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3-DIAGONAL EQUATION

AND PLANARITY OF GRAPHS

Aleksandar Krapež and Bojana Lasković

Abstract. In his PhD thesis, S. Krstić used (multi)graphs to solve general-
ized quadratic quasigroup functional equations. In particular, he showed the
fundamental role of Kuratowski Theorem on planarity of graphs in determin-
ing properties of general solutions of such equations. As a first step towards
generalization of his results to functional equations on ternary quasigroups, we
consider generalized 3-diagonal equation A

(

B(x, y, z), C(y, u, v), D(z, v, w)
)

=
E(x, u, w). This is one of equations with complete graph K5 as a correspond-
ing graph. General solution of this equation is given, confirming the important
role of Kuratowski Theorem in this case as well.

1. Introduction

We consider generalized 3-diagonal functional equation:

(D3) A(B(x, y, z), C(y, u, v), D(z, v, w)) = E(x, u, w)

where A,B,C,D,E are unknown ternary quasigroups (For the related case of diag-
onal algebras see Płonka [11]). Our interest in (D3) leads to graph theory. Namely,
in his PhD Thesis [8], Krstić used some (multi)graphs (called Krstić graphs in [6])
to solve quasigroup functional equations. Let us look at a special case of a general-
ized quadratic equation Eq (with the Krstić graph K(Eq)) such that all operations
appearing in Eq are binary and mutually isostrophic. Then (Alimpić [2], Krapež
[4], Krstić [8]):

• All quasigroups are isostrophic to the same loop L.
• L is a group iff there are more than two operations in Eq iff tetrahedron K4

is embeddable in K(Eq).
• L is an Abelian group iff K(Eq) is not planar iff K3,3 is embeddable in K(Eq).

We see that properties of solutions of Eq crucially depend on properties of the
Krstić graph K(Eq). In particular, commutativity case evokes the Kuratowski
theorem.
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Theorem 1.1 (Kuratowski [9, 10]). Graph is planar if it does not contain a
subgraph that is a subdivision of either K3,3 or K5.

Graphs K3,3 and K5 are given in Figure 1.
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Figure 1. Graphs K3,3 and K5

Krstić considered equations with binary quasigroup operations only. His graphs
for such equations are cubic. Consequently, the graph K5 (which is of degree 4)
has no role in his theory. However, if we define graphs of degree 4 for functional
equations on ternary quasigroups, the graph corresponding to the equation (D3) is
exactly K5. Therefore, the relationship between (D3) and K5 becomes the center of
our interest. We give a general solution of the equation (D3) showing how it fits with
Krstić’s method of using graphs to solve quadratic functional equations on binary
quasigroups. This opens the possibility to describe solutions of any generalized
quadratic functional equation on ternary (and even n–ary) quasigroups. For some
results in that direction see also [13, 14, 15, 16].

2. Quasigroups

We state a few basic definitions and results from the theory of quasigroups,
mostly to fix terminology and notation. We warn the reader of the nonstandard
term unit and our notation for inverse operations which is not compatible with
standard notation (See for example [12]).

Definition 2.1. An algebra (Q; ·, \, /) is a (binary) quasigroup if

x · (x\y) = y, (x/y) · y = x, x\(x · y) = y, (x · y)/y = x.

An algebra (Q;F, F−1, F−2, F−3) is a ternary or 3-quasigroup if

F (F−1(x, y, z), y, z) = x, F (x, F−2(x, y, z), z) = y, F (x, y, F−3(x, y, z)) = z,

F−1(F (x, y, z), y, z) = x, F−2(x, F (x, y, z), z) = y, F−3(x, y, F (x, y, z)) = z.

Note that we use the term ‘quasigroup’ for algebra in Definition 2.1, as well as
for the component operation · or F .



3-DIAGONAL EQUATION AND PLANARITY OF GRAPHS 3

Definition 2.2. A loop is a quasigroup with unit e:

e · x = x · e = x.

A 3-loop is a 3-quasigroup with unit e:

F (e, e, x) = F (e, x, e) = F (x, e, e) = x.

Theorem 2.1. An associative quasigroup is a group.
Associative and commutative quasigroup is an Abelian group.

Let · be a quasigroup operation on Q. Then

x · y = z iff x\z = y iff z/y = x.

Operation / (\) is left (right) inverse operation (also right (left) division) for ·.
They are also quasigroup operations.

The dual operations ∗, \\, // of, respectively, ·, \, / are defined by

x ∗ y = y · x, x\\y = y\x, x//y = y/x

and they are quasigroup operations as well. We say that ·, \, /, ∗, \\, // are parastro-
phes of · (and of each other).

Analogously, for the ternary quasigroup operation F , all operations Fπ(π ∈ S4)
defined by

Fπ(xπ(1), xπ(2), xπ(3)) = xπ(4) iff F (x1, x2, x3) = x4

are parastrophes of F . Operations Fπ are also 3-quasigroup operations.

Definition 2.3. Let (Q; ·, \, /) and (Q′; ◦, \◦, /!◦) be quasigroups. Operations
· and ◦ (as well as quasigroup algebras (Q; ·, \, /) and (Q′; ◦, \◦, /◦)) are isotopic iff
there are bijections α, λ, ̺ : Q → Q′ such that α(x · y) = λx ◦ ̺y.

Similarly, 3-quasigroups F and G (as well as 3-quasigroup algebras (Q;F, F−1,
F−2, F−3) and (Q′;G,G−1, G−2, G−3)) are isotopic iff there are bijections
α, λ, µ, ̺ : Q → Q′ such that αF (x, y, z) = G(λx, µy, ̺z).

It is well known that:

Theorem 2.2. Being isotopic is an equivalence relation among (3-)quasigroup
operations.

Theorem 2.3. Isotopic groups are isomorphic.

Theorem 2.4. Every (3-)quasigroup operation is isotopic to a (3-)loop opera-
tion.

Definition 2.4. Two quaigroup operations are isostrophic if one of them is
isotopic to a parastrophe of the other.

Being isostrophic is also an equivalence relation among (3-)quasigroup opera-
tions.

We denote by Id the identity permutation of Q.
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Definition 2.5. Let F be a 3-quasigroup operation on a set Q and fi (i =
1, 2, 3) three arbitrary fixed elements from Q. We define

F12(x, y) = F (x, y, f3), F13(x, z) = F (x, f2, z), F23(y, z) = F (f1, y, z)

F1(x) = F (x, f2, f3), F2(y) = F (f1, y, f3), F3(z) = F (f1, f2, z)

and f = F (f1, f2, f3). Operations F12, F13, F23 are binary retracts while F1, F2 and
F3 are unary retracts of F . Element f is a nullary retract of F .

It is easy to see that F12, F13, F23 are quasigroup operations and that F1, F2, F3

are bijections. Note also that operations F12, F13, F23, F1, F2, F3 and element f
depend on the choice of f1, f2, f3, so fixing these elements enables us to simplify
the notation we use.

If we apply this to equation (D3), we get five operations A,B,C,D,E, their
15 binary retracts, further 15 unary retracts and the total of 20 elements. How-
ever, each of the six object variables appears in (D3) twice, which requires that
b1 = e1, b2 = c1, b3 = d1, c2 = e2, c3 = d2, d3 = e3. Further, since B(x, y, z)
(C(y, u, v), D(z, v, w)) is the first (second, third) subterm ofA(B(x, y, z), C(y, u, v),
D(z, v, w)), we have a1 = b (a2 = c, a3 = d). Finally, because of A(. . . ) = E(. . . ),
we have a = e. The conclusion is that we have 20 names for elements, but only six
of them are independent. Not at all coincidentally, we are back to the number of
object variables in (D3).

Definition 2.6. If {xi, . . . , xj} is a subset of {x, y, z, u, v, w}, then we define
D3[xi, . . . , xj ] to be an equation obtained from D3 when we replace every variable
xk ∈ {x, . . ., w}r{xi, . . ., xj} by the corresponding element from {b1, b2, b3, c2, c3, d3}.

Here are several examples:

• D3[x, y, z] is A(B(x, y, z), C1y,D1z) = E1x.
• D3[z, w] is A13(B3z,D13(z, w)) = E3w.
• D3[] is a = e.

More formally, if we take D3 to be D3(x, y, z, u, v, w), then D3[x, y, z] is D3(x, y, z,
c2, c3, d3), D3[z, w] is D3(b1, b2, z, c2, c3, w) and D3[] is D3(b1, b2, b3, c2, c3, d3).

Definition 2.7. Ternary quasigroup operation F is reducible iff there are bi-
nary quasigroups A,B such that F (x, y, z) = A(B(u, v), w) for all x, y, z and some
u, v, w such that {u, v, w} = {x, y, z}.

3. Functional equations

3-diagonal equation belongs to a class of equations we are interested in. They
are:

• functional (there is at least one functional variable in the equation),
• generalized (every functional variable occurrs at most once in the equation),
• quadratic (see Definition 3.1),
• on binary and ternary quasigroups (functional variables are interpreted as

either binary or ternary quasigroup operations).
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Definition 3.1. Functional equation s = t is quadratic iff every object variable
occurrs exactly twice in the equation. It is balanced iff every object variable from
s = t appears exactly once in s and once in t.

Definition 3.2. Functional equation Eq is reducible if it contains a ternary
quasigroup operation symbol F such that in every solution of Eq, the interpretation
of F is a reducible quasigroup operation.

Aczél, Belousov and Hosszú considered in [1] important equations of generalized
associativity (GA) and generalized bisymmetry (GB)

(x 1 y) 2 z = x 3 (y 4 z),(GA)

(x 1 y) 2 (u 3 v) = (x 4 u) 5 (y 6 v) .(GB)

All equations are formulas of the form t1 = t2. Therefore we can represent them as
pairs of trees: tree T1 for the term t1 and T2 for t2. For equations (GA) and (GB)
the pictures of corresponding pairs T1, T2 are given in Figures 2 and 3.
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Figure 2. Generalized associativity (GA)
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Figure 3. Generalized bisymmetry (GB)

We give a general solution of (GB) as we shall need it later.

Theorem 3.1 (J. Aczél et al. [1]). A general solution of (GB) (on a set Q 6= ∅)
is given by

x 1 y = δ−1(αx+ βy), x 4 y = ψ−1(αx + χy),

x 2 y = δx+ ϕy, x 5 y = ψx+ εy,

x 3 y = ϕ−1(χx+ γy), x 6 y = ε−1(βx+ γy),
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where + is an arbitrary Abelian group on Q, while α, β, γ, δ, ε, ϕ, ψ and χ are arbi-
trary permutations on Q.

Alimpić in [2] gave a formula of a general solution of any generalized balanced
quasigroup equation. Krapež in [3] generalized her result to generalized balanced
equations for quasigroups of arbitrary arity. Generalized quadratic quasigroup
equations were defined in Krapež [4] and the case where all (binary) quasigroup
operations are mutually isostrophic was solved. A general solution for arbitrary
quadratic equations for binary quasigroups was given in [8] by Krstić.

4. Krstić graphs of functional equations

In order to solve generalized quadratic functional equations with binary quasi-
groups, Krstić in [8] did establish correspondence between such equations and con-
nected cubic multigraphs. With some slight modifications (see [6, 7]), we have:

Definition 4.1. Let s = t be a generalized quadratic quasigroup functional
equation. Krstić graph K(s = t) of s = t is a multigraph (V,E; I) given by:

• Vertices of K(s = t) are operation symbols from s = t.
• Edges of K(s = t) are subterms of s and t, including s and t, which are

considered to be a single edge. Likewise, any variable (which appears
twice in s = t) is taken to be a single edge.

• If F (p, q) is a subterm of s or t then the vertex F is incident to edges
p, q, F (p, q) and no other.

The process of turning two trees T1, T2 of an equation Eq into its Krstić graph
K(Eq) is ilustrated by the example of (GB). In this case, T1 and T2 are given in
Figure 3. If we connect identical variables we get the graph in Figure 4. Turning
‘variables’ into edges, we get the graph K3,3 from Figure 1.

2
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y v
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5

Figure 4. Trees of terms of (GB) ’glued’ together

Going back to general case, we state the basic result about Krstić graphs.
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Theorem 4.1 (Krstić [8]). Operations F and G from generalized quadratic
equation Eq are mutually isostrophic iff they are 3-connected in K(Eq).

There are many similar results connecting Eq and K(Eq) (see [8, 6, 7]) but
they are beyond the scope of this article.

Here we extend the definition of the Krstić graph K(s = t) allowing ternary
quasigroup operations in s = t and consequently vertices of degree four in K(s = t).

• If F (p, q, r) is a subterm of s or t then the vertex F is incident to edges
p, q, r, F (p, q, r) and no other.

5. Generalized 3-diagonal equation

In this section we give the proof of the main result of this paper.

Theorem 5.1. General solution of (D3) (on a set Q 6= ∅) is given by

F (x, y, z) = α
F

(λ
F
x+ µ

F
y + ̺

F
z) (F ∈ {A,B,C,D,E}).

where + is an arbitrary Abelian group (with unit 0) on Q, while α
F

, λ
F

, µ
F

, ̺
F

are arbitrary permutations of Q such that

α
A

= α
E

= Id,

λ
A
α

B
= Id, µ

B
y + λ

C
y = 0, λ

B
= λ

E

µ
A
α

C
= Id, ̺

B
z + λ

D
z = 0, µ

C
= µ

E

̺
A
α

D
= Id, ̺

C
v + µ

D
v = 0, ̺

D
= ̺

E
.

Proof. We show first that the above formulas actually define a solution of
(D3).

A(B(x, y, z), C(y, u, v), D(z, v, w))

= α
A

(λ
A
B(x, y, z) + µ

A
C(y, u, v) + ̺

A
D(z, v, w))

= λ
A
α

B
(λ

B
x+ µ

B
y + ̺

B
z) + µ

A
α

C
(λ

C
y + µ

C
u+ ̺

C
v)

+ ̺
A
α

D
(λ

D
z + µ

D
v + ̺

D
w)

= λ
B
x+ µ

B
y + ̺

B
z + λ

C
y + µ

C
u+ ̺

C
v + λ

D
z + µ

D
v + ̺

D
w

= λ
B
x+ µ

B
y + λ

C
y + ̺

B
z + λ

D
z + µ

C
u+ ̺

C
v + µ

D
v + ̺

D
w

= λ
B
x+ (µ

B
y + λ

C
y) + (̺

B
z + λ

D
z) + µ

C
u+ (̺

C
v + µ

D
v) + ̺

D
w

= λ
B
x+ 0 + 0 + µ

C
u+ 0 + ̺

D
w

= λ
E
x+ µ

E
u+ ̺

E
w

= α
E

(λ
E
x+ µ

E
u+ ̺

E
w)

= E(x, u, w).

To prove the converse, assume that the quintuple (A,B,C,D,E) of ternary
quasigroups on Q is a paticular solution of (D3).

1) Let b1, b2, b3, c2, c3, d3 be a choice of six arbitrary elements from Q. We define:

• c1 = b2, d1 = b3, d2 = c3, e1 = b1, e2 = c2, e3 = d3
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• f = F (f1, f2, f3) where F ∈ {A,B,C,D,E} and f is an appropriate
constant corresponding to F while a1 = b, a2 = c, a3 = d.

As noted previously, it follows that a = e.

2) Direct consequences D3[x], D3[u] and D3[w] are

A1B1(x) = E1(x), A2C2(u) = E2(u), A3D3(w) = E3(w),

or simply A1B1 = E1, A2C2 = E2 and A3D3 = E3.

3) D3[x, y, w] is: A
(

B12(x, y), C1y,D3w
)

= E13(x,w). Let z = B12(x, y); then

x = B−1
12 (z, y) and consequently A(z, C1y,D3w) = E13(B−1

12 (z, y), w). This proves
that 3-quasigroup A is reducible.

We further have: E13(x,w) = A13(B1x,D3w) and A12(B12(x, y), C1y) = E1x
or, equivalently: B−1

12 (z, y) = E−1
1 A12(z, C1y). It follows that

A(z, C1y,D3w) = E13(B−1
12 (z, y), w) = A13(B1E

−1
1 A12(z, C1y), D3w)

= A13(A−1
1 A12(z, C1y), D3w)

i.e.,

(5.1) A(z, u, v) = A13(A−1
1 A12(z, u), v).

Therefore, it is not that operation A is just reducible, it may be expressed in terms
of its own reducts only.

4) Analogously, we can reduce operations B,C,D,E.

B(x, y, z) = B12(B−1
1 B13(x, z), y) follows from D3[x, y, z].

C(x, y, z) = C12(x,C−1
2 C23(y, z)) follows from D3[y, u, v].

D(x, y, z) = D13(D−1
1 D12(x, y), z) follows from D3[z, v, w].

E(x, y, z) = E13(E−1
1 E12(x, y), z) follows from D3[x, u, w].

5) If we replace all terms of the form F (x, y, z), F ∈ {A,B,C,D,E} in (D3) by
their values suggested by (5.1) and formulas from 4), we get the equation

(rD3) A13(A−1
1 A12(p, q), r) = E13(E−1

1 E12(x, u), w)

where

p = B12(B−1
1 B13(x, z), y),

q = C12(y, C−1
2 C23(u, v)),

r = D13(D−1
1 D12(y, v), w).

Equation (rD3) is irreducible, quadratic, generalized and contains only binary
quasigroups. Krstić graph K(rD3) is shown in Figure 5. From this picture it
becomes obvious that K3,3 is a subgraph of K(rD3) and that it corresponds to the
equation rD3[x, z, u, v].

Note. While building K(rD3), we replaced absolutely correct subgraph

〉− Fik − F−1
i − Fij −〈
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C23

D13

A13

E13

B13

C12

D12 A12

B12

E12

Figure 5. Graph K(rD3)

by the relatively correct subgraph

〉− Fik − Fij −〈

Since our reasoning is ‘up to isostrophy’, it follows that relatively correct is correct
enough.

6) Therefore, let us consider rD3[x, z, u, v] i.e.,

A13(A−1
1 A12(B13(x, z), C23(u, v)), D12(z, v)) = E12(x, u).

If we introduce new variables y, w by y = B13(x, z) and w = C23(u, v), we may
solve for x, u to get x = B−1

13 (y, z) and u = C−1
23 (w, v). Replacement of x and u in

E12(x, u) yields

A13(A−1
1 A12(y, w), D12(z, v)) = E12(B−1

13 (y, z), C−1
23 (w, v))

which is a special case of (GB).
In Theorem 3.1, the formulas of general solution of (GB) were given. In par-

ticular: x 2 y = δx + ϕy where + is an arbitrary Abelian group while δ and ϕ are
arbitrary permutations of Q. In our case 2 is A13 and if we choose δ = A1 and
ϕ = A3 we end up with A13(x, z) = A1x+A3z.

7) A1B1x + a = A1B1x + A3a3 = A13(B1x, a3) = A(B1x, a2, a3) = A1B1x i.e.,
a = A(a1, a2, a3) is the unit of the Abelian group +. We shall use yet another
name 0 for a, so that 0 = a = e.

8) D3[v] is A23(C3v,D2v) = e = 0. Therefore

0 = A(a1, C3v,D2v) = A13(A−1
1 A12(a1, C3v), D2v) = A1A

−1
1 A2C3v +A3D2v
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and finally −A3D2v = A2C3v.
Analogously, we can prove A1B2y +A2C1y = 0 and A1B3z +A3D1z = 0.

9) D3[x, v] yields

A1B1x = E1x = A(B1x,C3v,D2v) = A13(A−1
1 A12(B1x,C3v), D2v)

= A12(B1x,C3v) + A3D2v.

Therefore

A12(B1x,C3v) = A1B1x−A3D2v = A1B1x+A2C3v i.e., A12(y, z) = A1y +A2z.

10) From Theorem 3.1 we know that quasigroup operations E12, B13, C23 and D12

are also isostrophic to +, but we have to determine the exact form of these isostro-
phies. E12(x, u) = A12(B1x,C2u) = A1B1x + A2C2u = E1x + E2u. D3[x, z] is
A13(B13(x, z), D1z) = E1x and consequently A1B13(x, z) +A3D1z = E1x. Finally
B13(x, z) = A−1

1 (A1B1x+A1B3z).
Analogously we can prove the relations

C23(u, v) = A−1
2 (A2C2u+A2C3v) and D12(z, v) = A−1

3 (A3D1z +A3D2v).

11) Remaining binary retracts are also isostrophic to +.

B12(x, y) = A−1
1 (A1B1x+A1B2y) (Follows from D3[x, y]).

C12(y, u) = A−1
2 (A2C1y +A2C3u) (Follows from D3[y, u]).

D13(z, w) = A−1
3 (A3D1z +A3D3w) (Follows from D3[z, w]).

E13(x,w) = E1x+ E3w (Follows from D3[x,w]).

12) From (5.1) we get

A(z, u, v) = A13(A−1
1 A12(z, u), v) = A12(z, u) +A3v = A1z +A2u+A3v.

Similarily, from relations in 4), it follows that:

B(x, y, z) = A−1
1 (A1B1x+A1B2y +A1B3z),

C(y, u, v) = A−1
2 (A2C1y +A2C2u+A2C3v),

D(z, v, w) = A−1
3 (A3D1z +A3D2v + A3D3w),

E(x, u, w) = E1x+ E2u+ E3w

13) Let us define

α
A

= Id, λ
A

= A1, µ
A

= A2, ̺
A

= A3,

α
B

= A−1
1 , λ

B
= A1B1, µ

B
= A1B2, ̺

B
= A1B3,

α
C

= A−1
2 , λ

C
= A2C1, µ

C
= A2C2, ̺

C
= A2C3,

α
D

= A−1
3 , λ

D
= A3D1, µ

D
= A3D2, ̺

D
= A3D3,

α
E

= Id, λ
E

= E1, µ
E

= E2, ̺
E

= E3.

We now have: α
A

= α
E

= Id. Also: λ
A
α

B
= Id, µ

A
α

C
= Id and ̺

A
α

D
= Id.

From 2), it follows that: λ
B

= λ
E

, µ
C

= µ
E

and ̺
D

= ̺
E

.
From 8), we infer: µ

B
y + λ

C
y = 0, ̺

B
z + λ

D
z = 0 and ̺

C
v + µ

D
v = 0.
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14) Finally, we can express all five quasigroup operations using common formula
F (x, y, z) = α

F
(λ

F
x+ µ

F
y + ̺

F
z). �
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