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CONFORMAL SUBMERSIONS
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Abstract. We introduce the idea of pointwise semi-slant conformal submer-
sions from Sasakian manifolds onto Riemannian manifolds. We discuss the

impact of a structure vector field ξ-by considering it horizontally as well as
vertically and investigate the necessary and sufficient conditions for distri-
butions to be integrable and totally geodesic. Because the distributions are
neither integrable nor totally geodesic when ξ-is vertical, therefore we examine
the conditions of integrability and totally geodesicness by changing the role of
ξ.

1. Introduction

The theory of submersions and immersions was originally developed and in-
troduced by O’Neill [21] and Gray [12] to study the geometric properties of the
Riemannian manifolds and establish certain Riemannian equations for them. The
subject of submersions theory becomes particularly captivating when examining
the interplay between differentiable structures in differential geometry.

Riemannian submersions have found extensive applications in both mathe-
matics and physics, notably in theories such as Yang–Mills and Kaluza–Klein
[8, 16, 19, 33]. In 1976, Watson [32] investigated Riemannian submersions from
almost Hermitian manifolds to Riemannian manifolds. Building upon this work,
Sahin [24] explored the geometry and properties of anti-invariant Riemannian sub-
mersions onto Riemannian manifolds. Subsequent authors delved further into this
area, examining anti-invariant submersions [3,24], semi-invariant submersions [25],
slant submersions [10,26], and semi-slant submersions [15,22], among other topics.
As a generalized case of semi-invariant and semi-slant submersions, Tastan, Sahin,
and Yanan [31] defined and studied hemi-slant submersions from almost Hermitian
manifolds.
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Lee and Sahin in [18] further extended the concept of slant submersions by
introducing pointwise slant submersions from almost Hermitian manifolds to Rie-
mannian manifolds. They not only provided examples illustrating this type of
submersion but also established characterizations for pointwise slant submersions.
Fuglede [13] and Ishihara [17] introduced the concept of conformal submersion as
a generalization of Riemannian submersions and discussed some of their geometric
properties. It is worth noting that a conformal submersion with dilation λ = 1
reduces to a Riemannian submersion. Gudmundsson and Wood [14] investigated
conformal holomorphic submersions as a generalization of holomorphic submer-
sions, and they established the necessary and sufficient conditions for harmonic
morphisms of conformal holomorphic submersions. Akyol and Sahin later studied
and defined conformal anti-invariant submersions [23,27], conformal semi-invariant
submersions [4], conformal slant submersions [2], and conformal semi-slant sub-
mersions [1]. Recently, geometric studies have been conducted on conformal hemi-
slant submersions [29,30], conformal bi-slant submersions [5], and quasi bi-slant
conformal submersions [6], accompanied by several decomposition theorems. Fur-
thermore, the notion of pluriharmonicity was extended to almost contact metric
manifolds from almost Hermitian manifolds.

The focus of this study lies in investigating pointwise semi-slant conformal sub-
mersions from a Sasakian manifold to a Riemannian manifold, where we consider
the Reeb vector field ξ in both its vertical and horizontal aspects. The paper is
organized as follows: In Section 2, we introduce almost contact manifolds, specif-
ically the Sasakian manifold, which possesses the necessary characteristics for our
investigation. In Section 3 we define pointwise semi-slant conformal submersions
and present intriguing results by considering the Reeb vector field ξ in its horizontal
form. Section 4 delves into the detailed discussion on the integrability and total
geodesicity of the distributions, considering the vector field ξ in its vertical aspect.

Note: In this paper, we use the abbreviation PWSSCS for Pointwise semi-slant
conformal submersion.

2. Preliminaries

We start with some definitions and conclusions which will be very helpful in
our research and will help in exploring the main subject of the paper.

Definition 2.1. [32] Let Π: (Θ1, g1) → (Θ2, g2) be a smooth map between
two Riemannian manifolds having dimensions m1 and m2, respectively. Then Π is
called horizontally weakly conformal or semi conformal at x ∈ Θ1 if either

(i) Π∗x = 0, or
(ii) Π∗x maps horizontal space Hx = (ker(Π∗x))

⊥ conformally onto TΠ∗(2) i.e.,
Π∗x is surjective and there exits a number Λ(x) 6= 0 such that

(2.1) g2(Π∗xX,Π∗xY ) = Λ(x)g(X,Y ),

for any X,Y ∈ Hx.

Equation (2.1) can be re-written as (Π∗g2)x |Hx×Hx
= Λ(x)g(x) |Hx×Hx

.
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A point x satisfies (i) in the above definition if and only if it is a critical point
of Π. A point, satisfying (ii) is called a regular point. At a critical point, Π∗x

has rank 0; at a regular point, Π∗x has rank n and Π defines a submersion. The
number λ(x) is called the square dilation (of Π at x); it is necessarily non-negative.

Its square root λ(x) =
√

Λ(x) is called the dilation of Π at x. The map Π is called
horizontally weakly conformal or semi conformal on Θ1 if it is horizontally weakly
conformal at every point of Θ1. It is clear that if Π has no critical points, then we
call it a (horizontally) conformal submersion.

Definition 2.2. [7] Let Π be a Riemannian submersions between two Rie-
mannian manifolds. Then Π is called a horizontally conformal submersion, if there
is a positive function λ such that

(2.2) g1(U1, V1) =
1

λ2
g2(Π∗U1,Π∗V1),

for any U1, V1 ∈ Γ(kerΠ∗)
⊥. It is obvious that every Riemannian submersions is a

particularly horizontally conformal submersion with λ = 1.

Let Π: (Θ1, g1) → (Θ2, g2) be a Riemannian submersion. A vector field X on
Θ1 is called a basic vector field if X ∈ Γ(kerΠ∗)

⊥ and Π-related with a vector field
X on Θ2 i.e. Π∗(X(q)) = XΠ(q) for q ∈ Θ1.

The two formulae of (1, 2) tensor fields T and A are given by O’Neill as:

AE1
F1 = H∇HE1

VF1 + V∇HE1
HF1,(2.3)

TE1
F1 = H∇VE1

VF1 + V∇VE1
HF1,(2.4)

for any E1, F1 ∈ Γ(TΘ1) and ∇ is the Levi-Civita connection of g1. Note that a
Riemannian submersion Π: (Θ1, φ, ξ, η, g1) → (Θ2, g2) has totally geodesic fibers if
and only if T vanishes identically. From equations (2.3) and (2.4), we can deduce

∇U1
V1 = TU1

V1 + V∇U1
V1,(2.5)

∇U1
X1 = TU1

X1 +H∇U1
X1,(2.6)

∇X1
U1 = AX1

U1 + V1∇X1
U1,(2.7)

∇X1
Y1 = H∇X1

Y1 +AX1
Y1(2.8)

for any vector fields U1, V1 ∈ Γ(kerΠ∗) and X1, Y1 ∈ Γ(kerΠ∗)
⊥ [11].

It is obvious that T and A are skew-symmetric, that is

(2.9) g(AXE1, F1) = −g(E1,AXF1), g(TV E1, F1) = −g(E1, TV F1),

for any vector fields E1, F1 ∈ Γ(TΘ1). For the special case when Π is horizontally
conformal submersion, we have

Proposition 2.1. Let Π: (Θ1, g1) → (Θ2, g2) be a horizontally conformal sub-

mersion with dilation λ and X,Y be the horizontal vectors, then

AXY =
1

2

{

V [X,Y ]− λ2g(X,Y ) gradV

( 1

λ2

)}

measures the obstruction integrability of the horizontal distribution
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The second fundamental form of the smooth map Π is provided by the formula

(2.10) (∇Π∗)(U1, V1) = ∇Π
U1
Π∗V1 − Π∗∇U1

V1,

and the map will be totally geodesic if (∇Π∗)(U1, V1) = 0 for all U1, V1 ∈ Γ(TΘ1)
where ∇ and ∇Π are the Levi-Civita and pullback connections.

Lemma 2.1. Let Π: Θ1 → Θ2 be a horizontal conformal submersion. Then, we

have

(i) (∇Π∗)(X1, Y1) = X1(lnλ)Π∗(Y1)+Y1(lnλ)Π∗(X1)− g1(X1, Y1)Π∗(grad lnλ),
(ii) (∇Π∗)(U1, V1) = −Π∗(TU1

V1),
(iii) (∇Π∗)(X1, U1) = −Π∗(∇X1

U1) = −Π∗(AX1
U1)

for any horizontal vector fields X1, Y1 and vertical vector fields U1, V1 [7].

Let M be a (2n+1)-dimensional almost contact manifold with almost contact
structures (φ, ξ, η), where a (1, 1) tensor field φ, a vector field ξ and a 1-form η

satisfying

(2.11) φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1,

where I is the identity tensor. An almost contact structure on M is said to be
normal if the induced almost complex structure J on the product manifold M ×R,
defined by

J
(

U, λ
d

dt

)

=
(

φU − λξ, η(U)
d

dt

)

,

is integrable, where U is a vector field tangent to M , t is the co-ordinate function
on R and λ is a smooth function onM ×R. There exists a Riemannian metric g on
an almost contact manifold which is compatible with the almost contact structure
(φ, ξ, η) in such a way that

(2.12) g(φU, φV ) = g(U, V )− η(U)η(V ),

from which it can be observed that η(U) = g(U, ξ), for any U, V ∈ Γ(TM). Then
(φ, ξ, η, g)-structure is called an almost contact metric structure. A normal contact
metric structure is called a Sasakian structure, which satisfies

(2.13) (∇Uφ)V = g(U, V )ξ − η(V )U

where ∇ is the Levi-Civita connection of g. For a Sasakian manifold, we can deduce
that

(2.14) ∇Uξ = −φU.

The covariant derivative of φ is defined by

(2.15) (∇Xφ)Y = ∇XφY − φ∇XY,

for all vector fields X,Y in M .
Now, we recall the definition of pointwise slant submersion defined by Sepet

and Ergut [28].
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Definition 2.3. Let Π be a Riemannian submersion from almost contact met-
ric manifold (Θ1, φ, ξ, η, g1) onto Riemannian manifold (Θ2, g2). If at each given
point q ∈ Θ1, the wirtinger angle θ(X) between φX and the space kerΠ∗ is inde-
pendent of choice of the non-zero vector field X ∈ Γ(kerΠ∗)−〈ξ〉, then we say that
Π is a pointwise slant submersion. In this case, the angle θ can be regarded as a
function on Θ1, which is called slant function of the pointwise slant submersion.

A pointwise slant submersion called slant submersion if its slant function θ is
independent of the choice of the point on Θ1. Then θ is called the slant angle of
the slant submersions.

3. Pointwise semi-slant conformal submersions

with horizontal vector field-ξ

This section will review the definition that will enable us to comprehend and
investigate the concept of pointwise semi-slant conformal submersions from almost
contact metric manifolds by taking the Reeb vector filed ξ horizontal into consid-
eration.

Definition 3.1. Let Π: (Θ1, φ, ξ, η, g1) → (Θ2, g2) be a horizontal conformal
submersion where (Θ1, φ, ξ, η, g1) is an almost contact metric manifold and (Θ2, g2)
is a Riemannian manifold. A horizontal conformal submersion Π is called a point-
wise semi-slant conformal submersion with ξ ∈ Γ(kerΠ)⊥ if there exists a distribu-
tion D such that kerΠ∗ = D⊕Dθ, φ(D) = D and for any given point q ∈ Θ1 and
X ∈ (Dθ)q, the angle θ = θ(X) between φX and space (Dθ)q is independent of
choice of non-zero vector X ∈ (Dθ)q, where D

θ is the orthogonal complement of D
in kerΠ∗. In this case, the angle θ can be regarded as a slant function and called
pointwise semi-slant function of submersion.

If we suppose m1 and m2 are the dimensions of D and D
θ, then we have the

following:

(i) If m1 = 0, m2 6= 0 and 0 < θ < π
2 , then Π is a pointwise slant submersion.

(ii) If m1 6= 0 and m2 = 0, then Π is a invariant submersion
(iii) If m1 6= 0, m2 6= 0 and 0 < θ < π

2 , then Π is a pointwise semi-slant
submersion.

Let Π be a PWSSCS from an almost contact metric manifold (Θ1, φ, ξ, η, g1)
onto a Riemannian manifold (Θ2, g2). Then, for any W ∈ (kerΠ∗), we have

(3.1) W = PW +QW

where P and Q are the projections morphism onto D and D
θ. Now, for any W ∈

(kerΠ∗), we have

(3.2) φW = ψW + ζW

where ψW ∈ Γ(kerΠ∗) and ζW ∈ Γ(kerΠ∗)
⊥. From (3.1) and (3.2), we have

φU = φ(PW ) + φ(QW ) = ψ(PW ) + ζ(PW ) + ψ(QW ) + ζ(QW ).

Since φD = D, we have ζ(PW ) = 0, we have φU = ψ(PW ) + ψ(QW ) + ζ(QW ).
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Now, we have the following decomposition (kerΠ∗)
⊥ = ζDθ⊕µ, where µ is the

orthogonal complement to ζDθ in (kerΠ∗)
⊥ such that µ is invariant with respect

to φ. Now, for any X ∈ Γ(kerΠ∗)
⊥, we have

(3.3) φX = BX + CX

where BX ∈ Γ(kerΠ∗) and CX ∈ Γ(kerΠ∗)
⊥.

Lemma 3.1. Let (Θ1, φ, ξ, η, g1) be almost contact metric manifold and (Θ2, g2)
be a Riemannian manifold. If Π: Θ1 → Θ2 is a PWSSCS, then we have

−U = −ψ2U+BζU, ζψU+CζU = 0, −X = ζBX+C
2X, η(X)ξ = ψBX+BCX,

for any vector field U ∈ Γ(kerΠ∗) and X ∈ Γ(kerΠ∗)
⊥.

Proof. By considering (2.11), (3.2) and (3.3), the proof of Lemma exists. �

Let us now present some beneficial results that will be used throughout the
study since Π: Θ1 → Θ2 is a PWSSCS.

Lemma 3.2. Let Π be a PWSSCS from an almost contact metric manifold

(Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2); then ψ2W = (− cos2 θ)W,
for any vector fields W ∈ Γ(Dθ).

Lemma 3.3. Let Π be a PWSSCS from an almost contact metric manifold

(Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2); then

(i) g1(ψZ, ψW ) = cos2 θg1(Z,W ), (ii) g1(ζZ, ζW ) = sin2 θg1(Z,W ),

for any vector fields Z,W ∈ Γ(Dθ).

Proof. The proof of the preceding Lemmas is identical to the proof of Theo-
rem 2.2 of [9]. As a result, we omit the proofs. �

Assuming that (Θ1, φ, ξ, η, g1) is a Sasakian manifold and (Θ2, g2) is a Rie-
mannian manifold. The effect of the Sasakian structure on the tensor fields T and
A of PWSSCS Π: (Θ1, φ, ξ, η, g1) → (Θ2, g2) is presently being examined.

Lemma 3.4. Let Π: Θ1 → Θ2 be PWSSCS with semi-slant function θ where,

(Θ1, φ, ξ, η, g1) Sasakian manifold and (Θ2, g2) be a Riemannian manifold, then we

have

(i) AXCY + V∇XBY = BH∇XY + ψAXY ,

(ii) H∇XCY +AXBY = CH∇XY + ζAXY + g1(X,Y )ξ − η(Y )X,

(iii) V∇XψV +AXζV = BAXV + ψV∇XV ,

(iv) AXψV +H∇XζV = CAXV + ζV∇XV ,

(v) V∇VBX + TV CX = ψTVX +BH∇VX + η(X)V ,

(vi) TVBX +H∇V CX = ζTVX + CH∇VX,

(vii) V∇UψV + TUζV = ψV∇UV +BTUV ,

(viii) TUψV +H∇UζV = CTUV + ζV∇UV − g1(U, V )ξ,

for any vector fields U, V ∈ Γ(kerΠ∗) and X,Y ∈ Γ(kerΠ∗)
⊥.



POINTWISE SEMI-SLANT CONFORMAL SUBMERSIONS 133

Proof. By using (2.13), (2.15) and (2.8) (3.3), we get first two relations (i)
and (ii). Similarly, by considering (2.13), (2.15) (2.8), (2.5)–(2.8) and (3.2) (3.3),
the desired results hold good. �

We will now go through some key conclusions that can be utilised to examine
the geometry of PWSSCS Π: Θ1 → Θ2. From the direct calculations, we can
conclude the following:

(a) (∇Uψ)V = V∇UψV − ψV∇UV ,
(b) (∇Uζ)V = H∇UζV − ζV∇UV ,
(c) (∇XB)Y = V∇XBY −BH∇XY ,
(d) (∇XC)Y = H∇XCY −H∇XY ,

for any vector fields U, V ∈ Γ(kerΠ∗) and X,Y ∈ Γ(kerΠ∗)
⊥.

Lemma 3.5. Let Π : Θ1 → Θ2 be a PWSSCS with semi-slant function θ from

Sasakian manifold onto a Riemannian manifolds; then

(i) (∇Uψ)V = BTUV − TUζV ,

(ii) (∇Uζ)V = CTUV − TUψV + g1(U, V )ξ,
(iii) (∇XB)Y = ψAXY −AXCY ,

(iv) (∇XC)Y = ζAXY −AXBY − η(Y )X + g1(X,Y )ξ,

for all vector fields U, V ∈ Γ(kerΠ∗) and X,Y ∈ Γ(kerΠ∗)
⊥.

Proof. By using (2.15), (2.5)–(2.8) and formulae (a)–(d) from above, we can
obtain the results. �

The tensor fields ψ and ζ, if they are parallel with regard to the Levi-Civita
connection ∇ of Θ1, then we obtain BTUV = TUζV , CTUV + g1(U, V )ξ = TUψV
for any vector fields U, V ∈ Γ(TΘ1).

4. Necessary and sufficient conditions

for integrability and totally geodesic

The PWSSCS from Sasakian manifolds onto Riemannian manifolds is discussed
in this section. We assume that the Reeb vector field ξ is horizontal and investi-
gate the integrability of both invariant and slant distributions. Aside from this,
we likewise look at the important and adequate circumstances for the leaves of
distributions to be characterize total geodesic foliation:

Theorem 4.1. Let Π: Θ1 → Θ2 be a PWSSCS with semi-slant function θ such

that ξ ∈ Γ(kerΠ∗)
⊥ where (Θ1, φ, ξ, η, g1) is a Sasakian manifold and (Θ2, g2) be a

Riemannian manifold. Then the invariant distribution D is integrable if and only

if V∇XψW ∈ Γ(Dθ), for any vector fields X,Y ∈ Γ(D) and W ∈ Γ(Dθ).

Proof. For all vector fields X,Y ∈ Γ(D), W ∈ Γ(Dθ) and by using (2.11),
(2.13) and (2.15), we have g1([X,Y ],W ) = g1(∇XφW, φY ) − g1(∇Y φW, φX). By
using (2.5), (2.6) and (3.2), we get

g1([X,Y ],W ) = g1(V∇XψW + TXζW,ψY )− g1(V∇Y ψW + TY ζW,ψX).

From this, we get the desired result. �
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Theorem 4.2. Let Π be a PWSSCS with semi-slant function θ from Sasakian

manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2) such that

ξ ∈ Γ(kerΠ∗)
⊥. Then Dθ is integrable if and only if

ψ(TZζW − TW ζZ) = (TW ζψZ + TZζψW ),

for any vector fields Z,W ∈ Γ(Dθ) and U ∈ Γ(D).

Proof. By using equation (2.11), (2.13) and (2.15), we may yield

g1([Z,W ], U) = g1(∇ZφW, φU)− g1(∇WφZ, φU),

for every vector fields Z,W ∈ Γ(Dθ) and U ∈ Γ(D). On using (3.2), we can write

g1([Z,W ], U) = −g1(∇ZψW,φU)− g1(∇WψZ, φU)

+ g1(∇ZζW, φU)− g1(∇W ζZ, φU).

By using (2.11) and (2.6) in the third and fourth terms, the above equation can be
written as

g1([Z,W ], U) = g1(∇ZφψW,U) + g1(∇WφψZ,U)(4.1)

+ g1(TZζW, φU)− g1(TW ζZ, φU).

Taking into account the fact from (3.2) and Lemma 3.2 in the first term, we have

g1(∇ZφψW,U) = sin 2θZ(θ)g1(W,U)− cos2 θg1(∇ZW,U) + g1(∇ZζψW,U).

Similarly, the second term can be written as:

g1(∇WφψZ,U) = sin 2θW (θ)g1(Z,U)− cos2 θg1(∇WZ,U) + g1(∇W ζψZ,U).

By using calculation in the second term, (4.1) can be written as −g1(∇WφψZ,U) =
− cos2 θg1(∇WZ,U)+ g1(∇W ζψZ,U). By using the calculations with (2.6), finally
the above equations takes the form

sin2 θg1([Z,W ], U) = g1(TW ζψZ,U)− g1(TZζψW,U) + g1(TZζW − TW ζZ, φU).

From which, we can conclude the result. �

Since Π: (Θ1, φ, ξ, η, g1) → (Θ2, g2) be a PWSSCS which ensures the availabil-
ity of the slant distribution. Following our discussion of the distributions’ integra-
bility condition, we will look at the necessary and sufficient conditions that make
it possible for distributions leaves to establish a totally geodesic foliation on Θ1.

Theorem 4.3. Let Π be PWSSCS with semi-slant function θ from Sasakian

manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2) such that

ξ ∈ Γ(kerΠ∗)
⊥. Then D defines totally geodesic foliation on Θ1 if and only if

TUζψZ = −ψ(TUζZ) and g1(V∇UψV,BX) + g1(TUψV,CX) = 0,

for any vector fields U, V ∈ Γ(D), Z ∈ Γ(Dθ) and X ∈ Γ(kerΠ∗)
⊥.

Proof. For any vector fields U, V ∈ Γ(D), Z ∈ Γ(Dθ) and by using orthog-
onality of V and Z, we get g1(∇UV, Z) = −g1(∇UZ, V ). Further, in the light of
equations (2.11), (2.13), (2.15) and (3.2) (2.6), we get

g1(∇UV, Z) = −g1(∇Uψ
2Z, V ) + g1(∇UζψZ, V )− g1(TUζZ, φV ).
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Since, Π is a PWSSCS with semi-slant function θ, then by using Lemma 3.2 in first
term of the above equation, finally this will take the form

sin2 θg1(∇UV, Z) = g1(∇UζψZ, V )− g1(TUζZ, φV ).

From this we can get the first part of the theorem. Now, for any vector fields
U, V ∈ Γ(D) and X ∈ Γ(kerΠ∗)

⊥ with using (2.11), (2.13), (2.15), (2.5) and (3.3),
(3.2), we can write g1(∇UV,X) = g1(V∇UψV,BX) + g1(TUψV,CX). from which
the second part of the theorem holds good. �

The slant distribution is mutually orthogonal to invariant distribution. After
discussion geometry of leaves of invariant distribution, it is quite interesting to
study the leaves of the slant distribution with geometrical point of view in the
following manner.

Theorem 4.4. Let Π: (Θ1, φ, ξ, η, g1) → (Θ2, g2) be PWSSCS with semi-slant

function θ such that ξ ∈ Γ(kerΠ∗)
⊥ where, (Θ1, φ, ξ, η, g1) a Sasakian manifold and

(Θ2, g2) a Riemannian manifold. Then Dθ defines totally geodesic foliation on Θ1

if and only if ψ(TZζQW ) ∈ Γ(Dθ) and

sin 2θX(θ)g1(QZ,W )− g1(AXζψQZ,W )− cos2θg1(∇XQZ,W )

= g1(TXζQZ, ψW )− g1([Z,X ],W ) + g1(X, grad lnλ)g1(ζQZ, ζW )

+ g1(ζQZ, grad lnλ)g1(X, ζW )− g1(ζW, grad lnλ)g1(X, ζQZ)

−
1

λ2
g2(∇

Π
XΠ∗ζQZ,Π∗ζW ),

for any vector fields Z,W ∈ Γ(Dθ), U ∈ Γ(D) and X ∈ Γ(kerΠ∗)
⊥.

Proof. Let us consider for any vector fields Z,W ∈ Γ(Dθ) and U ∈ Γ(D). In
light of (2.11), (2.13), (2.15) with decomposition (3.1) and (3.2), we have

g1(∇ZW,U) = g1(∇ZψPW,φU) + g1(∇ZζPW,φU)

+ g1(∇ZψQW,φU) + g1(∇ZζQW, φU).

Considering (2.5), (2.6), from the fact PW = 0 if W ∈ Γ(Dθ) and since D is
invariant under φ, i.e., φD = D, we may yield

(4.2) g1(∇ZW,U) = −g1(∇Zψ
2QW,U) + g1(∇ZζQW, φU).

On using Lemma 3.2 in the third term of the above equation, which can be write
as −g1(∇Zψ

2QW,U) = g1(∇Z(cos
2 θ)QW,U). Then (4.2), will take the form as

g1(∇ZW,U) = g1(∇ZζQW, φU)−2 sin θ cos θZ(θ)g1(QW,U)+cos2 θg1(∇ZQW,U).

From which the first part of the theorem holds good.
For the second part of theorem, let us suppose for any vector fields Z,W ∈

Γ(Dθ) and X ∈ Γ(kerΠ∗)
⊥. We start with considering the term g1(∇ZW,X), and

by using equation (2.11), (2.13), (2.5) and (2.15), we have

g1(∇ZW,X) = −g([Z,X ],W )− g1(∇XψPZ, φW )

− g1(∇XψQZ, φW )− g1(∇XζQZ, φW ).
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By using (2.11), (2.5), (2.6), and from the fact that PZ = 0 if Z ∈ Γ(Dθ), we have

g1(∇ZW,X) = −g([Z,X ],W ) + g1(∇Xψ
2QZ,W ) + g1(∇XζψQZ,W )

− g1(AXζQZ, ψW )− g1(H∇XζQZ, ζW ).

Since, Π is a PWSSCS with semi-slant function θ, then with simple steps of calcu-
lations, we can write

g1(∇ZW,X) = sin 2θX(θ)g1(QZ,W ) + g1([Z,X ],W )− cos2 θg1(∇XQZ,W )

+ g1(∇XζψQZ,W )− g1(AXζQZ, ψW )− g1(H∇XζQZ, ζW ).

Now, using the conformality of Π from Lemma 2.1 and (2.14), (2.10), we get

g1(∇ZW,X) = g1([Z,X],W )− cos2 θg1(∇XQZ,W ) + sin 2θX(θ)g1(QZ,W )

+ g1(∇XζψQZ,W )− g1(AXζQZ,ψW )− g1(X, grad lnλ)g1(ζQZ, ζW )

− g1(ζQZ, grad lnλ)g1(X, ζW ) + g1(ζW, grad lnλ)g1(X, ζQZ)

+
1

λ2
g1(∇

Π

XΠ∗(ζQZ),Π∗(ζW )). �

Now, we discuss the necessary and sufficient conditions for vertical distributions
for kerΠ∗ is totally geodesic.

Theorem 4.5. Let us suppose that Π be a PWSSCS with semi-slant function

θ from a Sasakian (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2) such that

ξ ∈ Γ(kerΠ∗)
⊥. Then kerΠ∗ defines totally geodesic foliation if and only if

1

λ2
g2(∇

Π
XΠ∗ζQU,Π∗ζV ) + g1(AXψPU, ζV )− g1(V∇XψPU,ψV )

= cos2 θg1(∇XQU, V )− sin 2θX(θ)g1(QU, V )

− g1(ζV, grad lnλ)g1(X, ζQU) + g1(X, grad lnλ)g1(ζQU, ζV )

+ g1(ζQU, grad lnλ)g1(X, ζV ) + g1([U,X ], V )− g1(AXζQU,ψV ),

for any vector fields U, V ∈ Γ(kerΠ∗) and X ∈ Γ(kerΠ∗)
⊥.

Proof. From simple steps of calculations with using (2.11), (2.13), (2.15) and
decompositions (3.1), (3.2), we can write

g1(∇UV,X) = −g1([U,X ], V )− g1(∇XψPU, φV )(4.3)

− g1(∇XψQU, φV )− g1(∇XζQU, φV ),

for any vector fields U, V ∈ Γ(kerΠ∗) and X ∈ Γ(kerΠ∗)
⊥. In the light of (3.2)

and (2.7), second term of above equation become

−g1(∇XψPU, φV ) = g1(AXψPU, ζV )− g1(V∇XψPU,ψV ).

Similarly, by using (2.11), (2.13) and (2.7), the third term as:

−g1(∇XψQU, φV ) = g1(∇Xψ
2QU, V ) + g1(∇XζψQU, V ).

In the last term, taking into account the fact from decomposition (3.2) and equation
(2.8), this will take place as

−g1(∇XζQU, φV ) = −g1(H∇XζQU, ζV )− g1(AXζQU, V ).
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By using all these facts in (4.3), we get

g1(∇UV,X) = −g1([U,X ], V ) + g1(AXψPU, ζV )− g1(V∇XψPU,ψV )

+ g1(∇XζψQU, V )− g1(H∇XζQU, ζV )− g1(AXζQU,ψV )

+ g1(∇Xψ
2QU, V ).

Since, Π is a PWSSCS with semi-slant function θ, using Lemma 3.2 in the fourth
term and considering (2.14) and (2.10) in the second last term, above equation
finally turns into

g1(∇UV,X) = −g1([U,X ], V ) + g1(AXψPU, ζV )− g1(V∇XψPU,ψV )

+ 2 sin θ cos θX(θ)g1(QU, V )− cos2 θg1(∇XQU, V )

− g1(X, grad lnλ)g1(ζQU, ζV )− g1(ζQU, grad lnλ)g1(X, ζV )

+ g1(X, ζQU)g1(ζV, grad lnλ)−
1

λ2
g2(∇

Π
XΠ∗ζQU,Π∗ζV )

+ g1(∇XζψQU, V )− g1(AXζQU,ψV ),

from which we can get the result. �

Theorem 4.6. Let Π be PWSSCS from a Sasakian manifold (Θ1, φ, ξ, η, g1)
onto a Riemannian manifold (Θ2, g2) with semi-slant function θ such that ξ ∈
Γ(kerΠ∗)

⊥. Then the map Π is totally geodesic map if and only if

(i)
1

λ2
g2(∇

Π
ZΠ∗ζψW,Π∗X) = g1(ψZ,W )η(X)− g1(TZψ

2W,X)

g1([Y, U ], V ) + sin 2θY (θ)g1(U, V )− cos2 θg1(∇Y U, V ) + g1(AY ζψU, V )(ii)

= −
1

λ2
g2(Y (ln λ)Π∗ζU + ζU(lnλ)Π∗Y − g2(Y, ζU)Π∗(grad lnλ),Π∗ζV )

+ g1(AY ζU, ψV ) +
1

λ2
g2(∇

Π
Y Π∗ζU,Π∗ζV )

g1(AXζQU,BY ) + g1(BX,U)η(Y )−
1

λ2
g2(∇

Π
XΠ∗ζQU,Π∗CY )(iii)

= −
1

λ2
g2(X(lnλ)Π∗ζQU + ζQU(lnλ)Π∗X

− g1(X, ζQU)Π∗(grad lnλ),Π∗CY ) + g1(∇XζψQU, Y )

− cos2 θg1(∇XQU, Y ),

for any U, V ∈ Γ(Dθ), X,Y ∈ Γ(kerΠ∗)
⊥ and Z,W ∈ Γ(D), U1 ∈ Γ(kerΠ∗).

Proof. Let us consider g2((∇Π∗)(Z,W ),Π∗(X)), for any Z,W ∈ Γ(D) and
X ∈ Γ(kerΠ∗)

⊥. By using (2.5), (2.6), (2.10), (2.11) and (3.2) with definition 2.2,
we get

1

λ2
g2((∇Π∗)(Z,W ),Π∗(X)) = g1(TZψ

2W,X)−g1(H∇ZζψW,X)+g1(ψZ,W )η(X).
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Since Π is a PWSSCS, by using definition 2.2, the second term of above equation
can be turn into: 1

λ2 g2((∇Π∗)(Z, ζψW ),Π∗X)− 1
λ2 g2(∇

Π
ZΠ∗ζψW,Π∗X). By Using

this in above equation, we may have

1

λ2
g2((∇Π∗)(Z,W ),Π∗(X)) = g1(TZψ

2W,X)

+
1

λ2
g2((∇Π∗)(Z, ζψW ),Π∗(X),Π∗X)

−
1

λ2
g2(∇

Π
ZΠ∗ζψW,Π∗(X)) + g1(ψZ,W )η(X).

Finally using the conformality of Π with Lemma 3.3, we get

1

λ2
g2((∇Π∗)(Z,W ),Π∗(X)) = g1(TZψ

2W,X)−
1

λ2
g2(∇

Π
ZΠ∗ζψW,Π∗(X))

+ g1(ψZ,W )η(X),

which is part (i). For part (ii), take into consideration g2((∇Π∗)(U, V ),Π∗(Y )),
for any U, V ∈ Γ(Dθ) and Y ∈ Γ(kerΠ∗)

⊥. From (2.10) with definition 2.2, we
can write g2((∇Π∗)(U, V ),Π∗(Y )) = −λ2g1(∇UV, Y ). In the light of (2.11), (2.13),
(3.3) and (3.2), we get

1

λ2
g2((∇Π∗)(U, V ),Π∗(Y )) = −g1([Y, U ], V )− g1(∇Y ψ

2U, V )− g1(∇Y ζψU, V )

+ g1(∇Y ζU, ψV ) + g1(∇Y ζU, ζV ).

Taking into account the fact from (2.6) with Lemma 3.3, we may have

(4.4)
1

λ2
g2((∇Π∗)(U, V ),Π∗(Y )) = −g1([Y, U ], V )− g1(∇Y (−cos2θ)U, V )

− g1(AY ζψU, V ) + g1(AY ζU, ψV ) + g1(H∇Y ζU, ζV ).

Since Π is a PWSSCS from a Sasakian manifold Θ1, the second term of (4.4) turn as
g1(∇Y (cos

2 θ)U, V ) = sin 2θY (θ)g1(U, V ) − cos2 θg1(∇Y U, V ) where the last term
turns as: g1(H∇UζψV, Y ) = 1

λ2 g2(∇
Π
Y Π∗ζU,Π∗ζV ) − 1

λ2 g2((∇Π∗)(Y, ζU),Π∗ζV )
by using (2.10) and definition 2.2. With all these facts using in (4.4), we can write

1

λ2
g2((∇Π∗)(U, V ),Π∗(Y )) = −g1([Y, U ], V )− sin 2θY (θ)g1(U, V )

+ cos2 θg1(∇Y U, V )− g1(AY ζψU, V ) + g1(AY ζU, ψV )

+
1

λ2
g2(∇

Π
Y Π∗ζU,Π∗ζV )−

1

λ2
g2((∇Π∗)(Y, ζU),Π∗ζV )

Finally, by using Lemma 2.1, the above equations take the form

1

λ2
g2((∇Π∗)(U, V ),Π∗(Y )) = −g1([Y, U ], V )− sin 2θY (θ)g1(U, V )

+ cos2 θg1(∇Y U, V )− g1(AY ζψU, V ) + g1(AY ζU, ψV ) +
1

λ2
g2(∇

Π
Y Π∗ζU,Π∗ζV )

−
1

λ2
g2(Y (ln λ)Π∗ζU + ζU(lnλ)Π∗Y − g2(Y, ζU)Π∗(grad lnλ),Π∗ζV ).
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This is the proof of part (ii). For (iii) part, by using (2.11), (2.13), (3.1), (3.2) and
consider Lemma 3.3, we can write

1

λ2
g2((∇Π∗)(X,U1),Π∗Y ) = −g1(AXψPU,CY )− g1(V∇XψPU,BY )

+ g1(φ∇XψQU, Y )− g1(H∇XζQU,CY )− g1(AXζQU,BY )− g1(BX,U)η(Y ).

In the light of equations (2.11), (2.13), (2.10) and (2.2), we get

1

λ2
g2((∇Π∗)(X,U1),Π∗Y ) = −g1(AXψPU,CY )− g1(V∇XψPU,BY )(4.5)

− g1(AXζQU,BY )− g1(BX,U)η(Y ) + g1(∇XφψQU, Y )

−
1

λ2
g2((∇Π∗)(X, ζQU),Π∗CY ) +

1

λ2
g2(∇

Π
XΠ∗ζQU,Π∗CY ).

Since Π is a PWSSCS from Sasakian manifold onto Riemannian manifold, by using
Lemma 2.1, we arrive at equation (4.5), we have

1

λ2
g2((∇Π∗)(X,U1),Π∗Y ) = −g1(AXψPU,CY )− g1(V∇XψPU,BY )

− g1(AXζQU,BY )− g1(BX,U)η(Y ) + g1(∇XζψQU, Y )

+ sin2θX(θ)g1(QU, Y )− cos2θg1(∇XQU, Y )

−
1

λ2
g2(X(lnλ)Π∗ζQU, Y + ζQU(lnλ)Π∗X

− g1(X, ζQU)Π∗(grad lnλ),Π∗CY ) +
1

λ2
g2(∇

Π
XΠ∗ζQU,Π∗CY ).

from which we can get part (iii) of the theorem. �

5. Pointwise semi-slant conformal submersions

with vertical vector field-ξ

This section will review the definition and results that will enable us to com-
prehend and investigate the concept of pointwise semi-slant conformal submersions
from almost contact metric manifolds by taking the Reeb vector filed ξ vertical into
consideration.

Definition 5.1. Let Π: (Θ1, φ, ξ, η, g1) → (Θ2, g2) be a horizontal confor-
mal submersion where (Θ1, φ, ξ, η, g1) is an almost contact metric manifold and
(Θ2, g2) is a Riemannian manifold. A horizontal conformal submersion Π is called
a pointwise semi-slant conformal submersion with ξ ∈ Γ(kerΠ*), if there exists a
distribution D such that kerΠ∗ = D ⊕ Dθ ⊕ 〈ξ〉, φ(D) = D and for any given
point q ∈ Θ1 and X ∈ (Dθ)q, the angle θ = θ(X) between φX and space (Dθ)q is
independent of choice of non-zero vector X ∈ (Dθ)q, where Dθ is the orthogonal
complement of D in kerΠ∗. In this case, the angle θ can be regarded as a slant
function and called pointwise semi-slant function of submersion.

Let Π be a PWSSCS from an almost contact metric manifold (Θ1, φ, ξ, η, g1)
onto a Riemannian manifold (Θ2, g2) with vertical ξ. Then, for any W ∈ (kerΠ∗),
we haveW = PW+QW+η(W )ξ where P and Q are the projections morphism onto
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D and Dθ. Let us now present some beneficial results that will be used throughout
the study since Π: Θ1 → Θ2 is a PWSSCS.

Lemma 5.1. Let Π be a PWSSCS from an almost contact metric manifold

(Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2); then

ψ2U = − cos2 θ(I − η ⊗ ξ)U,

for any vector field U ∈ Γ(kerΠ∗).

Lemma 5.2. Let Π be a PWSSCS with vertical ξ from an almost contact metric

manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2); then

(i) g1(ψZ, ψW ) = cos2 θ{g1(Z,W )− η(Z)η(W )},
(ii) g1(ζZ, ζW ) = sin2 θ{g1(Z,W )− η(Z)η(W )},

for any vector fields Z,W ∈ Γ(kerΠ∗).

Proof. The proof of the preceding Lemmas is identical to the proof of Theo-
rem (2.2) of [9]. As a result, we omit the proofs. �

The topic of the integrability of slant and invariant distributions will now be
discussed. It is quite interesting to investigate the effect of the Reeb vector field ξ
on the geometry of distributions if we take it as vertical, as we have discussed in
the previous section with the assumption that ξ is a horizontal vector field. With
an invariant distribution, we begin.

Theorem 5.1. Let Π be a PWSSCS from Sasakian manifold onto a Riemann-

ian manifold and θ is a semi-slant function with vertical ξ. Then the invariant

distribution D is not integrable.

Proof. By consideration g1([U, V ], ξ) for U, V ∈ Γ(D) with using (2.14), we
get g1(∇UV −∇V U, ξ) = 2g1(φU, V ) 6= 0. From the last equation, we can conclude
that g1([U, V ], ξ) 6= 0. Hence, the invariant distribution D is not integrable. �

Theorem 5.2. Let Π be a PWSSCS from Sasakian manifold onto a Riemann-

ian manifold with vertical ξ and θ is a semi-slant function. Then the slant distri-

bution Dθ is not integrable.

Remark 5.1. For the duration of the investigation, we took the Reeb vector
field ξ to be vertical. It is evident from the above conclusion that distributions
D and Dθ are not integrable. If we can determine the integrability necessities of
distributions D ⊕ 〈ξ〉 and Dθ ⊕ 〈ξ〉, we can resolve this issue.

Theorem 5.3. Let Π: (Θ1, φ, ξ, η, g1) → (Θ2, g2) be a PWSSCS with ξ vertical,

where (Θ1, φ, ξ, η, g1) is a Sasakian manifold and (Θ2, g2) is a Riemannian manifold

and θ is a slant function. Then the invariant distribution D ⊕ 〈ξ〉 is integrable if

and only if g1(TXζW,ψY ) + g1(TY ζW,ψX) = 0, for any X,Y ∈ Γ(D ⊕ 〈ξ〉) and

W ∈ Γ(Dθ).

Proof. Considering the vector fields X,Y ∈ Γ(D ⊕ 〈ξ〉), W ∈ Γ(Dθ) and by
using equations (2.11), (2.13) and (2.15), we have

g1([X,Y ],W ) = −g1(∇XφW, φY ) + g1(∇Y φW, φX).



POINTWISE SEMI-SLANT CONFORMAL SUBMERSIONS 141

By using (2.5), (2.6) (3.2), the above equation in the right-hand side, we can deduce

g1([X,Y ],W ) = −g1(TXζW,ψY )− g1(TY ζW,ψX).

The integrability condition of D ⊕ 〈ξ〉 with ξ vertical is similar to the proof of
Theorem 4.1, where ξ is horizontal, as can be seen from the computation above. �

In view of the above theorem, we are going to examine the integrability condi-
tion for Dθ ⊕ 〈ξ〉.

Corollary 5.1. Let Π be PWSSCS with semi-slant function θ and vertical

ξ from Sasakian manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2).
Then Dθ⊕〈ξ〉 is integrable if and only if ψ(TZζW −TW ζZ) = (TW ζψZ+TZζψW ),
for any vector fields Z,W ∈ Γ(Dθ ⊕ 〈ξ〉) and U ∈ Γ(D).

The proof of Corollary 5.1 holds good if we consider the Theorem 4.2 with Reeb
vector field ξ to be vertical.

Since the distribution leaves are essential to the geometry of PWSSCS from
the Sasakian manifold, studying them will be important. To accomplish this, we
are figuring out under what conditions distributions define totally geodesic folia-
tion on Θ1.

Theorem 5.4. Let Π be PWSSCS with semi-slant function θ and vertical ξ,

from Sasakian manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2). Then
the invariant distribution D does not define totally geodesic foliation on Θ1.

Same result is true for slant distribution Dθ.

Theorem 5.5. Let Π be PWSSCS with semi-slant function θ and vertical ξ,

from Sasakian manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2). Then
the slant distribution Dθ does not define totally geodesic foliation on Θ1.

The invariant distribution D and slant distribution Dθ does not define totally
geodesic foliation because it assumes a vertical Reeb vector field ξ. Here we in-
vestigate the geometry of the leaves of the distributions D ⊕ 〈ξ〉 and Dθ ⊕ 〈ξ〉 to
address this problem.

Theorem 5.6. Let Π be PWSSCS with semi-slant function θ and vertical ξ,

from Sasakian manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2). Then
the invariant D⊕ 〈ξ〉 is totally geodesic on Θ1 if and only if

g1(∇UζψZ, V ) + η(V )g1(U,ψZ) = g1(TUζZ, φV ) + η(ψZ)g1(U, V ),

g1(V∇UψV,BX) + g1(TUψV,CX) = 0,

for any vector fields U, V ∈ Γ(D⊕ 〈ξ〉), Z ∈ Γ(Dθ) and X ∈ Γ(kerΠ∗)
⊥.

Proof. For any vector fields U, V ∈ Γ(D ⊕ 〈ξ〉) and Z ∈ Γ(Dθ) with using
(2.11), (2.13), (2.15) and (3.2), we have

g1(∇UV, Z) = −g1(∇Uψ
2Z, V ) + g1(∇UζψZ, V )

− g1(TUζZ, φV )− η(V )g1(U,ψZ) + η(ψZ)g1(U, V ).
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Since, Π is a PWSSCS with semi-slant function θ, then by using Lemma 3.2 in the
first term of above equation, finally this will takes the form

sin2 θg1(∇UV, Z) = g1(∇UζψZ, V )− g1(TUζZ, φV )

− η(V )g1(U,ψZ) + η(ψZ)g1(U, V ).

From this we can get the first part of the theorem. Now, we consider g1(∇UV,X)
for any vector fields U, V ∈ Γ(D) and X ∈ Γ(kerΠ∗)

⊥. On using equation (2.11),
(2.13), (2.15) and (3.3), (3.2), this term will take the form as g1(∇UV,X) =
g1(∇UψV,BX + CX). Finally, considering equation (2.5), we can write

g1(∇UV,X) = g1(V∇UψV,BX) + g1(TUψV,CX).

from which the second part of the theorem holds good. �

The above theorem makes it easy to obtain Theorem 4.3, if we consider the
Reeb vector field ξ to be horizontal.

The slant and invariant distributions are mutually orthogonal. Given that the
vector field is now vertical, it is highly interesting to examine the geometry of
the leaves of the slant distribution Dθ ⊕ 〈ξ〉 from a geometric point of view after
discussing the geometry of the leaves of the invariant distribution.

Corollary 5.2. Let Π: Θ1 → Θ2 be PWSSCS with semi-slant function θ and

vertical vector field ξ where, (Θ1, φ, ξ, η, g1) a Sasakian manifold and (Θ2, g2) a

Riemannian manifold. Then Dθ ⊕ 〈ξ〉 is defines totally geodesic foliation on Θ1 if

and only if ψ(V∇ZψPW + TZζPW + TZζQW ) ∈ Γ(Dθ) and

−g1(AXζψQZ,W ) + cos2θg1(∇XQZ,W ) + sin2θX(θ)g1(QZ,W )

= −g1([Z,X ],W )− g1(X, grad lnλ)g1(ζQZ, ζW )

− g1(ζQZ, grad lnλ)g1(X, ζW ) + g1(ζW, grad lnλ)g1(ζQZ,X)

+ g1(BX,W )η(ψQZ) + g1(AXζQZ, ψW )

+ g1(BX,Z)η(W ) +
1

λ2
g2(∇

Π
XΠ∗ζQZ,Ω∗ζW ),

for any vector fields Z,W ∈ Γ(Dθ ⊕ 〈ξ〉), U ∈ Γ(D) and X ∈ Γ(kerΠ∗)
⊥.

Remark 5.2. We can obtain the proof of the above corollary using the same
computation and procedures as in Theorem 4.4 by considering the Reeb vector field
ξ to be vertical, i.e., Corollary 5.2 holds true if we take into account that the Reeb
vector field ξ is vertical in Theorem 4.4.

6. Pluriharmonicity

In this section, we extended the concept of φ-pluriharmonicity from almost
Hermitian manifolds to almost contact metric manifold which was once studied
and defined by Ohnita [20]. Let us suppose that Π be a PWSSCS from Sasakian
manifold (Θ1, φ, ξ, η, g1) onto a Riemannian manifold (Θ2, g2). Then PWSSCS
is φ-pluriharmonic, D-φ-pluriharmonic, Dθ-φ-pluriharmonic, (D−Dθ)-φ plurihar-
monic, kerΠ∗-φ-pluriharmonic, (kerΠ∗)

⊥-φ-pluriharmonic and ((kerΠ∗)
⊥−kerΠ∗)-

φ-pluriharmonic if (∇Π∗)(W,Z) + (∇Π∗)(φW, φZ) = 0, for any W,Z ∈ Γ(D), for
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any W,Z ∈ Γ(Dθ), for any W ∈ Γ(D), Z ∈ Γ(Dθ), for any W,Z ∈ Γ(kerΠ∗), for
any W,Z ∈ Γ(kerΠ∗)

⊥ and for any W ∈ Γ(kerΠ∗)
⊥, Z ∈ Γ(kerΠ∗).

Theorem 6.1. Let Π be a PWSSCS from Sasakian manifold (Θ1, φ, ξ, η, g1)
onto a Riemannian manifold (Θ2, g2) with semi-slant function θ and ξ horizontal.

Suppose that Π is Dθ-φ-pluriharmonic. Then Dθ defines totally geodesic foliation

on Θ1 if and only if

∇Π
φX1

Π∗φY1 +∇Π
ζX1

Π∗ζY1

= Π∗(H∇ψX1
ζY1 +AζX1

ψY1 + TψX1
ψ2PψY1 +H∇ψX1

ζψPψY1)

+ Π∗(TψX1
ζ2QψY1 +H∇ψX1

ζψQψY1 + TψX1
ψζQψY1)

− cos2 θΠ∗(∇ψX1
QψY1),

for any X1, Y1 ∈ Γ(Dθ).

Proof. For any X1, Y1 ∈ Γ(Dθ) and using the pluriharmonicity of φ with
equation (2.10), we get

(6.1) Π∗∇X1
Y1 = ∇Π

φX1
Π∗φY1 −Π∗∇φX1

φY1.

The second term in the right-hand side of the above equation with using equation
(3.2), takes the form as Π∗∇ψX1

ψY1 + Π∗∇ψX1
ζY1 + Π∗∇ζX1

ψY1 + Π∗∇ψX1
ζY1.

Now, equation (6.1) can be written as

Π∗∇X1
Y1 = ∇Π

φX1
Π∗φY1 −Π∗∇ψX1

ψY1 −Π∗∇ψX1
ζY1

−Π∗∇ζX1
ψY1 −Π∗∇ψX1

ζY1.

Taking account the fact that Π is PWSSCS with using equations (2.6), (2.7), (2.10)
and (3.1), we have

Π∗∇X1
Y1 = −Π∗(TψX1

ζY1 +H∇ψX1
ζY1 +AζX1

ψY1 + V∇ζX1
ψY1)

+ {ζX1(ln λ)Π∗ζY1 + ζY1(lnλ)Π∗ζX1 − g1(ζX1, ζY1)Π∗(grad ln λ)}

− ∇Π
φX1

Π∗φY1 −∇Π
ζX1

Π∗ζY1 +Π∗(φ∇ψX1
φ(PψY1 +QψY1)).

In the last term in the right-hand side of the above equation with Lemma 3.2 and
equations (2.6) and (2.7), we may have

Π∗∇X1
Y1 = {ζX1(lnλ)Π∗ζY1 + ζY1(lnλ)Π∗ζX1 − g1(ζX1, ζY1)Π∗(grad lnλ)}

+Π∗(TψX1
ψ

2
PψY1 + V∇ψX1

ψ
2
PψY1 + TψX1

ζψPψY1 +H∇ψX1
ζψPψY1)

+ sin 2θψX1(θ)Π∗(QψY1)− cos2 θΠ∗(∇ψX1
QψY1) + Π∗(TψX1

ζψQψY1

+H∇ψX1
ζψQψY1) + Π∗(TψX1

ψζQψY1 + V∇ψX1
ψζQψY1 + TψX1

ζ
2
QψY1

+ V∇ψX1
ζ
2
QψY1) + Π∗(TψX1

ζY1 +H∇ψX1
ζY1 +AζX1

ψY1 + V∇ζX1
ψY1)

−∇Π

φX1
Π∗φY1 −∇Π

ζX1
Π∗ζY1. �

Theorem 6.2. Let Π be a PWSSCS from the Sasakian manifold (Θ1, φ, ξ, η, g1)
onto a Riemannian manifold (Θ2, g2) with semi-slant function θ and ξ horizontal.
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Suppose that Π is ((kerΠ∗)
⊥ − kerΠ∗)-φ-pluriharmonic. Then the horizontal dis-

tribution (kerΠ∗)
⊥ defines totally geodesic foliation on Θ1 if and only if

− cos2θ(ζV∇CXQU + CACXQU) +∇Π
CXΠ∗ζψPU −Π∗{sin 2θCX(θ)ζQU}

= CX(lnλ)Π∗ζψPU + ζψPU(lnλ)Π∗CX − g1(CX, ζψPU)Π∗(grad lnλ)

+ CX(lnλ)Π∗ζψQU + ζψQU(lnλ)Π∗CX − g1(CX, ζψQU)Π∗(grad lnλ)

+ Π∗{CACXψ
2PU + ζV∇CXψ

2PU + ζACXζψPU + ζACXζψQU}

+Π∗{AXU +H∇BXψU + CTBXBζU + ζV∇BXBζU}+∇Π
φXΠ∗ζU

+Π∗{g1(ζBX, ζU)ξ + η(ζU)ζBX + g1(BCX,ψU)ξ} − ∇Π
CXΠ∗ζψQU.

for any X ∈ Γ(kerΠ∗)
⊥ and U ∈ Γ(kerΠ∗).

Proof. For any X ∈ Γ(kerΠ∗)
⊥, U ∈ Γ(kerΠ∗) and using (2.10), (3.1), (3.2),

(2.5) with considering the fact of pluriharminicity of φ, we can write

Π∗(∇CXζU) = −Π∗∇XU +∇Π
φXΠ∗φU +H∇BXψU(6.2)

−Π∗(∇BXζU −Π∗(TBXψU +∇CXψU).

The second last term of the above equation, by using the equations (2.11) and
(2.12) turns into:

Π∗(∇BXζU) = Π∗(φ∇BXφζU) + g1(ζBX, ζU)Π∗ξ + η(ζU)Π∗ζBX

whereas, the last term as:

−Π∗(φ∇CXψU) = Π∗(φ∇CXφψU) + g1(BCX,ψU)Π∗ξ.

By using these facts (6.2) reduces to

Π∗(∇CXζU) = −Π∗∇XU +∇Π

φXΠ∗φU − Π∗(TBXψU +H∇BXψU) + Π∗(φ∇CXφψU)

+ g1(BCX,ψU)Π∗ξ +Π∗(φ∇BXφζU) + g1(ζBX, ζU)Π∗ξ + η(ζU)Π∗ζBX.

Now, by using equation (3.1), (3.2), (3.3), (2.10) with Lemma 3.2, we can write

Π∗(∇CXζU) = Π∗(AXU + V∇XU − TBXψU +H∇BXψU + ζACXζψQU)

+ Π∗{g1(ζBX, ζU)ξ + η(ζU)ζBX + g1(BCX,ψU)ξ}+∇Π
φXΠ∗φU

+Π∗{BTBXBζU + CTBXBζU + ψV∇BXBζU + ζV∇BXBζU}

+Π∗{BACXψ
2PU + CACXψ

2PU + ψV∇CXψ
2PU + ζV∇CXψ

2PU}

+Π∗{ψACXζψPU + ζACXζψPU +BH∇CXζψPU + ψACXζψQU}

+∇Π
CXΠ∗ζψPU + (∇Π∗)(CX, ζψPU) +∇Π

CXΠ∗ζψQU + (∇Π∗)(CX, ζψQU)

+ Π∗{sin2θCX(θ)ζQU − cos2θφ∇CXQU}+∇Π
CXΠ∗ζψPU.

Since Π is a PWSSCS, then by using Lemma 2.1, the above equation finally turn
into

Π∗(∇CXζU) = cos2θ(ζV∇CXQU + CACXQU)−∇Π

CXΠ∗ζψPU +Π∗{sin2θCX(θ)ζQU}

+ CX(lnλ)Π∗ζψPU + ζψPU(lnλ)Π∗CX − g1(CX, ζψPU)Π∗(grad lnλ)

+ CX(lnλ)Π∗ζψQU + ζψQU(lnλ)Π∗CX − g1(CX, ζψQU)Π∗(grad lnλ)
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+Π∗{CACXψ
2
PU + ζV∇CXψ

2
PU + ζACXζψPU + ζACXζψQU}

+Π∗{AXU +H∇BXψU + CTBXBζU + ζV∇BXBζU}+∇Π

φXΠ∗ζU

+Π∗{g1(ζBX, ζU)ξ + η(ζU)ζBX + g1(BCX,ψU)ξ} − ∇Π

CXΠ∗ζψQU.

From which we can get the desired result. �
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