W an order relation will be induced by
using fuzzy metric c. This order relation will be used to compare pixels (i,F i)
(“position”, “color”) of the image and to choose a pixel that differs at least from
all other pixels in the window, i.e. which is the most similar to all other pixels in
W (in terms of color and distance). The pixel found by using the algorithm will
replace the middle pixel in the given window W . The algorithm is applied to each
sliding window.

In the image filtering algorithm, the mapping c : W × W → R will be used,
defined on the window W = {(i,F i) | i ∈ I × I}, I = {0, 1, . . . , n− 1}, defined by

(4.1) c((i,F i), (j,F j)) = N1(N2(α1, δ(F i,F j)), N2(α2,∂(i, j)))

where δ and ∂ are fuzzy metrics with respect to a norm N1.
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If N1 and N2 are continuous triangular norm and conorm, respectively, where
the superdistributivity of N2 according to N1 hold and δ, ∂ are fuzzy T -metrics
with respect to the strict t-norm N1 and αi ∈ [0, 1), i = 1, 2, then the function c is
the fuzzy T -metric with respect to the norm N1 which follows from Theorem 3.1.

Fuzzy metric δ is defined by
(4.2)
∂(F i,F j) = (N2

3 (N4(κ1, δ1(F
1
i ,F

1
j)), N4(κ2, δ2(F

2
i ,F

2
j)), N4(κ3, δ3(F

3
i ,F

3
j)),

and it is used to measure the similarity between corresponding colors (the equality
of colors quantity) between two pixels F i and F j , i.e., similarity of k-th color
(k = 1, 2, 3) is measured by fuzzy metric δk. If the conditions of Theorems 3.1 or
3.2 are satisfied, it follows that δ (so defined) is a fuzzy metric.

The spatial distance of pixels i and j is measured with fuzzy metric ∂ in which
there is usually a parameter that affects the sensitivity of fuzzy metric ∂.

The UIQI (Universal Image Quality Index), defined by Wang, Bovik [17], is
employed to compare the quality of images. It assesses image distortion as a com-
bination of three factors: loss of correlation, luminance distortion, and contrast
distortion. As the filtered images are in RGB format, the UIQI is calculated for
each color separately, resulting in a three-dimensional vector representing the im-
age quality instead of a single value. The metric value for each color falls within
the range of −1 to 1, where a value closer to one indicates better image quality.
Consequently, a higher quality index for each color signifies improved image pro-
cessing quality. The UIQI is computed using a sliding window that traverses the
entire image from top to bottom, pixel by pixel. The UIQI is calculated for each
window using the formula provided in [17]. The individual window values are then
summed and averaged over the total number of windows.

Image quality could also be examined by the sharpness of the image defined
by Narvekar, Karam [9]. It is based on the cumulative probability of image blur
detection (CPBD). The cumulative probability of blur detection in an image serves
as the basis for calculating of this image quality metric.

Sharpness metric CPBD (discretized version) is determined in the following
steps. The image is divided into 64 × 64 blocks, which are classified into two
groups: edge block or a non-edge block. If the block is non-edge, it is not processed
further. The width of each edge in the block is calculated for every edge block. At
each edge, the probability of blur detection is calculated in the following manner:

PBLUR = P(ei) = 1− exp
(

−
∣

∣

∣

w(ei)

wJNB(ei)

∣

∣

∣

)

,

where wJNB(ei) is the JNB edge width that depends on the local contrast C (of the
edge block to which the edge belongs) and w(ei) is the width of the edge ei. The
cumulative probability of blur detection (CPBD) is determined using the formula

CPBD = P(PBLUR 6 PJNB) =

PJNB
∑

PBLUR=0

P(PBLUR).
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P(PBLUR) denotes the value of the probability distribution function at a given
PBLUR.

5. Experiments

The process of removing noise from an image using fuzzy metrics, was tested
on the jpg format image “Plant”. The dimensions of the test images are 256× 192
pixels (Fig. 1). Fig. 2 shows the image that is contaminated with 10% or 20% salt
and pepper noise. For each color, the quality metric UIQI is quantified. Sharpness
is calculated as well. The moving window has dimension 5.

The fuzzy metric used to measure pixels colors similarity is denoted by δ.
Taking in (4.2) that κ1 = κ2 = κ3 = 0, N3 = · and for N4 arbitrary t-conorm, δ1,
δ2, δ3 fuzzy T -metrics from Example 3.2, we get fuzzy T -metric:

(5.1) δ(F i,F j) =

3
∏

l=1

(12 ((F
l
i)

p + (F l
j)

p))1/p +K

max{F l
i,F

l
j}+K

Fuzzy T -metric that considers spatial distance between pixels is denoted by δ.
It is a special case of fuzzy T -metric from Example 3.3:

(5.2) δ(i, j) =
t

t+ q
√

|i1 − j1|q + |i2 − j2|q
, q ∈ N,

where i = (i1, i2), j = (j1, j2).

Figure 1. Plant, 256×192

In the testing we conducted on the “Plant” image, parameters α1 and α2 that
appear in the function c are actually weights coefficients, i.e., they determine which
of the distances, spatial or we prefer, is the one for measuring the difference in pixel
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Figure 2. Plant, 256×192, 10% salt and pepper

Figure 3. Plant, filtered image, 10% salt and pepper, K = 500,
t = 1.5

brightness. In the presented experiment, we took in both cases α1 = α2 = 0, i.e.,
α1 = α2 = 1.

(I) In (4.1), we took probabilistic sum N1 = SP , N2 to be arbitrary t-norm and
α1 = α2 = 1, so it is in our experiment fuzzy metric c actually

c((i, Fi), (j,F j)) = δ(F i,F j) + ∂(i, j)− δ(F i,F j) · ∂(i, j).
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Figure 4. Plant, filtered using a median filter, 10% salt and pepper

Taking the values of the parameters p = 2 and q = 2, and by varying the value
t ∈ [0.1, 4.0] (with step 0.1) and K ∈ [125, 1500] (with step 125), in metrics (5.1)
and (5.2) for filtered image contaminated with 10% salt and pepper noise, the best
values of metric of UIQI for each image color are:

[0.362342989, 0.364309676, 0.33569145],

for parameter values t = 1.5, K = 500 (Fig. 3).
It is concluded that the method based on fuzzy metrics generates poorer image

quality vis-á-vis the quality of the image filtered using a median filter, where the
image quality is compared with the metric for UIQI:

[0.553537275, 0.581810508, 0.511756397].

An image filtered with a median filter (Fig. 4), produces a sharpness of 0.6463,
which is much poorer than the value of 0.9864 for the image filtered using a fuzzy
filter.

The following table shows the sharpness (Sh) of some images filtered using a
fuzzy filter, where t = 1.5 and K are fixed takes the given values:

K 125 250 375 500 626 750 875 1000 1125 1250

Sh 0.9838 0.9767 0.9820 0.9864 0.9949 0.9865 0.9940 0.9938 0.9902 0.9881

(II) If we take everything as in the previous testing, except that c((i,F i), (j,F j)) =
δ(F i,F j) · ∂(i, j), the best values of metric of UIQI for each color of image are:

[0.516638197, 0.529245681, 0.492599165],



48 RALEVIĆ, IRIČANIN, AND ĆEBIĆ

for parameter values t = 3.1, K = 875. Those values are slightly different from the
values of the metric for UIQI, of the median filtered image:

[0.553537275, 0.581810508, 0.511756397].

An image filtered with a median filter produces a sharpness of 0.6463, which is far
poorer than the value of 0.9914 for the image filtered by a fuzzy filter.

(III) In (4.1), we took N1 = ·, N2 to be arbitrary t-conorm and α1 = α2 = 0, so it
is in our experiment fuzzy metric c actually c((i,F i), (j,F j)) = δ(F i,F j) ·∂(i, j),
Taking the values of the parameters p = 1 and q = 1, and by varying the value
t ∈ [0.1, 4.0] (with step 0.1) and K ∈ [125, 1500] (with step 125), in metrics (5.1)
and (5.2) for filtered image contaminated with 20% salt and pepper noise (Fig. 5),
best values of metric of UIQI for each color of image are

[0.350641005, 0.36616748, 0.336773334],

for parameter values t = 0.1, K = 250 (Fig. 6).
It is concluded that the method based on fuzzy metrics generates a somewhat

poorer image quality vis-á-vis the quality of the image filtered using a median filter
(Fig. 7), where the image quality is compared with the metric for UIQI:

[0.471080678, 0.519562984, 0.432602436].

An image filtered with a median filter, produces a sharpness of 0.6927, which is far
poorer than the value of 0.9908 for the image filtered by a fuzzy filter.

Figure 5. Plant, 256x192, 20% salt and pepper

(IV) If we take everything as in the previous testing, except varying the value
t ∈ [10, 990] (with step 20) and K ∈ [125, 5125] (with step 500), in metrics (5.1)
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Figure 6. Plant, filtered image, 20% salt and pepper, K = 250,
t = 0.1

Figure 7. Plant, filtered using a median filter, 20% salt and pepper

and (5.2) for filtered image contaminated with 5% salt and pepper noise (Fig. 8),
the best values of metric of UIQI for each color of image are:

[0.622099998, 0.637857341, 0.609252374],

for parameter values t = 10, K = 2625 (Fig. 9).
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It is concluded that the method based on fuzzy metrics generates a somewhat
better image quality compared with the quality of the image filtered using a median
filter (Fig. 10), where the image quality is compared with the metric UIQI:

[0.571724095, 0.602179063, 0.549128726].

This image filtered with a median filter, produces a sharpness of 0.6250, which is
far poorer than the value of 0.9828 for the image filtered by a fuzzy filter.

The following table lists the tested cases when the fuzzy filter produces better
image quality than the metric for UIQI obtained from the median filter.

Filter UIQI sharpness

FF (K = 125, t = 10) [0.578553195, 0.592197474, 0.563651099] 0.9830

FF (K = 1125, t = 10) [0.598554328, 0.61427433, 0.584435289] 0.9787

FF (K = 1625, t = 10) [0.611160023, 0.627391739, 0.599013258] 0.9752

FF (K = 1625, t = 230) [0.557179733, 0.570101444, 0.54043719] 0.9825

FF (K = 2125, t = 10) [0.618727277, 0.635052967, 0.606933406] 0.9769

FF (K = 2625, t = 10) [0.622099998, 0.637857341, 0.609252374] 0.9828

FF (K = 2625, t = 230) [0.584454339, 0.599542426, 0.569519108] 0.9887

FF (K = 3125, t = 10) [0.621980924, 0.637125136, 0.609103084] 0.9784

FF (K = 3125, t = 230) [0.592817441, 0.607752109, 0.578057758] 0.9836

FF (K = 3625, t = 10) [0.619479154, 0.634581478, 0.606633379] 0.9795

FF (K = 3625, t = 230) [0.599290257, 0.615183591, 0.585093335] 0.9861

FF (K = 4125, t = 10) [0.617337832, 0.632742564, 0.605218738] 0.9779

FF (K = 4125, t = 230) [0.605061417, 0.620948146, 0.591745631] 0.9885

FF (K = 4625, t = 10) [0.613914944, 0.629144181, 0.601726559] 0.9762

FF (K = 4625, t = 230) [0.610191481, 0.626162077, 0.59762365] 0.9886

VMF [0.571724095, 0.602179063, 0.549128726] 0.6250

Figure 8. Plant, 256x192, 5% salt and pepper
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Figure 9. Plant, filtered image, 5% salt and pepper, K = 2625,
t = 10

Figure 10. Plant, filtered using a median filter, 5% salt and pepper

Paper [13] presents an image (contaminated with 10% salt and pepper noise)
using a fuzzy-metric-based c, with parameters t = 2.6, K = 768 and window size 3.
The metric values for UIQI for each color for the filtered image by applying the
fuzzy filter are equal to [0.5257, 0.5702, 0.5662]. The metric values of UIQI for each
color for the filtered image using a median filter with window size 3 are equal to
[0.5033, 0.5649, 0.5447]. By comparing the index of metric UIQI for corresponding
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colors (respectively, red, green, blue), it can be concluded that all indices of images
filtered using the method proposed in this paper are greater than the corresponding
indices of images filtered using the median filter. As those indices are closer to one,
it can be concluded that the image quality is superior. The process of removing
noise from an image using fuzzy metrics, was tested on the jpg format “Baboon”
image. The test image is from USCSIPi Database Source USC-SIPI Image Data-
base. http://sipi.usc.edu/database/, University of Southern California, Signal and
Image Processing Institute.

Articles [14,16], save for the aforementioned cited papers, are also papers that
discussed image filtering using a fuzzy-metric-based filter.

6. Conclusion

In this article, the pseudo-linear combination fuzzy metric is defined and it
is shown that with certain assumptions, it is also fuzzy metric and that on the
corresponding set it has the structure of a complete fuzzy metric space. Concrete
examples were used to examine the quality of the filter and its removal sum from
the image, which is based on the thus obtained fuzzy metric. The conclusion is that
the UIQI is inferior on most of the examined images but that the filtered image’s
sharpness is superior to the one processed using VMF (vector median filter).

Similarly, this concept can be used in image segmentation, such as [10,11,15].
Account should be taken of pseudo-linear combinations of fuzzy metrics appear-
ing at the pixel descriptor as a characteristic that carries information about the
observed pixel and its environment i metrics in the FCM algorithm.

There are numerous possibilities for applying this algorithm in different fields,
given that different norms can be selected depending on the problem observed.
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