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WEIGHTED SHARING OF THREE SETS

WITH LEAST CARDINALITIES

Abhijit Banerjee and Jhilik Banerjee

Abstract. We derive some sufficient conditions in terms of three weighted
shared sets to make two meromorphic functions identical. Actually to serve
our purpose, we try to maintain the cardinalities of the main range sets as
small as possible. Consequently, by exhibiting some new analysis in the proof,
we obtain three results which extend and improve a number of earlier results.
Finally, we pose two relevant open questions for future research.

1. Background and main results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. The notation S(r, f) denotes any quantity satisfying S(r, f) =
o(T (r, f)) as r → ∞, outside a possible exceptional set of finite linear measure.

If for some a ∈ C∪ {∞}, f and g have the same set of a-points with same mul-
tiplicities then we say that f and g share the value a CM (counting multiplicities).
If we do not take the multiplicities into account, f and g are said to share the value
a IM (ignoring multiplicities).

Let S be a set of distinct elements of C ∪ {∞} and let us denote

Ef (S) =
⋃

a∈S

{z : f(z) − a = 0, counted according to multiplicities},

Ef (S) =
⋃

a∈S

{z : f(z) − a = 0, counted ignoring multiplicities}.

If Ef (S) = Eg(S) (Ef (S) = Eg(S)) we say that f and g share the set S CM (IM).
Let us invoke the definition of weighted sharing of sets introduced by Lahiri.

Definition 1.1. [10] Let S be a set of distinct elements of C∪{∞} and k be a
non-negative integer or infinity. For any complex number a, we denote by Ek(a; f),
the set of all a-points of f , where an a-point of multiplicity m is counted m times
if m 6 k and k + 1 times if m > k. We denote by Ef (S, k) the set

⋃

a∈S Ek(a; f).
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If Ef (S, k) = Eg(S, k), we say that f , g share the set S with weight k and we write

it as f , g share (S, k). Clearly Ef (S) = Ef (S, ∞) and Ef (S) = Ef (S, 0).

When S is a singleton set then Definition 1.1 coincides with the traditional
definition of weighted value sharing. If Ek(a; f) = Ek(a; g), we write it as f , g

share (a, k).
Let S = {a1, a2, . . . , ar}, where ai ∈ C ∀i ∈ {1, 2, . . . , r}. The polynomial

PS(z) = (z − a1)(z − a2) . . . (z − ar),

is called generating polynomial of S. Let P
′

S(z) = (z − b1)t1 (z − b2)t2 . . . (z − bm)tm ,

where t1, t2, . . . , tm (m 6 r) be non-negative integers and bi ∈ C ∀i ∈ {1, 2, . . . , m}.

Then S
′

= {b1, b2, . . . , bm} will be called derived set of PS(z), and S is called ground
set of PS(z).

In 1994, regarding sharing of three sets and uniqueness of meromorphic function
the following question was asked by Yi [17], which is pertinent to the famous
question of Gross [8].

Question 1.1. [17] Can one find three finite sets Sj (j = 1, 2, 3) such that
any two non-constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj)
for j = 1, 2, 3 must be identical?

Several research articles were published to find the possible answers of the above
question. In terms of the following theorem, in 2002, for the least cardinalities of
the range sets, Qiu and Fang [15] answered Question 1.1.

Theorem 1.1. [15] Let n > 3 be a positive integer, S∗ = {z : zn−zn−1−1 =
0} and f and g be two non–constant meromorphic functions whose poles are of
multiplicities at least 2. If Ef (S∗, ∞) = Eg(S∗, ∞), Ef ({0}, ∞) = Eg({0}, ∞) and
Ef ({∞}, ∞) = Eg({∞}, ∞), then f ≡ g.

During last few decades, many authors improved Theorem 1.1 imposing differ-
ent conditions on deficient values in different directions (see [1,3,5]).

For a non-zero complex number a, we definethe polynomial P (z) by

(1.1) P (z) =
z3

3
−

az2

2
− c = Q(z) − c, c 6= 0, −

a3

6
,

where Q(z) =
(

z3

3 − az2

2

)

.
With respect to this polynomial we now present our main results.

Theorem 1.2. Let S = {z | P (z) = 0}, where P (z) is defined by (1.1). Sup-
pose that f and g be two non-constant meromorphic functions having no simple
poles satisfying Ef (S, 4) = Eg(S, 4), Ef ({0}, 0) = Eg({0}, 0) and Ef ({∞}, ∞) =
Eg({∞}, ∞) then f ≡ g.

The following example shows that the condition of having no simple poles for
f and g can not be removed in Theorem 1.2.

Example 1.1. Let

g(z) =
3a

2

( ez + 1

e2z + ez + 1

)

, f ≡ ezg
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and S be as in Theorem 1.2. Note that as f2
(

f − 3a
2

)

≡ g2
(

g − 3a
2

)

, we have
Ef (S, ∞) = Eg(S, ∞). Also Ef ({0}, ∞) = Eg({0}, ∞), Ef ({∞}, ∞) = Eg({∞},

∞). Here both f and g have simple poles, but f 6≡ g.

In the direction of least cardinalities, Fang and Xu [7] proved a result of three
set sharing with conditions on deficient values. In order to get rid of the conditions
over deficient values, in 2007, Lü and Xu [14] improved a result of Fang [6] by
taking the sharing of a doubleton set. Further, in 2010, first author [4] modified
the result of Lü and Xu [14] to obtain the following:

Theorem 1.3. [4] Let S# = {z : z3 − z2 − 1 = 0}, f and g be two non-
constant meromorphic functions satisfying Ef (S#, 3) = Eg(S#, 3), Ef ({0, 2

3 }, 0) =

Eg({0, 2
3 }, 0), Ef ({∞}, 1) = Eg({∞}, 1), then f ≡ g.

One of the intentions of writing the paper is to generalize Theorem 1.3. In
this connection, we mention that the idea of some portion of the proof of Theorem
1.3 was somehow been taken from that of [14], which made the analysis of that
particular part clumsy. In our theorem, we have adopted a new analysis technique,
which has not been used so far to make the proof well organized.

Theorem 1.4. Let S be defined as in Theorem 1.2 with c 6= − a3

12 and if for two
non-constant meromorphic functions f and g, Ef (S, 3) = Eg(S, 3), Ef ({0, a}, 0) =
Eg({0, a}, 0) and Ef ({∞}, 1) = Eg({∞}, 1), then f ≡ g.

Next example shows that one can’t replace the second set by an arbitrary set
rather that derived set of the corresponding polynomial.

Example 1.2. Let us consider the set S be defined in Theorem 1.2 and f

and g be defined in Example 1.1. Then Ef (S, ∞) = Eg(S, ∞), Ef

(

{0, 3a
2 }, ∞

)

=

Eg

(

{0, 3a
2 }, ∞

)

and Ef ({∞}, ∞) = Eg({∞}, ∞) but f 6≡ g.

The following example shows that, if the set S defined in Theorem 1.2 is re-
placed by zeros of polynomial of degree 2, similar to (1.1), then conclusion of
Theorem 1.4 does not hold in general.

Example 1.3. For a complex number a, let us consider the polynomial

Q(z) =
z2

2
− az − c, c 6= 0, −

a2

2
.

Case 1. For a 6= 0, let us assume that g(z) = 2a
1+ez

, f ≡ ezg. and S1 = {z | Q(z) =

0}. As (f2 − 2af) = (g2 − 2ag), Ef (S1, ∞) = Eg(S1, ∞) and also Ef ({0, a}, ∞) =
Eg({0, a}, ∞), Ef ({∞}, ∞) = Eg({∞}, ∞), but f 6≡ g.

Case 2. When a = 0, let us assume that f(z) = ez

(ez+1) , g = −f . As f2 =

g2, Ef (S1, ∞) = Eg(S1, ∞) and also Ef ({0}, ∞) = Eg({0}, ∞), Ef ({∞}, ∞) =
Eg({∞}, ∞) but f 6≡ g.

Now, if we minutely observe the results of [1,3,13], we see that in each of the
results corresponding to the main range sets for n = 4, the sharing of poles was
taken as CM sharing. It will be natural to ponder over the case whether the CM
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sharing of the poles can further be reduced to finite weight. In this respect, we
next introduce the following polynomial

P̃ (z) =
z4

4
−

az3

3
− c, c 6= 0, −

a4

12
.(1.2)

With respect to the above introduced polynomial, we now present our last
theorem.

Theorem 1.5. Let S̃ = {z | P̃ (z) = 0}, where P̃ (z) is defined by (1.2). Suppose
that f and g be two non-constant meromorphic functions having multiple poles sat-
isfying Ef (S̃, 3) = Eg(S̃, 3), Ef ({0}, 0) = Eg({0}, 0) and Ef ({∞}, 0) = Eg({∞}, 0)
then f ≡ g.

We have significantly reduced the weight of ∞ in Theorem 1.5.
The following example shows that the condition of having no simple poles for

f and g can not be removed in Theorem 1.5.

Example 1.4. Let

g(z) =
4a

3

(

1 + ez + e2z

1 + ez + e2z + e3z

)

, f ≡ ezg

and S̃ be as in Theorem 1.5. As f3
(

f − 4a
3

)

≡ g3
(

g − 4a
3

)

, Ef (S̃, ∞) = Eg(S̃, ∞)
and also Ef ({0}, ∞) = Eg({0}, ∞), Ef ({∞}, ∞) = Eg({∞}, ∞). Here both f and
g have simple poles but f 6≡ g.

Though for the standard definitions and notations of the value distribution
theory we refer to [9], we now explain some notations which are used in the paper.

Definition 1.2. [11] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the
counting function of simple a-points of f . For a positive integer m we denote by
N(r, a; f |6 m) (N(r, a; f |> m)) the counting function of those a-points of f whose
multiplicities are not greater(less) than m where each a-point is counted according
to its multiplicity. N(r, a; f |6 m) (N(r, a; f |> m)) are defined similarly, where
in counting the a-points of f we ignore the multiplicities. Also N(r, a; f |< m),
N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined analogously.

Definition 1.3. [1,16] Let f and g be two non-constant meromorphic func-
tions such that f and g share the value 1 IM. Let z0 be a 1-point of f with multi-
plicity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting
function of those 1-points of f and g where p > q, in the same way we can define
NL(r, 1; g)

Definition 1.4. [12] We denote by N2(r, a; f) = N(r, a; f) + N(r, a; f |> 2).

Definition 1.5. [12] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g),
when f , g share (a, 0).
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F, G and F̃ , G̃ are pairs of non-constant meromorphic functions defined in C

as follows:

F =
f2

3c

(

f −
3a

2

)

, G =
g2

3c

(

g −
3a

2

)

,(2.1)

F̃ =
f3

4c

(

f −
4a

3

)

, G̃ =
g3

4c

(

g −
4a

3

)

.

Henceforth, we shall denote by H , Φ and V the following three functions

H =
( F

′′

F
′

−
2F

′

F − 1

)

−
( G

′′

G
′

−
2G

′

G − 1

)

,(2.2)

Φ =
( F

′

F − 1
−

G
′

G − 1

)

,(2.3)

V =
F

′

F (F − 1)
−

G
′

G(G − 1)
.(2.4)

Similarly, we can define H̃ , Φ̃ and Ṽ by replacing F and G by F̃ and G̃ in
(2.2), (2.3) and (2.4).

Lemma 2.1. [16] If F , G be two non-constant meromorphic functions such
that they share (1, 1) and H 6≡ 0, then

N(r, 1; F |= 1) = N(r, 1; G |= 1) 6 N(r, H) + S(r, F ) + S(r, G).

Lemma 2.2. [4] Let f and g be two non-constant meromorphic functions shar-
ing (1, m), where 1 6 m < ∞. Then

N(r, 1; f) + N(r, 1; g) − N(r, 1; f |= 1) +
(

m −
1

2

)

N∗(r, 1; f, g)

6
1

2
[N(r, 1; f) + N(r, 1; g)].

Lemma 2.3. [4] Let f be a nonconstant meromorphic function and P (f) =
a0 + a1f + . . . + anfn, where a0, a1, a2, . . . , an are constants and an 6= 0. Then
T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.4. [4] Let S be as in Theorem 1.2 and F , G be defined by (2.1).
If for two non-constant meromorphic functions f and g, Ef (S, 0) = Eg(S, 0),
Ef ({0, a}, p) = Eg({0, a}, p), Ef ({∞}, 0) = Eg({∞}, 0) where 0 6 p < ∞ and
H 6= 0 then

N(r, ∞; H) 6 N(r, 0; f |> p + 1) + N(r, a; f |> p + 1)

+ N∗(r, 1; F, G) + N∗(r, ∞; f, g) + N0(r, 0; f ′) + N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which are
not zeros of f(f − a)(F − 1) and N0(r, 0; g′) is similarly defined.
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Lemma 2.5. Let S be as in Theorem 1.2 and F and G be defined by (2.1).
If for two non-constant meromorphic functions f and g, Ef (S, 0) = Eg(S, 0),
Ef ({0}, 0) = Eg({0}, 0) and Ef ({∞}, 0) = Eg({∞}, 0), H 6= 0, then

N(r, ∞; H) 6 N(r, 0; f) + N∗(r, 1; F, G) + N∗(r, ∞; f, g) + N0(r, 0; f ′) + N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which are
not zeros of f(F − 1) and N0(r, 0; g′) is similarly defined. Similar results hold for
F̃ and G̃.

Proof. Since Ef (S, 0) = Eg(S, 0), it follows that F and G share (1, 0). We can
easily verify that possible poles of H occur at (i) zeros of f , (ii) those poles of f and
g whose multiplicities are distinct from the multiplicities of the corresponding poles
of g and f respectively, (iii) those 1-points of F and G with different multiplicities,

(iv) zeros of f
′

which are not the zeros of f(F − 1), (v) zeros of g
′

which are not
zeros of g(G−1). Since H has only simple poles, the lemma follows from above. �

Lemma 2.6. [2] Let S is defined as in Theorem 1.2 and F and G be given
by (2.1). If for two non-constant meromorphic functions f and g, Ef (S, m) =
Eg(S, m), where 0 6 m < ∞, then

(i) NL(r, 1; F ) 6
1

m + 1

(

N(r, 0; f) + N(r, ∞; f) − N⊗(r, 0; f
′

)
)

+ S(r, f),

(ii) NL(r, 1; G) 6
1

m + 1

(

N(r, 0; g) + N(r, ∞; g) − N⊗(r, 0; g
′

)
)

+ S(r, g),

where N⊗(r, 0; f
′

) = N(r, 0; f ′ | f 6= 0, w1, w2, w3) and w1, w2, w3 be the roots of the
equation P (z) = 0, N⊗(r, 0; g′) is defined similarly to N⊗(r, 0; f ′). Similar results
hold for F̃ and G̃.

Lemma 2.7. [4] Let f and g be two non-constant meromorphic functions
and F and G be given by (2.1) such that Ef (S, m) = Eg(S, m), Ef ({0, a}, p) =
Eg({0, a}, p), Ef ({∞}, k) = Eg({∞}, k), 0 6 p, k < ∞ and Φ 6= 0. Then

(2.5) (2p + 1)
{

N(r, 0; f |> p + 1) + N(r, a; f |> p + 1)
}

6 N∗(r, 1; F, G) + N∗(r, ∞; f, g) + S(r, f) + S(r, g).

Similarly, if Ef (S, m)=Eg(S, m), Ef ({0}, p)=Eg({0}, p), Ef ({∞}, k)=Eg({∞}, k)
and Φ 6= 0, then

(2p + 1)N(r, 0; f |> p + 1) 6 N∗(r, 1; F, G) + N∗(r, ∞; f, g) + S(r, f) + S(r, g).

Lemma 2.8. [3] Let S be defined as in Theorem 1.2 and F and G be given
by (2.1) and V 6= 0. If for any two non-constant meromprphic functions f and
g, Ef (S, m) = Eg(S, m), Ef ({0}, 0) = Eg({0}, 0) and Ef ({∞}, k) = Ef ({∞}, k),
where 0 6 k < ∞, then the poles of F and G are the zeros of V and

(3k + 2)N(r, ∞; f |> k + 1) = (3k + 2)N(r, ∞; g |> k + 1)

6 N∗(r, 0; f, g) + N
(

r,
3a

2
; f

)

+ N
(

r,
3a

2
; g

)

+ N∗(r, 1; F, G) + S(r, f) + S(r, g).
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Lemma 2.9. [4] Let f and g be two nonconstant meromorphic functions and F̃

and G̃ be given by (2.1) and S̃ be as in Theorem 1.5 such that Ef (S̃, m) = Eg(S̃, m),

Ef ({0}, p) = Eg({0}, p), Ef ({∞}, k) = Eg({∞}, k), 0 6 p, k < ∞ and Φ̃ 6= 0.
Then

(3p + 2)
{

N(r, 0; f |> p + 1)
}

6 N∗(r, 1; F̃ , G̃) + N∗(r, ∞; f, g) + S(r, f) + S(r, g).

Lemma 2.10. [3] Let F̃ and G̃ be given by (2.1) and Ṽ 6= 0. If Ef (S̃, m) =

Eg(S̃, m), Ef ({0}, 0) = Eg({0}, 0) and Ef ({∞}, k) = Ef ({∞}, k), where 0 6 k <

∞, then poles of F̃ and G̃ are the zeros of Ṽ and

(4k + 3)N(r, ∞; f |> k + 1) = (4k + 3)N(r, ∞; g |> k + 1)

6 N∗(r, 0; f, g) + N
(

r,
4a

3
; f

)

+ N
(

r,
4a

3
; g

)

+ N∗(r, 1; F̃ ; G̃) + S(r, f) + S(r, g).

3. Proofs of the theorems

Proof of Theorem 1.4. Let F and G be given by (2.1). Since Ef (S, 3) =
Eg(S, 3), from (2.1) it follows that F and G share (1, 3). Suppose H 6≡ 0.

If possible Φ = 0. By (2.3), we obtain (F − 1) = c(G − 1), where from the
definition of H we get, H ≡ 0, which is a contradiction. Hence Φ 6= 0.

Using Lemma 2.1, Lemma 2.2 for m = 3, Lemma 2.3, Lemma 2.4, Lemma 2.6
for m = 3, Lemma 2.7 for p = 0 we get

4{T (r, f) + T (r, g)}

6 N(r, 0; f) + N(r, a; f) + N(r, ∞; f) + N(r, 1; F ) + N(r, 0; g) + N(r, a; g)

+ N(r, ∞; g) + N(r, 1; G) − N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g)

6 N(r, 1; F |= 1) + 2(N(r, 0; f) + N(r, a; f)) + N(r, ∞; f) + N(r, ∞; g)

+
3

2
{N(r, 1; F ) + N(r, 1; G)} −

(

3 −
1

2

)

N∗(r, 1; F, G)

− N0(r, 0; f
′

) − N0(r, 0; g
′

) + S(r, f) + S(r, g)

6 3(N(r, 0; f) + N(r, a; f)) + N(r, ∞; f) + N(r, ∞; g) + N(r, ∞; f |> 2)

+
3

2
{T (r, f) + T (r, g)} −

3

2
N∗(r, 1; F, G) + S(r, f) + S(r, g)

6 N2(r, ∞; f) + N2(r, ∞; g) + 2N(r, ∞; f |> 2) +
3

2
{T (r, f) + T (r, g)}

+
3

2
{NL(r, 1; F ) + NL(r, 1; G)} + S(r, f) + S(r, g)

6
15

4
{T (r, f) + T (r, g)} + S(r, f) + S(r, g),

which is a contradiction. Therefore, H ≡ 0.
As c 6= 0, for two constants A (6= 0), B; from (2.2) we get

1

F − 1
≡

A

G − 1
+ B =⇒

1

P (f)
≡

A

P (g)
+

B

c
,
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wherefrom, since Ef ({∞}) = Eg({∞}), it follows B = 0. Hence Ef ({∞}) =
Eg({∞}) and P (g) ≡ AP (f). From above we have T (r, f) = T (r, g) + O(1) and so
S(r, f) = S(r, g).

Suppose that A 6= 1. As A 6= 0, we can write

(3.1) Q(g) ≡ A
{

Q(f) +
c(1 − A)

A

}

.

Next let us consider the following polynomial

φ(z) = Q(z) +
c(1 − A)

A
.(3.2)

Claim. All the factors of φ(f) are simple. Let us suppose that a is a multiple zero
of φ(z) as from (3.2), it is evident that 0 can not be a multiple zero of φ(z). From
(3.2) we have

Q(a) = −
c(1 − A)

A
.(3.3)

So in view of (3.2) we have φ(z) = Q(z) − Q(a) = 1
6 (z − a)2(2z + a). From (3.1) we

have Q(g) ≡ A{φ(f)}. i.e.,

g2
(

g −
3a

2

)

≡
A

2
(f − a)2(2f + a).(3.4)

From (3.4) and the fact Ef ({0, a}) = Eg({0, a}), we know the a-points of f will
only correspond to the 0-point of g and that Ef ({a}) = Eg({0}). So the 0-points
of f will correspond to the a-points of g. Let z0 be a point such that, f(z0) = 0

and g(z0) = a. Then (3.4) gives A = −1. Using this in (3.3) we get, c = − a3

12 , a
contradiction to the hypothesis of Theorem 1.4. Hence we must have 0 is an e.v.P.
of f and a is an e.v.P. of g. Also we know f , g share (∞, ∞), Ef ({a}) = Eg({0})
and Ef ({− a

2 }) = Eg({ 3a
2 }).

Case 1. Let − a
2 and 3a

2 are not e.v.P.’s of f and g respectively. We note that there
exists an entire function σ1(z) such that,

(3.5)
g

f − a
= eσ1(z).

As f 6≡ 0 and g 6≡ a, from (3.5) we get that, eσ1(z) 6= −1, ∀z. Now from (3.4) it
follows that, there exists a complex number z2 with, f(z2) = − a

2 and g(z2) = 3a
2 .

From (3.5) we have,

eσ1(z2) =
g(z2)

f(z2) − a
= −1,

a contradiction to the fact that eσ1(z) 6= −1, ∀z.

Case 2. Let − a
2 is an e.v.P. of f and 3a

2 is an e.v.P. of g. In this case there exists
an entire function σ2(z) such that,

(3.6)
f

g − a
= eσ2(z).
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As f 6≡ − a
2 and g 6≡ 3a

2 , from (3.6) we get that, eσ2(z) 6= −1, ∀z. Now from (3.4) it
is clear that there exists a complex number z3 such that, f(z3) = a and g(z3) = 0.
From (3.6) we have,

eσ2(z3) =
f(z3)

g(z3) − a
= −1,

a contradiction to the fact that eσ2(z) 6= −1, ∀z.
Hence our claim is established and so we get, factors of φ(f) are simple say

(f − αi), αi ∈ C, i = 1, 2, 3. From (3.1) we can write

(3.7)
g2

3

(

g −
3a

2

)

≡ A(f − α1)(f − α2)(f − α3).

As f , g share {0, a}, from the above equation it is clear that 0 is an e.v.P. of g

and αi-points (i = 1, 2, 3) of f are 3a
2 -points of g. Now, by the second fundamental

theorem we have,

4T (r, f) 6

3
∑

i=1

N(r, αi; f) + N(r, a; f) + N(r, 0; f) + N(r, ∞; f) + S(r, f)

6 N
(

r,
3a

2
; g

)

+ N(r, a; g) + N(r, ∞; f) + S(r, f) 6 3T (r, f) + S(r, f),

a contradiction. Hence A = 1. So, we get P (f) ≡ P (g). i.e.,

(3.8)
f2

3

(

f −
3a

2

)

≡
g2

3

(

g −
3a

2

)

.

From (3.8), it is clear that, f , g share 0, 3a
2 and ∞ CM.

We now wish to prove f ≡ g. On the contrary, suppose that f 6≡ g. Consider
h = f

g
to be a constant. Then from (3.8), it follows that h 6= 1, h2 6= 1, h3 6= 1 and

g ≡ 3a
2

(h2
−1)

(h3−1) , a constant, which is impossible.

Next, let h be non-constant. Then

g ≡
3a

2

( h + 1

h2 + h + 1

)

and f ≡
3a

2

( h(h + 1)

h2 + h + 1

)

.

In view of the hypothesis of the theorem we know f and g share ({0, a}, 0) and
from (3.8) we have just deduced f , g share (0, ∞), we can say that f and g share
(a, 0). Next observe that,

f − a ≡
a

2

(h − 1)(h + 2)

h2 + h + 1
and g − a ≡ −

a

2

(h − 1)(2h + 1)

h2 + h + 1
.

From the above two expressions, we see −2 and − 1
2 are e.v.P.s of h. Hence h omits

four values 0, ∞, −2 and − 1
2 , which is a contradiction to Nevanlinna four value

theorem. Therefore, f ≡ g. �

Proof of Theorem 1.2. Let F and G be given by (2.1). Since Ef (S, 4)
= Eg(S, 4), from (2.1) we know F and G share (1, 4). Suppose H 6≡ 0. Clearly by
the same arguments as used in the proof of Theorem 1.4, Φ 6= 0. Again, if possible
let V ≡ 0. Then from (2.4) we get

(

1 − 1
F

)

≡ c
(

1 − 1
G

)

.

As F and G share poles, we get c = 1 i.e. H ≡ 0, which is a contradiction.
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Next by Lemma 2.1, Lemma 2.2 for m = 4, Lemma 2.3, Lemma 2.5, Lemma
2.7 for p = 0, and Lemma 2.8 for k = 1 we have

3{T (r, f) + T (r, g)}

6 N(r, 0; f) + N(r, 1; F ) + N(r, ∞; f) + N(r, 0; g) + N(r, 1; G)

+ N(r, ∞; g) − N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g)

6 N(r, 1; F |= 1) + 2N(r, 0; f) + 2N(r, ∞; f |> 2) +
3

2
{T (r, f) + T (r, g)}

−
(

4 −
1

2

)

N∗(r, 1; F, G) − N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g)

6 3N(r, 0; f) + 2N(r, ∞; f |> 2) +
3

2
{T (r, f) + T (r, g)}

−
(

4 −
3

2

)

N∗(r, 1; F, G) + S(r, f) + S(r, g)

6
1

2
N∗(r, 1; F, G) +

2

5

{

N(r, 0; f) + N
(

r,
3a

2
; f

)

+ N
(

r,
3a

2
; g

)

+ N∗(r, 1; F, G)
}

+
3

2

{

T (r, f) + T (r, g)
}

+ S(r, f) + S(r, g)

6
13

10
N∗(r, 1; F, G) +

(3

2
+

2

5

)

{

T (r, f) + T (r, g)
}

+ S(r, f) + S(r, g)

6

(13

10
×

2

5
+

19

10

)

{

T (r, f) + T (r, g)
}

+ S(r, f) + S(r, g)),

which is a contradiction. Hence H ≡ 0.
For two constants A 6= 0 and B from (2.2) we get 1

F −1 ≡ A
G−1 +B. As F and G

share poles, we have B = 0. Hence P (g) ≡ AP (f). We know that f and g share 0.

Case 1. Suppose 0 is not an e.v.P. of f and g, then it follows that c(1 − A) = 0.
As c 6= 0, we have A = 1. Thus, we get (3.8).

Case 2. Suppose 0 is an e.v.P. of f and g and A 6= 1. Now proceeding in the same
way we obtain (3.1) and then proceed to show that the right hand expression of
(3.1) has all simple factors in terms of f . Supposing the contrary, we can reach up
to (3.4). From (3.4) we can conclude that

N(r, a; f) + N
(

r, −
a

2
; f

)

6 N
(

r,
3a

2
; g

)

.

so in view of the second fundamental theorem we have

2T (r, f) 6 N(r, 0; f) + N(r, a; f) + N
(

r, −
a

2
; f

)

+ N(r, ∞; f) + S(r, f)

6 N
(

r,
3a

2
; g

)

+ N(r, ∞; f) + S(r, f) 6
3

2
T (r, f) + S(r, f),

a contradiction. Hence right hand expression of (3.1) have all simple factors in
terms of f and we get (3.7). Then by the same argument as done in the proof of
Theorem 1.4, we can get a contradiction and so A = 1. So, we also get (3.8).
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Now we will prove f ≡ g. On the contrary, let us assume that f 6≡ g. Let h ≡ f
g

.

First suppose that, h is constant. Then with the help of the same arguments which
is used in Theorem 1.4 to deal the situation, we get a contradiction.

Next let h be non-constant. Then from (3.8) we get

g ≡
3a

2

(

h + 1

h2 + h + 1

)

.

Let α1 and α2 be the zeros of the polynomial (z2 + z + 1). By the Second Funda-
mental Theorem and by the definition of g defined above we obtain,

2T (r, h) 6
2

∑

i=1

N(r, αi; h) + N(r, 0; h) + N(r.∞; h) + S(r, h)

6 N(r, ∞; g) + S(r, h) 6 T (r, h) + S(r, h),

which is a contradiction. Hence f ≡ g. �

Proof of Theorem 1.5. Let F̃ and G̃ be given by (2.1). Since Ef (S̃, 3) =

Eg(S̃, 3), from (2.1) it follows that F̃ and G̃ share (1, 3). Suppose H̃ 6≡ 0. By the

arguments of Theorem 1.4, we have Φ̃ 6= 0 and Ṽ 6= 0. Using Lemma 2.1, Lemma
2.2 for m = 3, Lemma 2.3, Lemma 2.5 for F̃ and G̃, Lemma 2.6 for m = 3, Lemma
2.9 for p = 0 and Lemma 2.10 for k = 1 we get

4{T (r, f) + T (r, g)}

6 N(r, 0; f) + N(r, ∞; f) + N(r, 1; F̃ ) + N(r, 0; g) + N(r, ∞; g) + N(r, 1; G̃)

− N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g)

6 N(r, 1; F |= 1) + 2N(r, 0; f) + 2N(r, ∞, f |> 2) + 2{T (r, f) + T (r, g)}

−
(

3 −
1

2

)

N∗(r, 1; F̃ , G̃) − N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g)

6 3N(r, 0; f) + 3N(r, ∞; f |> 2) + 2{T (r, f) + T (r, g)}

−
3

2
N∗(r, 1; F̃ , G̃) + S(r, f) + S(r, g)

6
3

2
{N∗(r, 1; F̃ , G̃) + N(r, ∞; g |> 2)}

+
3

7
{N(r, 0; f) + T (r, f) + T (r, g) + N∗(r, 1; F̃ , G̃)} + 2{T (r, f) + T (r, g)}

−
3

2
N∗(r, 1; F̃ , G̃) + S(r, f) + S(r, g)

6
17

7
{T (r, f) + T (r, g)} +

(3

2
+

3

14

)

N(r, ∞; f |> 2)

+
( 3

14
+ 1

)

N∗(r, 1; F̃ , G̃) + S(r, f) + S(r, g)

6
97

28
{T (r, f) + T (r, g)} + S(r, f) + S(r, g),

a contradiction. Hence H̃ ≡ 0.
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Now by the similar arguments as in Theorem 1.2, we can say that f ≡ g. �

4. Two open questions

In view of Example 1.2, we can see that in Theorem 1.4, instead of taking
derived set of corresponding polynomial, an arbitrary set cannot be chosen. At this
juncture, the following question arises;

Question 4.1. Does there exist any polynomial for which the derived set can
be replaced by an arbitrary set, so that the conclusion of Theorem 1.4 remains
unaltered?

Next, for two non-zero complex numbers a and b, let us consider the following
polynomial

R(z) =
z3

3
−

(a + b)z2

2
+ (ab)z − c,

where c is a constant such that R(z) does not have any multiple zero. Note that
R′(z) = (z − a)(z − b), hence derived set of R(z) is {a, b}. At this point, second
question appears;

Question 4.2. Can we replace first two sets of Theorem 1.2, by S = {z |
R(z) = 0} and by {a, b}?
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