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MEASURES OF STRING SIMILARITIES
BASED ON THE HAMMING DISTANCE

Bojan Nikolić and Boris Šobot

Abstract. We consider measures of similarity between two sets of strings
built up using the Hamming distance and tools of persistence homology as a
basis. First we describe the construction of the Čech filtration adjoined to the
set of strings, the persistence module corresponding to this filtration and its
barcode structure. Using these means, we introduce a novel similarity measure
for two sets of strings, based on a comparison of bars within their barcodes of
the same dimension. Our idea is to look for a comparison that will take under
consideration not only the overlap of bars, but also ensure that observed bars
are qualitatively matched, in the sense that they represent similar homolog-
ical features. To make this idea happen, we developed a method called the
separation of simplex radii technique.

1. Introduction

A string is a finite sequence over a (usually finite) alphabet. We will consider
strings on n-element alphabets and assume (without loss of generality) that strings
are over the alphabet Nn = {1, 2, . . . , n}. By S(n, l) we denote the set of strings
of length l over this alphabet. We also consider a string s ∈ S(n, l) as a function
s : Nl → Nn and denote its i-th character by s(i).

The Hamming distance between two strings of equal length is the number of
positions at which the corresponding symbols are different. More precisely, the
Hamming distance on S(n, l) for s = a1a2 . . . al and t = b1b2 . . . bl is defined as
dH(s, t) := |{i ∈ {1, 2, . . . , l} : ai 6= bi}|. This type of edit distance was introduced
by Hamming in his seminal paper [7], and has applications in several disciplines,
including information theory, coding theory, cryptography, and bioinformatics.

Let A and B be subsets of S(n, l) with the same cardinality m > 1. In the
case m = 1, the Hamming distance between the element of set A and the element
of set B can be used as a measure of dissimilarity of these sets. In the case m > 1,
a measure of dissimilarity of sets A and B in the metric space (S(n, l), dH) can be
defined via the Hausdorff distance between these sets:
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DH(A,B) := max
{

sup
a∈A

inf
b∈B

dH(a, b), sup
b∈B

inf
a∈A

dH(a, b)
}
.

The Hausdorff distance DH(A,B) is “one-dimensional" in its nature and does
not consider the internal structures of sets A and B. This disadvantage motivates
us to consider various types of connectivity (or lack thereof) that exist between
the elements of sets A and B separately. In this way, it is possible to define
a similarity measure between these sets which would compare their connectivity
classes within the same dimension. In this article, we will accomplish this by using
tools from simplicial homology as well as its multiscale version known as persistent
homology [6,10].

In recent years, simplicial homology and persistent homology have played a
central role in Topological data analysis (TDA), a branch of applied mathematics
which analyzes topological information from high-dimensional datasets. Simplicial
homology studies the sequence of homology groups of a simplicial complex. Loosely
speaking, objects of a homology group are holes of a specific dimension that reside
in the observed simplicial complex. The most notable type of simplicial complex
is the Čech complex, which is defined as the nerve of the cover of balls of a fixed
radius around each point of a given set of points. In our setting, for arbitrary r > 0
and A ⊆ S(n, l), the Čech complex C

(r)
A is a simplicial complex consisting of all

nonempty σ ⊆ A such that the closed balls of radius r with centers in σ have a
nonempty common intersection.

For a given integer k > 0 and Čech complex C
(r)
A , the homology group of

dimension k will be denoted by Hk

(
C

(r)
A

)
. Elements of this group are k-dimensional

homological classes, i.e., k-cycles on C
(r)
A which are not boundaries. The group

Hk

(
C

(r)
A

)
captures k-dimensional topological features when the Čech complex C

(r)
A

is observed with resolution r. In most cases, we don’t have enough information
which would enable us to choose the “optimal" resolution r. Hence, it is useful to
observe the Čech filtration, the family of Čech complexes {C

(r)
A : r > 0} obtained

by varying resolution (level) r in the definition of C(r)
A . Clearly, for r1 < r2 holds

C
(r1)
A ⊆ C

(r2)
A , and, since A is a finite set of strings, “blowing up" resolution would

lead to a level rt of filtration such that simplicial complex C
(rt)
A is the full complex,

that is, it contains every nonempty subset of A. Therefore, all Čech filtrations
that we consider in this paper have a finite number of levels, i.e., they have a form
{C

(r1)
A ,C

(r2)
A , . . . ,C

(rt)
A }, for some 0 6 r1 < r2 < · · · < rt. We will call filtrations

{C
(ri)
A : i ∈ {1, 2, . . . , t}} and {C

(ri)
B : i ∈ {1, 2, . . . , t}} isomorphic if there is a

bijection f : A → B such that, for each i ∈ {1, 2, . . . , t}, σ ∈ C
(ri)
A if and only if

f [σ] ∈ C
(ri)
B . An automorphism of the metric space (S(n, l), dH) mapping A to B

is called a dH(A → B)-isomorphism.
Persistent homology keeps track of the evolution of homological classes through-

out the levels of a given filtration. More precisely, for each dimension k, the per-
sistence module

(1.1) Hk

(
C

(r1)
A

)
→֒ Hk

(
C

(r2)
A

)
→֒ · · · →֒ Hk

(
C

(rt)
A

)
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contains information on the complete lifespan of every k-dimensional homology
class, from the level of filtration when they are first formed (born) to the level of
filtration when they become boundaries, and hence trivial (die). In this way, we
obtain the persistence interval [birth(γ), death(γ)), for every homological class γ.
In [10], it was shown that persistence module (1.1) has a unique decomposition
into a multiset of persistence intervals. This multiset is called the barcode of
dimension k and is denoted by BCk. Visually, a barcode BCk can be represented
by a multiset of horizontal lines whose endpoints correspond to the birth-death
pairs of k-homological classes. We will abuse notation and use BCk(A) to denote
the k-dimensional barcode of the persistence module corresponding to the Čech
filtration adjoined to the subset A ⊆ S(n, l).

Comparing persistence barcodes is appealing due to their simple numerical
nature. In the context of persistent homology, the most notable measure of com-
parison is the bottleneck distance. The idea behind this distance is to observe all
possible bijections (matchings) between two multisets of barcode lines, such that
every line of “significant length" from one barcode is paired with a unique line of
similar length and endpoints from the other barcode, and vice versa. The bot-
tleneck distance between two barcodes is then defined as an infimum of the set of
significant lengths for which a described matching can be done (see the next section
for the precise definition). The most important property of the bottleneck distance
is its stability, in the sense that “small" changes in the structure of the persistence
module lead to small amount of changes in the corresponding barcode [4]. One
notable matching between two barcodes which enables proof of this stability is the
induced matching introduced in [2].

The results we present in this paper are focused on studying the similarity of two
subsetsA,B ⊆ S(n, l) of the same cardinalitym. The aforementioned similarity will
be expressed through the appropriate matching, which would generate a measure
of similarity between subsets A and B.

Under this framework, the main contributions of this paper are as follows:

1. We introduce notions of generalized strings and generalized Hamming distance.
These concepts allow us to develop a novel simplices radii separation technique.
This technique is based on constructing a bijection which maps a subset A ⊆
S(n, l) to an appropriate subset A′ of generalized strings so that the following
two useful properties are satisfied:
1.1. All barcode lines of BCk(A′), for k > 1, have unique birth-death endpoints.

As a consequence, we can propose a fairly simple matching between bar-
codes BCk(A′) and BCk(B′).

1.2. Changes in the structure of persistence module (1.1) that occur after ap-
plying this bijection are strictly controlled.

2. The simplices radii separation technique enables us to consider a new sort of
barcode matching based on the idea of cycle registration. This matching allows
us to induce a novel similarity measure between two subsets A,B ⊆ S(n, l).

The rest of this paper is organized as follows. Section 2 sets up basic notions and
properties of simplicial homology and persistent homology. Section 3 introduces
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Čech filtration adjoined to the set A ⊆ S(n, l). Also in this section, notions of gen-
eralized strings and generalized Hamming distance are introduced. Section 4 gives
details about barcodes for a subset of strings. Furthermore, a bijection between a
subset A ⊆ S(n, l) and an appropriate subset A′ of generalized strings is provided.
This bijection yields a barcode BCk(A′), which is “close enough" to the barcode
BCk(A) and has useful “nonaligned" setup of its lines. This property will be used
in order to define appropriate “hybrid" matching between barcodes of two subsets
of strings. The last section presents conclusions and plans for future work.

2. Preliminaries

In this section, we briefly recall the basic concepts of simplicial homology and
persistence homology. For a more in-depth examination, see for example [2,4,5,8,
10].

A simplicial complex K is a pair (K,Σ), where K is a nonempty set and Σ is
a finite collection of nonempty subsets of K called simplices, such that τ ⊆ σ ∈ Σ
implies τ ∈ Σ. The simplex σ with elements v0, . . . , vk is denoted by [v0, . . . , vk]
instead of {v0, . . . , vk}. The dimension of a simplex σ is dim σ = |σ| − 1 and the
dimension of the complex is the maximum dimension of all of its simplices. Full
complex is a simplicial complex (K,P (K) r {∅}). If τ ⊆ σ, then τ is a face of σ.
The vertex set of the complex K is the collection of all elements v ∈ K such that
v ∈ σ, for some simplex σ ∈ Σ, and is denoted by Vert(K). A subcomplex L of the
complex K = (K,Σ) is a simplicial complex whose simplices form a subfamily of Σ.
For simplicial complexes K = (K,ΣK) and L = (L,ΣL), a mapping f : Vert(K) →
Vert(L) such that σ ∈ ΣK if and only if f [σ] ∈ ΣL is called a simplicial mapping.
Two simplicial complexes are isomorphic if there is a simplicial bijection between
these complexes.

Let (X, d) be a metric space. For r > 0 and x ∈ X , let B(x, r) = {y ∈ X :
d(x, y) 6 r} be the closed ball of radius r around x. If K ⊆ X is a finite set, for
every r > 0 the Čech complex C

(r)
K is the simplicial complex (K, {A ∈ P (K)r {∅} :

⋂

x∈AB(x, r) 6= ∅}). For r1 < r2, C(r1)
K is a subcomplex of C

(r2)
K , which we write

(informally) as C
(r1)
K ⊆ C

(r2)
K .

Let K be a simplicial complex and k a dimension. A k-chain is a formal sum
c =

∑
aiσi, where the σi are the k-simplices (i.e., simplices with the dimension

k) in K and the ai are coefficients from the field Z2. Addition of two k-chains
is defined componentwise, i.e., if c1 =

∑
aiσi and c2 =

∑
biσi, then c1 + c2 =

∑
(ai + bi)σi. For every dimension k, the k-chains together with the addition

operation form the group of k-chains denoted as Ck(K). The boundary of the k-
simplex σ = [v0, v1, . . . , vk] is the sum of its (k − 1)-dimensional faces, i.e., ∂kσ =
∑k

j=0[v0, v1, . . . , v̂j , . . . , vk], where the hat indicates that vj is omitted. For an
arbitrary k-chain, its boundary is the sum of the boundaries of its simplices. A k-
cycle c is a k-chain with empty boundary, ∂kc = 0. Since ∂ commutes with addition,
we have a group of k-cycles, denoted as Zk(K) = ker∂k. A k-boundary c is a k-chain
that is the boundary of a (k+1)-chain, c = ∂k+1d, with d ∈ Ck+1. Since ∂ commutes
with addition, we have a group of k-boundaries, denoted by Bk(K) = im ∂k+1. The
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k-th homology group is the k-th cycle group modulo the k-th boundary group,
Hk(K) = Zk(K)/Bk(K). Each element of Hk = Hk(K) is obtained by adding all
k-boundaries to a given k-cycle, c + Bk, with c ∈ Zk, and this class is referred as
a homology class. Nontrivial homology classes (for c 6= 0) depict cycles that are
not boundaries of any chain of simplices of appropriate dimension. In the language
of a geometric realization of the given complex, these cycles represent “holes" of
suitable dimensions. Every simplicial map f between simplicial complexes K and L

can be extended to the induced homomorphism on homology fk : Hk(K) → Hk(L),
which maps cycles to cycles and boundaries to boundaries. The most notable type
of induced homomorphism fk : Hk(K) → Hk(L) occurs in the case when K is a
subcomplex of L, i.e., when the simplicial map f is an inclusion.

A filtration of the simplicial complex K is a collection {K(i) : i ∈ {0, 1, . . . , t}}
of increasing subcomplexes of K: ∅ = K

(0) ⊆ K
(1) ⊆ · · · ⊆ K

(t) = K. If the complex
K contains u simplices, then a filtration of this complex can be understood as a
construction of K by adding t 6 u chunks of its simplices, one at a time. For the
purpose of an enumeration of complexes in the given filtration, the set {0, 1, . . . , t}
can be replaced with an arbitrary set {r0, r1, . . . , rt}, such that r0 < r1 < · · · < rt.

Example 2.1. For a given Čech complex C
(r)
K , every collection {ri : i ∈

{0, 1, . . . , t}} such that r0 < 0 6 r1 < r2 < · · · < rt = r, determines a filtration
∅ = C

(r0)
K ⊆ C

(r1)
K ⊆ · · · ⊆ C

(rt)
K = C

(r)
K , The Čech complex C

(ri)
K can be interpreted

as the “state" of the complex C
(r)
K at a resolution level ri 6 r. Thus, radius ri is

also referred to as the level of the filtration. It is worth noting that the values ri

can be chosen in such a way that each stage of the construction has exactly one
representative, more precisely: that for every r′ > 0 there is a unique ri 6 r′ such
that C

(ri)
K = C

(r′)
K . In such case we call this the Čech filtration.

For every i 6 j and each dimension k, we have the induced homomorphism
f i,j

k : Hk(K(ri)) → Hk(K(rj)) generated by the inclusion map K
(ri) →֒ K

(rj ).
The filtration thus corresponds to a sequence of homology groups connected by
homomorphisms:

(2.1) 0 = Hk(K(r0))
f1,2

k−−→ Hk(K(r1))
f1,2

k−−→ · · ·
ft−1,t

k−−−−→ Hk(K(rt)) = Hk(K),

again, one for each dimension k. Sequence (2.1) is also called the persistence
module and is denoted by PMk(K). As we go from K

(ri−1) to K
(ri), we gain

new homology classes and we lose one when they become trivial or merge with
each other. We collect the classes that are born at or before a given threshold
and die after another threshold in groups. The k-th persistent homology groups
are the images of the homomorphisms induced by inclusion, Hi,j

k = im f i,j
k , for

0 6 i 6 j 6 t. Note that Hi,i
k = Hk(K(ri)). The persistent homology groups

consist of the homology classes of K
(ri) that are still alive at K

(rj) or, more for-
mally, Hi,j

k = Zk(K(ri))/
(
Bk(K(rj)) ∩ Zk(K(ri))

)
. We have such a group for each

dimension k and each index pair i 6 j. A homology class γ ∈ Hk(K(ri)) is born
at K

(ri) if γ /∈ Hi−1,i
k . Furthermore, if γ is born at K

(ri), then it dies entering
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K
(rj), if it merges with an older class as we go from K

(rj−1) to K
(rj), that is,

f i,j−1
k (γ) /∈ Hi−1,j−1

k , but f i,j
k (γ) ∈ Hi−1,j

k . A positive simplex is a simplex with
property that its addition in some level of filtration leads to the birth of a new
homology class. Similarly, a negative simplex is a simplex with property that its
addition in some level of filtration leads to the death of an existing homology class.
If γ is born at K

(ri) and dies entering K
(rj), then the interval [i, j) is called the

persistence interval of the homology class γ. The length of this interval is called
the persistence of the homology class γ and is denoted by pers(γ). If a homology
class γ is born at K

(ri) but never dies, then the interval [i,+∞) is the persistence
interval of this class and we set pers(γ) = ∞. Persistence intervals keep track of
the lifespan of all homology classes in the process of passing through the observed
persistence module. A filtration having the property that, at every level of the fil-
tration, the homology changes allowed are either the creation of a single new cycle
or the termination of a single existing cycle, is called a Morse filtration. Essen-
tially, all persistence intervals of the persistence module corresponding to a Morse
filtration have different endpoints. The notion of persistence module can also be
defined for a sequence of vector spaces that are not necessarily homology groups.

A morphism between persistence modules PMk(K) and PMk(L) given by

0 = Hk(K(r0))
f0,1

k−−→ Hk(K(r1))
f1,2

k−−→ · · ·
ft−1,t

k−−−−→ Hk(K(rt)) = Hk(K),

0 = Hk(L(r0))
f0,1

k−−→ Hk(L(r1))
f1,2

k−−→ · · ·
ft−1,t

k−−−−→ Hk(L(rt)) = Hk(L),

is a collection h =
{
hi : Hk(K(ri)) → Hk(L(ri)) : i ∈ {0, 1 . . . , t}

}
of homomorphi-

sms, such that, for every i < j, the following diagram is commutative

Hk(K(ri)) Hk(K(rj))

Hk(L(ri)) Hk(L(rj))

hi

fi,j

k

hj

gi,j

k

A morphism h connecting persistence modules PMk(K) and PMk(L) is also de-
noted by h : PMk(K) ⇒ PMk(L). Specially, if every map in its collection is a
bijection, then h is an isomorphism and, in this case, persistence modules PMk(K)
and PMk(L) are isomorphic persistence modules. If h : PMk(K) ⇒ PMk(L) is a
morphism, then a persistence module given by

0 = h0
[
Hk(K(r0))

] g0,1

k−−→ h1
[
Hk(K(r1))

] g1,2

k−−→ · · ·
gt−1,t

k−−−−→ ht

[
Hk(K(rt))

]
=ht

[
Hk(K)

]
,

is called the image of morphism h, and is denoted by im(h). For a δ > 0, the δ-
shifted persistence module PMk(K)(δ) is obtained by “shifting" levels of the module
PMk(K) to the left by δ, i.e., at the i-th level of this module is the homology group
Hk(K(ri+δ)) and the induced homomorphism connecting i-th and j-th level of this
module is equal to f

ri′ ,rj′

k , where i′, j′ are such that ri′ 6 ri + δ < ri′+1 and rj′ 6

rj + δ < rj′+1. The δ-shifted morphism hδ between persistence modules PMk(K)
and PMk(K)(δ) is a morphism given by the collection {hδ

i : i ∈ {0, 1 . . . , t}}, such
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that, for every i, hδ
i := f i,i+δ

k . Also, for a morphism h : PMk(K) ⇒ PMk(L), the
morphism between their corresponding δ-shifted modules is denoted by h(δ). For
a δ > 0, persistence modules PMk(K) and PMk(L) are δ-interleaved if there exist
two morphisms F : PMk(K) ⇒ PMk(L)(δ) and G : PMk(L) ⇒ PMk(K)(δ), such
that, for every i, the following diagrams are commutative:

Hk(K(ri)) Hk(K(ri+δ)) Hk(K(ri+2δ))

Hk(L(ri+δ))

Fi

hδ
i

hδ
i+δ

Gi+δ

Hk(K(ri+δ))

Hk(L(ri)) Hk(L(ri+δ)) Hk(L(ri+2δ))

Fi+δGi

hδ
i hδ

i+δ

The interleaving distance between persistence modules PMk(K) and PMk(L) is
defined as the infimum of the set of all δ > 0 for which modules PMk(K) and
PMk(L) are δ-interleaved. This distance is denoted by dINT and it can be proven
that it is an extended pseudo-metric on the set of all persistence modules.

A barcode is a finite multiset of intervals, i.e., a finite collection of intervals with
given multiplicities. The intervals in a barcode are also called bars. One notable
example of a barcode is the multiset of all persistence intervals corresponding to
the persistence module PMk(K). This barcode is denoted by BCk(PMk(K)). For
every bar [b, d) in this barcode, we can define the interval persistence module I[b, d):

0 . . . 0 Z2 Z2 . . . 0 0 . . .

0 . . . i < b i = b i ∈ (b, d) . . . i = d i > d . . .

0 0 0 idZ2
idZ2 0 0 0

We have the representation PMk(K) =
⊕

[bi,di) I[bi, di)mi , where mi is the multi-
plicity of the persistence interval [bi, di), which belongs to the persistence module
PMk(K). This result is known as the Normal form theorem for persistence mod-
ules and was first proved in [1]. As a consequence, every persistence module is
completely determined by the structure of bars in its barcode.

Given an interval I = [b, d), denote by Iδ = [b− δ, d+ δ) the interval obtained
by “stretching" I by δ on both sides. Let BCk(·) be a barcode. For ε > 0, denote
by BCε

k(·) the set of all bars from BCk(·) with length greater than ε. A matching
between two finite multisetsX and Y is a relation µ ⊆ X×Y , such that µ : X ′ → Y ′

is a bijection between some X ′ ⊆ X and Y ′ ⊆ Y . In this case, coim(µ) = X ′,
im(µ) = Y ′, and the elements of X ′ and Y ′ are matched. If an element appears
in the multiset several times, we treat its different copies separately, e.g. it could
happen that only some of its copies are matched. If K and L are filtered complexes
and k > 0 a dimension, then a δ-matching between barcodes BCk (PMk(K)) and
BCk (PMk(L)) is a matching µ which satisfies the following properties:

1. BC2δ
k (PMk(K)) ⊆ coim(µ),

2. BC2δ
k (PMk(L)) ⊆ im(µ),

3. If µ(I) = J, then I ⊆ Jδ and J ⊆ Iδ.

The bottleneck distance, dBOT
(
BCk(PMk(K)),BCk(PMk(L))

)
is the infimum over

all δ > 0 for which there is a δ-matching between barcodes BCk (PMk(K)) and
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BCk(PMk(L)). The fundamental property of the bottleneck distance is stated in
the next theorem, the proof of which can be found in [4] or [3].

Theorem 2.1 (Isometry theorem). For the persistence modules PMk(K) and
PMk(L) holds

dINT
(
PMk(K),PMk(L)

)
= dBOT

(
BCk(PMk(K)),BCk(PMk(L)

)
.

The claim dBOT
(
BCk(PMk(K)),BCk(PMk(L)

)
6 dINT

(
PMk(K),PMk(L)

)
is

also known as the stability theorem. Intuitively, this theorem guarantees that “lit-
tle tweaks" in the structure of the persistence module do not produce significant
changes in the structure of bars within the barcode.

3. Filtration of a set of strings

Let us recall that S(n, l) denotes the set of all strings of length l over the
alphabet Nn = {1, 2, . . . , n}. For strings s = a1a2 . . . al and t = b1b2 . . . bl in
S(n, l), we observe the Hamming distance between them defined by

dH(s, t) := |{i ∈ {1, 2, . . . , l} : ai 6= bi}|.

Also, remember that, for a given r > 0, B(s, r) = {t ∈ S(n, l) : dH(s, t) 6 r}
denotes the closed ball of radius r around the element s in the metric space
(S(n, l), dH). In this section, we will describe the construction of the Čech fil-
tration adjoined to the subset A ⊆ S(n, l). Then, we will generalize this procedure
in the case of the set of generalized strings.

3.1. The Čech filtration adjoined to A ⊆ S(n, l). Let A ⊆ S(n, l) be
an arbitrary nonempty set of strings. For an arbitrary r > 0, we can consider
the Čech complex C

(r)
A , whose simplices are all subsets σ ⊆ A with the property

⋂

s∈σ B(s, r) 6= ∅. Since A is a finite set, there is a minimal terminal radius rt > 0,

such that C
(r)
A is the full complex for every r > rt. We are going to consider

filtration of the full complex CA := C
(rt)
A that formalizes the idea of describing all

“stepping stones" in the process of building this complex from the initial complex
C

(0)
A = {[s] : s ∈ A}. At the first step, we find the smallest value r1 > 0 with the

property C
(0)
A ( C

(r1)
A . Then, we find the smallest value r2 > r1 with the property

C
(r1)
A ( C

(r2)
A . Continuing with this process, we eventually come to the the last

step C
(rt−1)
A ( C

(rt)
A = CA. In this step, all simplices which were “missing" in the

complex C
(rt−1)
A are added, finishing the construction of the CA.

Definition 3.1. The filtration C
(0)
A ( C

(r1)
A ( · · · ( C

(rt)
A obtained in the

previous construction is called the filtration adjoined to the subset A ⊆ S(n, l) and
{r1, . . . , rt} is also referred to as the set of levels of this filtration.

We remark that the discrete nature of the Hamming distance implies that all
levels r1, r2, . . . , rt are positive integers.

Definition 3.2. For a simplex σ ⊆ A, the smallest rσ > 0 with the property
⋂

s∈σ B(s, rσ) 6= ∅, is called the radius of σ. In that case, an arbitrary element
c ∈

⋂

s∈σ B(s, rσ) is referred to as a center of σ.
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From the previous definition it follows that any radius rσ of a simplex σ ∈ CA

necessarily has to be one of the levels of the filtration adjoined to the set A. The
converse is also true: for any level ri of the filtration adjoined to the set A, the
complex C

(ri)
A contains some simplex σ0 which is not in the complex C

(ri−1)
A , meaning

that the radius of this simplex is equal to ri. Note that, unlike the radius of the
simplex, the center of the simplex need not be unique.

Example 3.1. Let A = {12244131
︸ ︷︷ ︸

s1

, 22223443
︸ ︷︷ ︸

s2

, 32143431
︸ ︷︷ ︸

s3

, 14443214
︸ ︷︷ ︸

s4

, 22134222
︸ ︷︷ ︸

s5

} ⊂

S(4, 8). In order to obtain the Čech filtration adjoined to this set, it is sufficient to
find the collection of ordered pairs of the form (σ, rσ), where σ ∈ CA and rσ is the
radius of the simplex σ:

( [s1]
︸︷︷︸

σ1

, 0), ( [s2]
︸︷︷︸

σ2

, 0), ( [s3]
︸︷︷︸

σ3

, 0), ( [s4]
︸︷︷︸

σ4

, 0), ( [s5]
︸︷︷︸

σ5

, 0), ([s1, s3]
︸ ︷︷ ︸

σ6

, 2),

([s1, s2]
︸ ︷︷ ︸

σ7

, 3), ([s2, s3]
︸ ︷︷ ︸

σ8

, 3), ([s1, s2, s3]
︸ ︷︷ ︸

σ9

, 3), ([s1, s4]
︸ ︷︷ ︸

σ10

, 3), ([s3, s4]
︸ ︷︷ ︸

σ11

, 3), ([s1, s3, s4]
︸ ︷︷ ︸

σ12

, 3),

([s1, s5]
︸ ︷︷ ︸

σ13

, 3), ([s2, s5]
︸ ︷︷ ︸

σ14

, 3), ([s3, s5]
︸ ︷︷ ︸

σ15

, 3), ([s1, s3, s5]
︸ ︷︷ ︸

σ16

, 3);

([s2, s4], 4
︸ ︷︷ ︸

σ17

), ([s1, s2, s4]
︸ ︷︷ ︸

σ18

, 4), ([s2, s3, s4]
︸ ︷︷ ︸

σ19

, 4), ([s1, s2, s3, s4]
︸ ︷︷ ︸

σ20

, 4), ([s1, s2, s5]
︸ ︷︷ ︸

σ21

, 4),

([s2, s3, s5]
︸ ︷︷ ︸

σ22

, 4), ([s1, s2, s3, s5]
︸ ︷︷ ︸

σ23

, 4), ([s4, s5]
︸ ︷︷ ︸

σ24

, 4), ([s2, s4, s5]
︸ ︷︷ ︸

σ25

, 4), ([s3, s4, s5]
︸ ︷︷ ︸

σ26

, 4),

([s2, s3, s4, s5]
︸ ︷︷ ︸

σ27

, 4), ([s1, s4, s5]
︸ ︷︷ ︸

σ28

, 4);

([s1, s2, s4, s5]
︸ ︷︷ ︸

σ29

, 5), ([s1, s3, s4, s5]
︸ ︷︷ ︸

σ30

, 5), ([s1, s2, s3, s4, s5]
︸ ︷︷ ︸

σ31

, 5).

The radius of the simplex σ6 = [12244131, 32143431] is 2, but its center is not
unique, e.g. the strings 32244431 and 12143131 are both centers of this simplex.

From the previous characterization, we derive the required Čech filtration:

C
(0)
A ( C

(2)
A ( C

(3)
A ( C

(4)
A ( C

(5)
A = CA,

where

C
(0)
A = {σi : 1 6 i 6 5},

C
(2)
A = C

(0)
A ∪ {σ6},

C
(3)
A = C

(2)
A ∪ {σi : 7 6 i 6 16},

C
(4)
A = C

(3)
A ∪ {σi : 17 6 i 6 28},

C
(5)
A = C

(4)
A ∪ {σi : 29 6 i 6 31} = P (A) r {∅}.

Definition 3.3. Let A,B ⊆ S(n, l) be nonempty subsets of strings for which
the filtration adjoined to A and the filtration adjoined to B both have the identical
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set of levels {r1, r2, . . . , rt}. These filtrations are called isomorphic if there is a
bijection f : A → B (referred to as a filtration isomorphism), such that for every
simplex σ ∈ CA and every i ∈ {1, 2, . . . , t} holds: σ ∈ C

(ri)
A if and only if f [σ] ∈ C

(ri)
B .

It is obvious that dH -isomorphic subsets have isomorphic adjoined filtrations.
The converse is generally not true, as we shall see in the following example.

Example 3.2. Let l = 5, n = 3 and m = 3. Take s1 = 11113, s2 = 22223,
s3 = 33333, s4 = 33122. It is easily checked that the sets S1 = {s1, s2, s3} and
S2 = {s1, s2, s4} yield isomorphic filtrations. Namely, beside vertices, the complex
C

(2)
S1

contains 1-simplices [s1, s2], [s1, s3] and [s2, s3], while C
(2)
S2

contains 1-simplices

[s1, s2], [s1, s4] and [s2, s4]. Both C
(3)
S1

and C
(3)
S2

are full complexes, so C
(2)
S1

and C
(2)
S2

are the only nontrivial subcomplexes. This means that the mapping g : S1 → S2,
defined by f(si) = si, i ∈ {1, 2}, f(s3) = s4, is a filtration isomorphism.

On the other hand, there is no dH(S1 → S2)-isomorphism. To show that,
notice that every dH(S1 → S2)-isomorphism preserves the number |{x(i) : x ∈ S1}|
of different letters at some position. Since strings s1, s2, s3 all end with the letter
3, assumption that S1 and S2 are dH -isomorphic sets would lead to the conclusion
that there is a position such that all strings s1, s2, s4 have the same letter on that
position. However, it is easy to check that this is not the case.

3.2. Generalized strings. The preceding example demonstrates how easy it
is to create sets S1, S2 ⊆ S(n, l), for n > 2, which are not dH -isomorphic but have
isomorphic adjoined filtrations. In order to reduce the number of such examples,
we need to generalize the notion of a string.

Definition 3.4. A generalized string of length l over the alphabet Nn is a
function s : Nl → Fn, where Fn is the set of functions f : Nn → [0, 1] such that
∑n

i=1 f(i) = 1. We will denote the set of such generalized strings by S′(n, l), and
the image of i ∈ Nl by s will be denoted by s[i]. The generalized Hamming distance
between s, t ∈ S′(n, l) is defined by

dGH(s, t) =
l∑

i=1

(

1 −
n∑

j=1

min {s[i](j), t[i](j)}

)

.

Using the identity min{a, b} = 1
2 (a + b − |a − b|), it is easy to check that for

s, t ∈ S′(n, l) we have

dGH(s, t) =
1
2

l∑

i=1

n∑

j=1

∣
∣s[i](j) − t[i](j)

∣
∣.

Thus, dGH is in fact the Manhattan (d1) metric on Rnl restricted to the set
S′(n, l) = FNl

n , and divided by 2.
The distance dGH(s, t) measures the overlapping in functions s[i] and t[i]. Every

string s = a1a2 . . . al ∈ S(n, l) can be identified with a generalized string s, where
s[i] is the function mapping ai to 1, and all other letters to 0, for all i ∈ Nl. Using
this convention, it is easy to check that dGH(s, t) = dH(s, t) holds for arbitrary
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strings s, t ∈ S(n, l), so the restriction of dGH to S(n, l) is the “usual" Hamming
distance dH .

All concepts that we considered in the case of a set A ⊆ S(n, l) (the full
complex CA, the filtration adjoined to the set A, the barcode BCk(A), etc.) can
be introduced analogously in the case of a finite set A′ ⊆ S′(n, l). Of course, the
diferrence is that we now use the distance dGH instead of dH .

Definition 3.5. Let CA be the full complex for a finite set A ⊆ S′(n, l). For
σ ∈ CA, the value

r(σ) = min{r : (∃x ∈ S′(n, l))(∀y ∈ σ)dGH(x, y) 6 r}

is called the radius of σ. A generalized string c such that dGH(c, y) 6 r(σ) for all
y ∈ σ is called a center of σ.

Lemma 3.1. For every σ ∈ CA, the minimum in the definition of r(σ) exists.

Proof. As the set [0, 1] with the usual topology is compact, the product space
[0, 1]Nn is also compact. Since Fn = {f ∈ [0, 1]Nn :

∑n
i=1 f(i) = 1} ⊆ [0, 1]Nn is a

closed subspace, Fn is a compact set, implying that S′(n, l) = FNl
n is a compact set

as well. If we define a function ψσ : S′(n, l) → R with ψσ(x) = max{dGH(x, y) :
y ∈ σ}, it is clearly continuous, so it reaches its minimum on S′(n, l), and that is
exactly r(σ). �

Example 3.3. Let s1 = 111112, s2 = 111113, s3 = 222221 and s4 = 333331.
For the set σ = {s1, s2, s3, s4} ⊆ S(3, 6) one center is the generalized string b ∈
S′(3, 6) given by

b[i] :

(
1 2 3
7

15
4

15
4

15

)

(for 1 6 i 6 5) b[6] :

(
1 2 3
1 0 0

)

.

Namely, for all 1 6 k 6 4, dGH(b, sk) = 5 · 8
15 + 1 = 5 · 11

15 = 11
3 . Note that, for

any c ∈ S′(3, 6) and any 1 6 i 6 5,
∑4

k=2(1 −
∑3

j=1 min{c[i](j), sk[i](j)}) = 2. For

i = 6, we have
∑4

k=2(1 −
∑3

j=1 min{c[6](j), sk[6](j)}) > 1, obtaining the minimum

only for c[6] = b[6]. Thus,
∑4

k=2 dGH(c, sk) > 11, and r(σ) > 11
3 .

More centers can be obtained by moving weights between first five positions,
for example,

b′[1] :

(
1 2 3
5

15
5

15
5

15

)

b′[2] :

(
1 2 3
9

15
3
15

3
15

)

b′[i] :

(
1 2 3
7

15
4

15
4

15

)

(for 3 6 i 6 5) b′[6] :

(
1 2 3
1 0 0

)

.

4. A similarity measure based on comparison of barcodes

In this section, we define the barcode associated with a given set of strings.
We will use this barcode as an indicator of homological features that appear in the
“universe" of the filtration adjoined to the observed set of strings. Loosely speaking,
bars in a barcode represent the evolution of “holes" of appropriate dimension. Every
k-dimensional hole, for k > 1, expresses high dimensional “connectivity issue" that
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exists for some subfamily of strings in some parts of the filtration. Thus, barcodes
can be exploited to measure the discrepancy between connectivity classes of two sets
of strings. The main goal of this section is to introduce a novel similarity measure
for two sets of strings, which would be based on comparison of bars within their
barcodes of the same dimension. This comparison will take under consideration
not only the overlap of bars but also ensure that observed bars are “qualitatively"
matched, in the sense that they represent similar homological features.

4.1. Barcode associated to a set A ⊆ S(n, l). Let A ⊆ S(n, l) be an
arbitrary nonempty set of strings and C

(0)
A ( C

(r1)
A ( · · · ( C

(rt)
A the filtration

adjoined to this set. For a fixed dimension k > 0, this filtration generates the
persistence module PMk(CA) given by:

Hk(C(0)
A )

f
0,r1
k−−−→ Hk(C(r1)

A )
f

r1,r2
k−−−−→ · · ·

f
rt−1,rt

k−−−−−→ Hk(C(rt)
A ) = Hk(CA),

where homomorphisms f ri,ri+1

k are induced by inclusions C
(ri)
A →֒ C

(ri+1)
A .

Definition 4.1. For an arbitrary k > 0, the barcode of the persistence module
PMk(CA) is also referred to as the k-dimensional barcode associated with set A ⊆
S(n, l) and will be denoted by BCk(A).

Since A ⊆ S(n, l) is a finite set, the barcode BCk(A) contains no barcode lines
(bars) for any k > |A| − 1. Barcode BC0(A) has exactly |A| bars. Each of them
shows the evolution of a connected component while moving through the filtration.
Since the full complex CA contains only one connection component, we conclude
that barcode BC0(A) has only one infinite bar. For k > 1, every k-dimensional
hole must eventually be closed at some level of the filtration, meaning that all bars
belonging to the barcode BCk(A) must have finite lengths.

Example 4.1. Let us examine barcodes associated with the set A ⊂ S(4, 8)
from Example 3.1. There are |A| = 5 bars in the barcode BC0(A). Since [s1, s3] ∈

C
(2)
A , two components from BC0(A) are merged at this level, leaving 4 bars to per-

sist until the next level of the filtration. Excluding simplices [s2, s4] and [s4, s5],
all other 1-simplices belong to the complex C

(3)
A , implying that, after this level,

there is only one connected component and, consequently, only one bar (with in-
finite persistence). The barcode BC1(A) contains only one bar. This bar depicts
the persistence of the only nontrivial 1-cycle [s1, s2] + [s2, s5] + [s1, s5]. This cycle
is born in the complex C

(3)
A and dies in the next complex of the filtration, since

r ([s1, s2, s5]) = 4. Similarly, the barcode BC2(A) contains only one bar corre-
sponding to 2-cycle [s1, s2, s4]+ [s1, s2, s5]+ [s1, s4, s5]+ [s2, s4, s5], which is created
in the complex C

(4)
A and closed down in the full complex C

(5)
A (see Figure (1)).

Now it is a good time to elaborate on how we are going to use barcodes BCk(A)
and BCk(B) in order to introduce a measure of (dis)similarity of these sets. Let us
suppose that sets A,B ⊆ S(n, l) have the same cardinality m > 2.

Both barcodes BC0(A) and BC0(B) contain m bars, where m − 1 of them
are finite-length bars (all having 0 as a left endpoint) and one bar is an infinite-
length bar. Two infinite-length bars from these barcodes are perfectly matched
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2 3 4 5

BC1(A)
BC2(A)

BC0(A)

Figure 1. Barcode associated to the given set A. The top section
consists of five bars representing the barcode BC0(A). The middle
section contains a single bar representing the barcode BC1(A),
while the bottom section also has a single bar representing the
barcode BC2(A).

and thus can be ignored. The remaining lines in the BC0(A) and BC0(B) can be
enumerated in the form

{
[0, lAi ) : i ∈ {1, 2, . . . ,m− 1}

}
, 0 < lA1 6 lA2 6 . . . 6 lAm−1,

and
{

[0, lBi ) : i ∈ {1, 2, . . . ,m− 1}
}

, 0 < lB1 6 lB2 6 · · · 6 lBm−1, respectively. We
can match bars [0, lAi ) and [0, lBi ) and look for maximal difference between lAi and
lBi .

In the case of dimension k > 1, as a measure of dissimilarity we could use
the bottleneck distance dBOT (BCk(A),BCk(B)). However, instead of matching
the bars exclusively by means of their “best suited" overlaps, we will also try to
investigate the possibility of matching bars at a qualitatively higher level. We
will conduct this examination by using the idea of a cycle-registration scheme, a
technique described in [9]. In the context of our problem, this technique can be
described as follows: in addition to the filtrations adjoined to sets A and B, we
will also observe the filtration adjoined to the set A ∪ B. The persistence module
PMk(CA∪B) can be viewed as a “bigger" module in which persistence modules
PMk(CA) and PMk(CB) are naturally embedded. More precisely, these embeddings
are morphisms hA : PMk(CA) ⇒ PMk(CA∪B) and hB : PMk(CB) ⇒ PMk(CA∪B),
such that, at every level ri, mappings hA

ri
and hB

ri
are induced by inclusions. If γA

is a k-cycle in the persistence module PMk(CA) and γB is a k-cycle in PMk(CB),

then these cycles are called CA∪B-equivalent cycles (denoted by γA
CA∪B∼ γB), if

there are k-cycles γ̃A ∈ im(hA), γ̃B ∈ im(hB), such that:

• Cycles γA and γ̃A are born at the same level,
• Cycles γB and γ̃B are born at the same level,
• Cycles γ̃A and γ̃B die at the same level.

The notion of CA∪B-equivalent cycles is particularly significant in the case when
filtrations of the complexes CA,CB and CA∪B are Morse filtrations. In this case,
the first two conditions imply that the cycles γ̃A, γ̃B are structurally related to the
cycles γA, γB, since they appear at the same filtration level. The third condition
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implies that cycles γ̃A and γ̃B are “killed off" at the same filtration level, which leads
to the conclusion that they represent similar homological feature. Consequently,
the same conclusion applies to their counterparts, cycles γA and γB. Also, the
following lemma is easily verified.

Lemma 4.1. Let γA be a k-cycle in the persistence module PMk(CA) and let

βB, γB be k-cycles in the persistence module PMk(CB) such that γA
CA∪B∼ βB and

γA
CA∪B∼ γB. If filtrations of the complexes CA,CB and CA∪B are Morse filtrations,

then βB = γB.

Therefore, if the filtrations of the complexes CA,CB and CA∪B are Morse filtra-
tions for dimension k > 1, then comparison of the barcodes BCk(A) and BCk(B)
can be performed by using matching, which would favor all bars that correspond to
the CA∪B-equivalent cycles. For those bars in barcodes BCk(A) and BCk(B) that
cannot be matched in this way, we use the “ordinary" bottleneck distance matching.
More details about this “hybrid" matching will be provided in Section 4.3.

Unfortunately, the described strategy is troublesome in the case when at least
one of the observed filtrations is not a Morse filtration. Taking into account the
discrete nature of the Hamming distance, the possibility that two or more cycles
appear or disappear at the same filtration level becomes more and more certain as
the number of strings in the string set increases. In Section 4.2 we develop a new
technique that will deal with this problem in a satisfactory way.

4.2. Separation of simplex radii. When analyzing the filtration adjoined
to the set A ⊆ S(n, l), its simplices are usually divided into positive (those that
mark the birth of a new homology class) and negative (marking the death of such
a class). Since 2|A| − 1 simplices must be distributed within at most l+ 1 filtration
levels, the scenario in which two or more positive (or negative) simplices have the
same radius is likely to happen. Therefore, there is no guarantee that the filtration
adjoined to the set A is a Morse filtration. However, as we will show, it is possible to
construct a set A′ of generalized strings such that the filtration adjoined to this set
is a Morse filtration. More importantly, this construction causes strictly controlled
“shifts" of bars in the barcode BCk(A). We begin by giving some definitions.

Definition 4.2. Closed ball around x ∈ S′(n, l) with radius r > 0 is the set
B(x, r) := {y ∈ S′(n, l) : dGH(x, y) 6 r}.

MB(σ) = {B(c, r(σ)) : c is a center of σ} is the set of miniballs “circum-
scribed" around the simplex σ.

Note that a simplex may have more than one center, so that is why we consider
the set of miniballs. Notions of this kind were examined in detail in [11] in the
context of the Euclidean space Rd. As usual, the interior of any closed ball B =
B(x, r) in the metric space (S′(n, l), dGH) is intB := {y ∈ S′(n, l) : dGH(x, y) < r}
and its boundary is bdB := {y ∈ S′(n, l) : dGH(x, y) = r}.

Definition 4.3. For a finite subset A ⊆ S′(n, l), G ⊆ A is called a set of
generators if there is B ∈ MB(A) such that G ⊆ bdB and ArG ⊆ intB.
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Lemma 4.2. Every finite A ⊆ S′(n, l) has a minimal set of generators.

Proof. Let G1 and G2 be two sets of generators for some finite A ⊆ S′(n, l).
Let B1 and B2 be the corresponding miniballs with radius r, c1 and c2 their centers,
and let G = G1 ∩ G2. If c[i](j) := 1

2 (c1[i](j) + c2[i](j)), then A ⊆ B(c, r). Indeed,
for every x ∈ A,

dGH(c, x) =
l∑

i=1

(

1 −
n∑

j=1

min

{
c1[i](j) + c2[i](j)

2
, x[i](j)

})

(4.1)

6

l∑

i=1

(

1 −
n∑

j=1

1
2

(
min{c1[i](j), x[i](j)} + min{c2[i](j), x[i](j)}

)
)

=
1
2

l∑

i=1

(

1 −
n∑

j=1

min{c1[i](j), x[i](j)}

)

+
1
2

l∑

i=1

(

1 −
n∑

j=1

min{c2[i](j), x[i](j)}

)

=
1
2

(
dGH(c1, x) + dGH(c2, x)

)
6 r.

Note that the inequality given in (4.1) can be equality only for x ∈ G. Hence
the assumption that G1 and G2 are disjoint sets would lead to the conclusion that
there is r′ < r such that dGH(c, x) 6 r′ holds for every x ∈ A, which is impossible
because r(A) = r. So G is nonempty and “generates" another miniball of radius
r circumscribed around A. Hence, the intersection of sets of generators contains
another set of generators, which means that the intersection of all them is the
minimal set of generators. �

Example 4.2. Let s1 = 1111, s2 = 2222, t = 1222, u = 1212, c1 = 1122,
c2 = 2211 and let c3 = c3[1]c3[2]c3[3]c3[4] ∈ S′(2, 4) be given by

c3[1] = c3[2] =

(
1 2
1
2

1
2

)

, c3[3] =

(
1 2
1 0

)

and c3[4] =

(
1 2
0 1

)

.

Then each of c1, c2, c3 is a center for the simplex σ = {s1, s2} and the radii of the
corresponding miniballs are 2. However, since t ∈ B(c1, 2) r B(c2, 2), the first of
these two miniballs is also circumscribed around τ = σ∪ {t}, but the second is not.
Thus, σ is the minimal set of generators for both σ and τ . For θ = σ ∪ {u}, θ itself
is a set of generators (since all vertices of θ lie on the boundary of B(c1, 2)), but σ
is the minimal one: s1, s2 ∈ bdB(u, 2) while u ∈ intB(u, 2).

Definition 4.4. Define a binary relation ≈ on finite subsets of S′(n, l) as
follows: A ≈ B if A and B have the same minimal set of generators.

Clearly, ≈ is an equivalence relation. It will turn out that, for a given filtration,
the simplices that can not be separated (at least not by the method described below)
are exactly those that are in the same ≈-equivalence class.
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For s ∈ S′(n, l) and k < l, s ↾ Nk ∈ S′(n, k) denotes the generalized string
consisting of the first k elements of s. For a given σ ∈ CA, let C(σ) be the set of
centers of miniballs circumscribed around the minimal set of generators G and let
D(σ, u) = min{dGH(c, u) : c ∈ C(σ)}.

Lemma 4.3. Let A ⊆ S′(n, l) be a finite set of generalized strings and let
σ1, σ2 ∈ CA be simplices such that r(σ1) = r(σ2) = r0 and σ1 6≈ σ2. Also, let j ∈ N

be arbitrary. Then, there are a set B ⊆ S′(n, l+ 1), a vertex z ∈ A and a bijection
f : A → B such that r(f [σ1]) = r(σ1), r(f [σ2]) > r(σ2) and

(4.2) r(τ) 6 r(f [τ ]) 6 r(τ) +
1
j

for all τ ∈ CA. Furthermore:

(i) if 1
j < min

(
{|r(τ) − r(σ)| : σ, τ ∈ CA} r {0}

)
, then r(σ) < r(τ) implies

r(f [σ]) < r(f [τ ]), for all σ, τ ∈ CA;
(ii) if σ ∈ CA, G is the minimal set of generators for σ, z /∈ G and 1

j < r(σ) −

D(σ, z), then f [G] is the minimal set of generators for f [σ].

Proof. Let G1 and G2 be the minimal sets of generators for σ1 and σ2. The
condition σ1 6≈ σ2 means that, say, G2 6⊆ G1. So, we can pick a generalized
string z ∈ G2 r G1. Now define, for any s = a1a2 . . . al ∈ A, f(s) as follows:
f(s) = a1a2 . . . alal+1, where:

− for s 6= z, let al+1(1) := 1 and al+1(i) := 0, for i > 1, and
− for s = z, let al+1(1) := 1 − 1

j , al+1(2) := 1
j and al+1(i) := 0, for i > 2.

Now, if c = b1b2 . . . bl is the center of the miniball B(c, r0) circumscribed around
σ1, then c′ := b1b2 . . . blbl+1 (where bl+1(1) := 1 and bl+1(i) = 0 for i > 1) is the
center of the closed ball with radius r0 containing f [σ1], and so r(f [σ1]) = r0.

In a similar way, we see that (4.2) holds for any τ ∈ CA.
For any two generalized strings c ∈ S′(n, l + 1) and y ∈ σ2, we have

dGH(c, f(y)) =
l+1∑

i=1

(

1 −
n∑

j=1

min {c[i](j), f(y)[i](j)}

)

=
l∑

i=1

(

1 −
n∑

j=1

min{c[i](j), f(y)[i](j)}

)

+

(

1 −
n∑

j=1

min{c[l + 1](j), f(y)[l + 1](j)}

)

= dGH(c ↾ Nl, y) +

(

1 −
n∑

j=1

min {c[l + 1](j), f(y)[l + 1](j)}

)

.

If we assume that, for some c0, dGH(c0, f(y)) 6 r0 for every y ∈ σ2, it follows
that dGH(c0 ↾ Nl, y) 6 r0 for every y ∈ G2, so c0 ↾ Nl must be a center of a
miniball of σ2. However, for each such c0 we have c0[l + 1] 6= f(z)[l + 1], so
1 −

∑n
j=1 min{c0[l+ 1](j), f(z)[l+ 1](j)} > 0 and consequently dGH(c0, f(z)) > r0.

Hence, r(f [σ2]) must be greater than r0.
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(i) follows easily from (4.2). Finally, for (ii), the condition 1
j < r(σ) − D(σ, z)

guarantees that, since z was in the interior of some miniball B(c, r) circumscribed
around G, then f(z) belongs to interior of at least one miniball (namely B(f(c), r))
circumscribed around f [G]. �

It should be noted that the bijection described in the previous lemma right-
shifts levels of the persistence module PMk (CA) for at most 1

j . This fact, together
with The Stability Theorem, implies that the bottleneck distance between barcodes
BCk(A) and BCk(B) is less than or equal to 1

j .
After one application of the previous lemma, it is still possible that there are

non ≈-equivalent simplices with the same radius in the full complex CB. In order
to “separate" radii of those simplices, we will successively continue to apply this
lemma, with the appropriate choice of 1

j , which will ensure that, in each of these
steps, the radii of the simplices that we separated earlier do not become equal again.

Theorem 4.1. Let A ⊆ S′(n, l) be such that |A| = m and let ε > 0 be given.
Then there are Sep(A) ⊆ S′(n, l + m′), for some m′ 6 m, and a bijection g : A →
Sep(A) such that:

(i) r(g[σ]) 6= r(g[τ ]) for all σ, τ ∈ CA such that σ 6≈ τ , and
(ii) 0 6 r(g[σ]) − r(σ) < ε for all σ ∈ CA.

Proof. We use Lemma 4.3 several times, each time separating two simplices
and changing the radii of others for sufficiently small amounts. First, let A0 := A
and let σ1, σ2 ∈ CA0

be simplices such that σ1 6≈ σ2, r(σ1) = r(σ2). Choose z from
the minimal set of generators of, say, σ1 as in Lemma 4.3, and let j1 ∈ N be such
that
1
j1
< min

{
ε
2 ,min({r(σ) −D(σ, z) : σ ∈ CA} ∩ R+),min({|r(τ) − r(σ)| : σ, τ ∈ CA0

} r {0})
}

.

We obtain A1 ⊆ S′(n, l + 1) and a bijection f1 : A0 → A1, such that r(f1[σ1]) <
r(f1[σ2]) and r(f1[σ]) < r(f1[τ ]), whenever r(σ) < r(τ), for σ, τ ∈ CA0

. Now, we
repeat the process, using some ji satisfying 1

ji
< ε

2i , obtaining sets A2, A3, . . . , Am′ ,
so that in Sep(A) := Am′ all simplices that are not ≈-equivalent have different radii.
This proves (i). Note that the condition (ii) of Lemma 4.3 implies that, if σ 6≈ τ ,
then f [σ] 6≈ f [τ ].

In the end, we take g := fm′ ◦ · · · ◦ f2 ◦ f1. Clearly, 0 6 r(g[σ]) − r(σ) 6
1
j1

+ 1
j2

+ · · · + 1
jm′

< ε, for every σ ∈ CA, which proves (ii). Also, m′ will not
be larger than m since each vertex z needs to be “moved" at most once (after the
moving it can not be a member of another difference G2 rG1 of sets of generators
of simplices with the same radius). �

In particular, the condition (ii) in the previous theorem shows that “new" bars
(appearing in the barcode BCk(Sep(A)), but not in the barcode of BCk(A)) are
of length less than ε, and the length of each “old" bar of the barcode BCk(A)
has changed for less than ε. Also, we can see that only equivalent simplices can
eventually have the same radius in the full complex CSep(A). So let us show that
such equivalence classes of simplices do not affect the barcode BCk(Sep(A)).
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Theorem 4.2. Let E be a ≈-equivalence class of CSep(A) with at least two
elements, and let r0 > 0 be the radius of all σ ∈ E. Then the appearance of
simplices from E does not affect the barcode; more precisely: persistence modules

PMk(C(r0)
Sep(A) r E) and PMk(C(r0)

Sep(A)) are equal for each dimension k > 1.

Proof. Since CSep(A) is obtained as a result of applying Theorem 4.1, the
only simplices with radius r0 in this complex are those in E. Let G be the common
minimal set of generators for σ ∈ E. This means that E consists of all simplices σ
such that G ⊆ σ and σ rG ⊆ intB(c, r0), where B(c, r0) is the ball circumscribed
around G. Let x ∈ intB(c, r0)rG be an arbitrary vertex belonging to some of these
simplices. All simplices in E can be divided into pairs (σ, σ ∪ {x}), where x /∈ σ.
Let 〈(σi, τi) : i < d〉 be an enumeration of all such pairs, such that |σi| 6 |σj | for
i < j. Now fix a small enough δ, and let us examine the effect of E on the bar code
by “pretending" that the simplices from E appear one by one in order of indices i,
for example that r(σi) = r0 + 2iδ and r(τi) = r0 + (2i+ 1)δ. For this new filtration
(call it K) we have K

(r0) = C
(r0)
Sep(A) r E and K

(r0+(2d+1)δ) = C
(r0)
Sep(A).

Now fix some i and let m := |σi|. All m-element subsets of τi = σi ∪ {x}
except σi have radii less than r0 + 2iδ. Indeed, any such subset either does not
contain G (in which case their radius is smaller than r0: if G′ is a minimal set of
generators of such a σ, then by the proof of Lemma 4.2 G ∩ G′ also contains a
set of generators, so G′ ⊂ G), or is of the form τj , for some j < i. Hence, σi is
a positive simplex, marking the birth of an m-dimensional homology class, and τi

is the negative simplex killing that same class. Thus, returning to the situation
in which all the simplices in E appear simultaneously, their overall effect on the
barcode is none. �

4.3. A new string similarity measure. We have made all the necessary
preparations to introduce a new measure of similarity between two sets of strings.

Let A,B ⊆ S(n, l) be two sets of strings, such that |A| = |B| = m > 2. For
each dimension k > 0, we will propose a new hybrid matching of k-dimensional bars
and define the distance dk between appropriate barcodes. In this hybrid matching,
the priority will be to match bars that correspond to equivalent cycles.

For k = 0, we have already established that both of the barcodes BC0(A) and
BC0(B) contain m bars, where m− 1 are finite-length bars (all having 0 as a left
endpoint) and one bar is the infinite-length bar. If 0 < lA1 6 lA2 6 · · · 6 lAm−1 and
0 < lB1 6 lB2 6 · · · 6 lBm−1 are lengths of finite-length bars, then we can match bars
[0, lAi ) and [0, lBi ) and define the distance d0(A,B) := maxi∈{1,2,...,m−1} |lAi − lBi |.

For a dimension k > 1, we use our simplices radii separation technique to get
m-element sets Sep(A) and Sep(B) of generalized strings. If there are no bars
in either of the barcodes BCk(Sep(A)) and BCk(Sep(B)), we set dk(A,B) := 0.
Otherwise, we apply simplices radii separation technique one more time to get
the set Sep(A ∪ B) of generalized strings. Note that the separation in A ∪ B can
be performed by including the steps of the separation in both A and B, so that
Sep(A) ⊆ Sep(A ∪ B) and Sep(B) ⊆ Sep(A ∪ B). In this way, we ensure that
CSep(A), CSep(B) and CSep(A∪B) are Morse filtrations. Next, we look for a potential
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CSep(A∪B)-equivalent cycles and match their corresponding bars. For bars in bar-
codes BCk(Sep(A)) and BCk(Sep(B)) which are not matched in this way, we use
bottleneck distance matching. More precisely, if BC′

k(Sep(A)) ⊆ BCk(Sep(A)) and
BC′

k(Sep(B)) ⊆ BCk(Sep(B)) denote collections of all bars without any CSep(A∪B)-
equivalent counterpart, then we can define

dk(A,B) :=
∑

γ1∼γ2

dBOT
(
{l(γ1)}, {l(γ2)}

)
+ dBOT

(
BC′

k(Sep(A)),BC′
k(Sep(B))

)
,

where the first sum is taken over all pairs of CSep(A∪B)-equivalent k-cycles γ1, γ2,
and l(γ1) ∈ BCk(Sep(A)), l(γ2) ∈ BCk(Sep(B)) are bars corresponding to these
cycles. Of course, in the case when there are no CSep(A∪B)-equivalent cycles, we
have dk(A,B) = dBOT

(
BCk(Sep(A)),BCk(Sep(B))

)
. The comparison of barcode

lines of BCk(Sep(A)) and BCk(Sep(B)) is justified by a fact that, for every ε > 0,
sets Sep(A) and Sep(B) can be chosen such that

dBOT
(

BCk(A),BCk(B)
)
6 dBOT

(
BCk(A),BCk(Sep(A))

)

︸ ︷︷ ︸

6ε/2

+ dBOT
(

BCk(Sep(A)),BCk(Sep(B))
)

+ dBOT
(

BCk(Sep(B),BCk(B)
)

︸ ︷︷ ︸

6ε/2

6 dBOT
(

BCk(Sep(A)),BCk(Sep(B))
)

+ ε.

Let k0 > 0 be a minimal dimension with property that BCk(Sep(A)) = ∅ =
BCk(Sep(B)), for every k > k0. We define a new distance measure between sets
A,B ⊆ S(n, l) of the same cardinality by

dnew(A,B) :=
k0∑

k=0

2k

2k0+1 − 1
· dk(A,B).

Weights 2k/(2k0+1−1), 0 6 k 6 k0, are assigned in order to prioritize differences
in a homology features of sets A and B, in the favor of those discrepancies that
are manifested in higher dimensions. The distance dnew has the stability property,
since every distance dk is defined via the bottleneck distance between appropriate
sets of barcodes.

5. Conclusions and future work

In many disciplines, including information theory, coding theory, cryptogra-
phy, and bioinformatics, strings are used to encode finite sequential data types.
Examination of measures of similarity between two sets of strings is an ongoing
investigation of various patterns that would make it possible the comparison of
these sets. In this paper, we use the tools from persistence homology in order to
quantify the similarity of “connectivity issues" of various dimensions that may exist
for a given sets of strings. This is accomplished by constructing the new measure
dnew based on the newly proposed hybrid matching, whose main property is giving
priority to matching barcode lines of the corresponding equivalent cycles. The ap-
plicability of our hybrid matching is heavily dependent on an assumption that all
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involved filtrations are Morse filtrations. To fullfill this requirement, we develope
the separation of simplex radii technique, which we introduce in Lemma 4.3 and
Theorem 4.1. Also, we identify a notion of ≈-equivalent simplices (simplices with
the same minimal set of generators) and become aware of their interesting property
that they are not affecting the structure of barcode lines. This is stated in Theorem
4.2. It is important to point out that this result can be viewed in a broader context
that does not necessarily include the analysis of string similarity measures.

More work will be needed to construct efficient algorithms for conducting the
ideas of this paper. In particular: (1) calculating the radius and set of centers
of a given finite subset of S′(n, l), (2) choosing pairs (σ1, σ2) in Theorem 4.1 to
minimize the number of steps, and hence the dimension of the obtained space and
(3) if possible, performing the process of the theorem so that we do not need to
calculate radii from the beginning each time, but to get them from the previous
values of radii.

For future work, the authors would like to investigate a potential sufficient
condition under which assumption of the existence of a filtration isomorphism would
guarantee existence of a dH -isomorphism between appropriate sets of strings. Also,
we would like to use the methodology presented in this paper for the purpose of
developing string similarity measures based on some other string metrics. More
concretely, we would like to investigate string similarity measures based on the
longest common subsequence (LCS) metric. It would be useful to find an analogy
for the separation of simplex radii technique in this case. Also, it would be very
nice to appraise the role of ≈-equivalent simplices as some sort of “neutral" packs
of simplices in the general Čech filtration setup.
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