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HYPERBOLIC ARCTANGENT SUMMATIONS
OF PELL AND PELL–LUCAS POLYNOMIALS

Dongwei Guo and Wenchang Chu

Abstract. The telescopic approach is systematically employed to examine
sums for products of hyperbolic arctangent functions whose arguments are Pell
and Pell–Lucas polynomials. Numerous summation formulae are established
in closed forms. Several identities concerning Fibonacci and Lucas numbers
are deduced as particular cases.

1. Introduction and motivation

Fibonacci and Lucas numbers are well–known for their wide applications in
number theory and combinatorics (see the monograph by Koshy [8] and [3, 4, 6]).
Their polynomial extensions introduced by Horadam and Mahon [7] are now called
Pell and Pell–Lucas polynomials (see also Koshy [9]) that are defined by the fol-
lowing recurrence relations:

Pn(x) = 2x Pn−1(x) + Pn−2(x) with P0(x) = 0 and P1(x) = 1,

Qn(x) = 2x Qn−1(x) + Qn−2(x) with Q0(x) = 2 and Q1(x) = 2x.

These polynomials have the expressions in the Binet forms

Pn(x) =
αn − βn

α − β
and Qn(x) = αn + βn

where

α := α(x) = x +
√

x2 + 1 and β := β(x) = x −
√

x2 + 1.

As particular examples, we have the following well–known numbers:

• Fibonacci number Fn = Pn(1
2 ):

Fn = Fn−1 + Fn−2 with F0 = 0 and F1 = 1.

• Lucas number Ln = Q
n
(1

2 ):

Ln = Ln−1 + Ln−2 with L0 = 2 and L1 = 1.
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• Pell number Pn = Pn(1):

Pn = 2Pn−1 + Pn−2 with P0 = 0 and P1 = 1.

• Pell–Lucas number Qn = Qn(1):

Qn = 2Qn−1 + Qn−2 with Q0 = 2 and Q1 = 2.

The telescoping method has been shown powerful in dealing with finite sums
and infinite series (see [2, 13] for example). This approach was employed by Ade-
goke [1] and Melham–Shannon [13] to examine finite sums of arctangent function
with arguments being Fibonacci and Lucas numbers. Mahon–Horadam [12] and
the authors [5] evaluated a large class of arctant series whose arguments involve
both Pell and Pell–Lucas polynomials.

Inspired by the following formula due to Melham and Shannon [13]

(1.1) ln
√

3 =

∞
∑

k=1

artanh
1

F2k+2

we shall explore applications of the telescopic approach to the series concerning the
products of two hyperbolic arctangent functions whose arguments involve both Pell
and Pell–Lucas polynomials. In the next section, five summation formulae about
products of artanh function involving the Pell polynomials will be proved. Five
analogous formulae will be shown in Section 3 about the Pell–Lucas polynomials.
Then in Section 4, we shall establish six closed formulae about cross products of
artanh functions with their arguments involving both Pell and Pell–Lucas polyno-
mials. Finally, the paper will end up with Section 5, where more identities will be
derived by making use of Cassini–like formulae for Pell and Pell–Lucas polynomials.

Throughout the paper, the following two known formulae about hyperbolic
arctangent functions will be crucial:

artanh x + artanh y = artanh
x + y

1 + xy
,(1.2)

artanh x − artanh y = artanh
x − y

1 − xy
.(1.3)

When passing from finite sums to infinite series, we shall frequently utilize the
following zero limits limn→∞ α−n(x) = limn→∞ artanh α−n(x) = 0 provided that
x is a positive real number. In addition, the contents from Section 2 to Section 4
are synchronized with their counterparts appearing in [5] so that the reader are
facilitated for comparison between these two classes of identities.

2. Identities involving Pk(x)

By combining (1.2) and (1.3) with the Binet form of the Pell polynomial Pk(x),
we can easily derive the following relations:

[P1] artanh
1

P2k−1(x)
√

x2 + 1
= 2 artanh α1−2k.

[P2] artanh
x

P2k(x)
√

x2 + 1
= artanh α1−2k − artanh α−1−2k.
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[P3] artanh
1

P2k−1(x)
= artanh α2−2k + artanh α−2k.

[P4] artanh
2x

P2k(x)
= artanh α2−2k − artanh α−2−2k.

[P5] artanh
2x2 + 1

P2k−1(x)
√

x2 + 1
= artanh α3−2k + artanh α−1−2k.

According to the telescoping approach, we have from [P2]

n
∑

k=1

artanh
x

P2k(x)
√

x2 + 1
= artanh α−1 − artanh α−1−2n

and its limiting form as n → ∞
∞

∑

k=1

artanh
x

P2k(x)
√

x2 + 1
= artanh α−1

as well as two particular examples:

x =
1

2
:

∞
∑

k=1

artanh
1√

5F2k

=
1

2
ln(2 +

√
5),

x = 1 :

∞
∑

k=1

artanh
1√

2P2k

=
1

2
ln(1 +

√
2).

Analogously, from [P4], we have the summation formula

n
∑

k=2

artanh
2x

P2k(x)
= artanh α−2 + artanh α−4 − artanh α−2n − artanh α−2−2n

and its limiting form as n → ∞
∞

∑

k=2

artanh
2x

P2k(x)
= artanh α−2 + artanh α−4

as well as two infinite series identities:

x =
1

2
:

∞
∑

k=2

artanh
1

F2k

= ln
√

3,

x = 1 :

∞
∑

k=2

artanh
2

P2k

= ln

√

3

2
;

where the former corresponding to (1.1), anticipated in the introduction.
From [P3], we have the alternating series

n
∑

k=2

(−1)k artanh
1

P2k−1(x)
= artanh α−2 + (−1)n artanh α−2n
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and its limiting form as n → ∞
∞

∑

k=2

(−1)k artanh
1

P2k−1(x)
= artanh α−2

as well as two infinite identities:

x =
1

2
:

∞
∑

k=2

(−1)k artanh
1

F2k−1
=

1

4
ln 5,

x = 1 :
∞

∑

k=2

(−1)k artanh
1

P2k−1
=

1

4
ln 2.

They are simple examples. Now we are going to derive, by examining products
of [P1–P5], five further summation formulae involving Pk(x).

Theorem 2.1.

n
∑

k=1

artanh
x√

x2 +1 P2k(x)

{

artanh
1√

x2 +1 P2k+1(x)
+ artanh

1√
x2+1 P2k−1(x)

}

= 2 artanh2 α−1 − 2 artanh2 α−1−2n.

When n → ∞, we have the infinite series identity.

Corollary 2.1.
∞

∑

k=1

artanh
x√

x2 +1 P2k(x)

{

artanh
1√

x2+1 P2k+1(x)
+ artanh

1√
x2+1 P2k−1(x)

}

= 2 artanh2 α−1.

Proof of Theorem 2.1. According to [P1], we have

artanh
1√

x2 + 1 P2k−1(x)
+ artanh

1√
x2 + 1 P2k+1(x)

= 2 artanh α1−2k + 2 artanh α−1−2k.

Multiplying this equation by [P2] and then summing the resultant one over k from
1 to n by telescoping, we obtain the desired formula. �

Theorem 2.2.
n

∑

k=2

artanh
1√

x2+1 P2k−1(x)

{

artanh
x√

x2+1 P2k−2(x)
+ artanh

x√
x2 +1 P2k(x)

}

= 2 artanh α−1 artanh α−3 − 2 artanh α1−2n artanh α−1−2n.

Its limiting form as n → ∞ gives rise to the infinite series identity.

Corollary 2.2.
∞

∑

k=2

artanh
1√

x2+1 P2k−1(x)

{

artanh
x√

x2+1 P2k−2(x)
+ artanh

x√
x2 +1 P2k(x)

}

= 2 artanh α−1 artanh α−3.
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Proof of Theorem 2.2. By using [P2], we have

artanh
x√

x2 +1P2k−2(x)
+ artanh

x√
x2+1P2k(x)

= artanh α3−2k − artanh α−1−2k.

The proof follows by summing the product of the above equation with [P1] for k
from 2 to n. �

As special cases, the following two identities about Fibonacci and Pell numbers
can be obtained from both Corollary 2.1 and Corollary 2.2:

x =
1

2
:

∞
∑

k=1

artanh
1√

5F2k

{

artanh
2√

5F2k−1
+ artanh

2√
5F2k+1

}

=
1

2
ln2 (

2+
√

5
)

,

x = 1 :

∞
∑

k=1

artanh
1√
2Pk

artanh
1√

2Pk+1
=

1

2
ln2 (

1 +
√

2
)

;

where the last series is justified by the bisection series
∞

∑

k=1

artanh
1√

2P2k

{

artanh
1√

2P2k−1
+ artanh

1√
2P2k+1

}

.

Theorem 2.3.

n
∑

k=2

artanh
2x

P2k(x)

{

artanh
1

P2k−1(x)
+ artanh

1

P2k+1(x)

}

=
(

artanh α−2 + artanh α−4)2 −
(

artanh α−2n + artanh α−2−2n
)2

.

Its limiting form as n → ∞ leads to the infinite series identity.

Corollary 2.3.

∞
∑

k=2

artanh
2x

P2k(x)

{

artanh
1

P2k−1(x)
+ artanh

1

P2k+1(x)

}

= (artanh α−2 + artanh α−4)2.

Proof of Theorem 2.3. In view of [P3], we have

artanh
1

P2k−1(x)
+ artanh

1

P2k+1(x)

= artanh α2−2k + 2 artanh α−2k + artanh α−2−2k.

Multiplying [P4] with the above equation and then summing over k from 2 to n by
telescoping, we get the expected formula. �

Theorem 2.4.
n

∑

k=2

artanh
1

P2k+1(x)

{

artanh
2x

P2k(x)
+ artanh

2x

P2k+2(x)

}

= (artanh α−2 + artanh α−4) × (artanh α−4 + artanh α−6)

− (artanh α−2n + artanh α−2−2n) × (artanh α−2−2n + artanh α−4−2n).
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Its limiting form as n → ∞ results in the infinite series identity.

Corollary 2.4.

∞
∑

k=2

artanh
1

P2k+1(x)

{

artanh
2x

P2k(x)
+ artanh

2x

P2k+2(x)

}

= (artanh α−2 + artanh α−4) × (artanh α−4 + artanh α−6).

Proof of Theorem 2.4. From [P4], we have

artanh
2x

P2k(x)
+ artanh

2x

P2k+2(x)
= artanh α2−2k − artanh α−2−2k

+ artanh α−2k − artanh α−4−2k.

Multiplying this by [P3], we can reformulate the result as

artanh
1

P2k+1(x)

{

artanh
2x

P2k(x)
+ artanh

2x

P2k+2(x)

}

= (artanh α−2k + artanh α−2−2k) × (artanh α−2k + artanh α2−2k)

− (artanh α−2k + artanh α−2−2k) × (artanh α−2−2k + artanh α−4−2k).

Summing this equation over k from 2 to n by telescoping, we get the desired
result. �

The following two identities can be deduced from both Corollary 2.3 and Corol-
lary 2.4:

x =
1

2
:

∞
∑

k=3

artanh
1

Fk

artanh
1

Fk+1
=

1

4
ln2 3,

x = 1 :

∞
∑

k=2

artanh
2

P2k

{

artanh
1

P2k−1
+ artanh

1

P2k+1

}

=
1

4
ln2 3

2
;

where the former follows from the bisection series
∞

∑

k=2

artanh
1

F2k

{

artanh
1

F2k−1
+ artanh

1

F2k+1

}

.

Theorem 2.5.
n

∑

k=2

artanh
2x2 + 1

P2k−1(x)
√

x2 + 1

{

artanh
x

P2k−2(x)
√

x2 + 1
+ artanh

x

P2k(x)
√

x2 + 1

}

= artanh2 α−1 + artanh2 α−3 − artanh2 α1−2n − artanh2 α−1−2n.

Its limiting form as n → ∞ yields the infinite series identity.

Corollary 2.5.

∞
∑

k=2

artanh
2x2 + 1

P2k−1(x)
√

x2 + 1

{

artanh
x

P2k−2(x)
√

x2 + 1
+ artanh x

P2k(x)
√

x2+1

}

= artanh2 α−1 + artanh2 α−3.
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Proof of Theorem 2.5. Keeping in mind [P2], we have

artanh
x

P2k−2(x)
√

x2+1
+ artanh

x

P2k(x)
√

x2 +1
= artanh α3−2k − artanh α−1−2k.

Then the formula follows by multiplying the above equation with [P5] and then
summing for k from 2 to n by telescoping. �

As particular cases, two infinite identities are recorded below:

x =
1

2
:

∞
∑

k=2

artanh
3√

5F2k−1

{

artanh
1√

5F2k−2
+ artanh

1√
5F2k

}

=
1

4
ln2(2 +

√
5) +

1

4
ln2 1 +

√
5

2
,

x = 1 :

∞
∑

k=2

artanh
3√

2P2k−1

{

artanh
1√

2P2k−2
+ artanh

1√
2P2k

}

=
1

4
ln2(1 +

√
2) +

1

4
ln2 1 + 5

√
2

7
.

3. Identities involving Qk(x)

In view of (1.2) and (1.3) as well as the Binet form of the Pell–Lucas polynomial
Qk(x), we have similarly the following expressions:

[Q1] artanh
2

Q2k(x)
= 2 artanh α−2k.

[Q2] artanh
2x

Q2k−1(x)
= artanh α2−2k − artanh α−2k.

[Q3] artanh
2
√

x2 + 1

Q2k(x)
= artanh α1−2k + artanh α−1−2k.

[Q4] artanh
4x

√
x2 + 1

Q2k−1(x)
= artanh α3−2k − artanh α−1−2k.

[Q5] artanh
2(2x2 + 1)

Q2k(x)
= artanh α2−2k + artanh α−2−2k.

Applying the telescoping method to [Q2], we have the summation formula

n
∑

k=2

artanh
2x

Q2k−1(x)
= artanh α−2 − artanh α−2n

and its limiting version as n → ∞
∞

∑

k=2

artanh
2x

Q2k−1(x)
= artanh α−2
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as well as two particular cases:

x =
1

2
:

∞
∑

k=2

artanh
1

L2k−1
=

1

4
ln 5,

x = 1 :

∞
∑

k=2

artanh
2

Q2k−1
=

1

4
ln 2.

Alternatively, we have from [Q4]
n

∑

k=2

artanh
4x

√
x2 + 1

Q2k−1(x)
= artanh α−1 + artanh α−3 − artanh α1−2n − artanh α−1−2n

and its limiting version as n → ∞
n

∑

k=2

artanh
4x

√
x2 + 1

Q2k−1(x)
= artanh α−1 + artanh α−3

as well as two infinite series:

x =
1

2
:

∞
∑

k=2

artanh

√
5

L2k−1
=

1

2
ln

7 + 3
√

5

2
,

x = 1 :

∞
∑

k=2

artanh
4
√

2

Q2k−1
=

1

2
ln

11 + 6
√

2

7
.

Similarly, we have from [Q3] the alternating series
n

∑

k=1

(−1)k−1 artanh
2
√

x2 + 1

Q2k
(x)

= artanh α−1 + (−1)n−1 artanh α−1−2n

and its limiting version as n → ∞
∞

∑

k=1

(−1)k−1 artanh
2
√

x2 + 1

Q2k(x)
= artanh α−1

as well as two particular series:

x =
1

2
:

∞
∑

k=1

(−1)k−1 artanh

√
5

L2k

=
1

2
ln(2 +

√
5),

x = 1 :
∞

∑

k=1

(−1)k−1 artanh
2
√

2

Q2k

=
1

2
ln(1 +

√
2).

Now, we shall examine, by means of telescoping method, products of [Q1–Q5]
and establish further five summation formulae for Q

k
(x).

Theorem 3.1.

n
∑

k=2

artanh
2x

Q2k−1(x)

{

artanh
2

Q2k−2(x)
+ artanh

2

Q2k(x)

}

= 2 artanh2 α−2 − 2 artanh2 α−2n.
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Its limiting form as n → ∞ brings about the infinite series identity.

Corollary 3.1.

∞
∑

k=2

artanh
2x

Q2k−1(x)

{

artanh
2

Q2k−2(x)
+ artanh

2

Q2k
(x)

}

= 2 artanh2 α−2.

Proof of Theorem 3.1. According to [Q1], we have

artanh
2

Q2k−2(x)
+ artanh

2

Q2k
(x)

= 2 artanh α2−2k + 2 artanh α−2k.

Multiplying this with [Q2] and then summing over k from 2 to n by telescoping,
we find the desired summation formula. �

Theorem 3.2.

(3.1)

n
∑

k=2

artanh
2

Q2k(x)

{

artanh
2x

Q2k−1(x)
+ artanh

2x

Q2k+1(x)

}

= 2 artanh α−2 artanh α−4 − 2 artanh α−2n artanh α−2−2n.

Its limiting form as n → ∞ gives rise to the infinite series identity.

Corollary 3.2.

∞
∑

k=2

artanh
2

Q2k(x)

{

artanh
2x

Q2k−1(x)
+ artanh

2x

Q2k+1(x)

}

= 2 artanh α−2 artanh α−4.

Proof of Theorem 3.2. By means of [Q2], we have

artanh
2x

Q2k−1(x)
+ artanh

2x

Q2k+1(x)
= artanh α2−2k − artanh α−2−2k.

Then the expected summation formula follows by multiplying this with [Q1] and
then summing over k from 2 to n by telescoping. �

In particular, we can deduce, from both Corollary 3.1 and Corollary 3.2, the
following two further interesting identities:

x =
1

2
:

∞
∑

k=2

artanh
1

L2k−1

{

artanh
2

L2k−2
+ artanh

2

L2k

}

=
1

8
ln2 5,

x = 1 :

∞
∑

k=2

artanh
2

Qk

artanh
2

Qk+1
=

1

8
ln2 2;

where the latter one is simplified from the bisection series

∞
∑

k=2

artanh
2

Q2k−1

{

artanh
2

Q2k−2
+ artanh

2

Q2k

}

.
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Theorem 3.3.

n
∑

k=2

artanh
4x

√
x2 + 1

Q2k−1(x)

{

artanh
2
√

x2 + 1

Q2k−2(x)
+ artanh

2
√

x2 + 1

Q2k(x)

}

= (artanh α−1 + artanh α−3)2 − (artanh α1−2n + artanh α−1−2n)2.

When n → ∞, this leads us to the infinite series identity.

Corollary 3.3.

∞
∑

k=2

artanh
4x

√
x2 + 1

Q2k−1(x)

{

artanh
2
√

x2 + 1

Q2k−2(x)
+ artanh

2
√

x2 + 1

Q2k
(x)

}

= (artanh α−1 + artanh α−3)2.

Proof of Theorem 3.3. In view of [Q3], we have

artanh
2
√

x2 + 1

Q2k−2(x)
+ artanh

2
√

x2 + 1

Q2k+2(x)

= artanh α3−2k + artanh α−1−2k + 2 artanh α1−2k.

Multiplying this by [Q4] and then summing over k from 2 to n, we complete the
proof. �

Theorem 3.4.

n
∑

k=2

artanh
2
√

x2 + 1

Q2k(x)

{

artanh
4x

√
x2 + 1

Q2k−1(x)
+ artanh

4x
√

x2 + 1

Q2k+1(x)

}

= (artanh α−1 + artanh α−3) × (artanh α−3 + artanh α−5)

− (artanh α1−2n + artanh α−1−2n) × (artanh α−1−2n + artanh α−3−2n).

Its limiting form as n → ∞ results in the infinite series identity.

Corollary 3.4.

∞
∑

k=2

artanh
2
√

x2 + 1

Q2k(x)

{

artanh
4x

√
x2 + 1

Q2k−1(x)
+ artanh

4x
√

x2 + 1

Q2k+1(x)

}

= (artanh α−1 + artanh α−3) × (artanh α−3 + artanh α−5).

Proof of Theorem 3.4. Keeping in mind [Q4], we have

artanh
4x

√
x2 + 1

Q2k−1(x)
+ artanh

4x
√

x2 + 1

Q2k+1(x)

= artanh α3−2k − artanh α−1−2k + artanh α1−2k − artanh α−3−2k.

The proof is done by multiplying this by [Q3] and then summing over k from 2
to n. �
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Both Corollaries 3.3 and 3.4 contain the following two particular cases.

x =
1

2
:

∞
∑

k=2

artanh

√
5

Lk

artanh

√
5

Lk+1
= 4 ln2 1 +

√
5

2
,

x = 1 :

∞
∑

k=2

artanh
4
√

2

Q2k−1

{

artanh
2
√

2

Q2k−2
+ artanh

2
√

2

Q2k

}

= ln2 3 +
√

2√
7

.

Theorem 3.5.

n
∑

k=2

artanh
2(2x2 + 1)

Q2k
(x)

{

artanh
2x

Q2k−1(x)
+ artanh

2x

Q2k+1(x)

}

= artanh2 α−2 + artanh2 α−4 − artanh2 α−2n − artanh2 α−2−2n.

Its limiting form as n → ∞ yields the infinite series identity:

Corollary 3.5.

∞
∑

k=2

artanh
2(2x2 + 1)

Q2k(x)

{

artanh
2x

Q2k−1(x)
+ artanh

2x

Q2k+1(x)

}

= artanh2 α−2 + artanh2 α−4.

Proof of Theorem 3.5. Considering [Q2], we have

artanh
2x

Q2k−1(x)
+ artanh

2x

Q2k+1(x)
= artanh α2−2k − artanh α−2−2k.

Multiplying this by [Q5] and then summing over k from 2 to n by telescoping, we
arrive at the desired formula in the theorem. �

As special cases, we deduce two further identities from this corollary:

x =
1

2
:

∞
∑

k=2

artanh
3

L2k

{

artanh
1

L2k−1
+ artanh

1

L2k+1

}

=
1

16
ln2 5 +

1

16
ln2 9

5 ,

x = 1 :

∞
∑

k=2

artanh
6

Q2k

{

artanh
2

Q2k−1
+ artanh

2

Q2k+1

}

=
1

16
ln2 2 +

1

4
ln2 3

√
2

4 .

4. Identities involving both Pk(x) and Qk(x)

This section will be devoted to cross products between [P1–P5] and [Q1–Q5].
Six summation formulae containing both Pell and Pell–Lucas polynomials will be
established via telescoping method.

Firstly, for [P1] and [Q4], by adding their product with respect to k from 2 to
n and then using telescoping method, we have the summation formula below.

Theorem 4.1.

n
∑

k=2

artanh
1√

x2 + 1 P2k−1(x)
artanh

4x
√

x2 + 1

Q2k−1(x)

= 2 artanh α−1 artanh α−3 − 2 artanh α1−2n artanh α−1−2n.
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When n → ∞, this reduces to the infinite series identity.

Corollary 4.1.

∞
∑

k=2

artanh
1√

x2 + 1 P2k−1(x)
artanh

4x
√

x2 + 1

Q2k−1(x)
= 2 artanh α−1 artanh α−3.

Two special cases are highlighted as follows:

x =
1

2
:

∞
∑

k=2

artanh
2√

5F2k−1
artanh

√
5

L2k−1
=

1

2
ln(2 +

√
5) ln

1 +
√

5

2
,

x = 1 :

∞
∑

k=2

artanh
1√

2P2k−1
artanh

4
√

2

Q2k−1
=

1

2
ln(1 +

√
2) ln

1 + 5
√

2

7
.

Secondly, keeping in mind of the product of [P4] and [Q1], we have the following
formula.

Theorem 4.2.

n
∑

k=2

artanh
2x

P2k(x)
artanh

2

Q2k(x)

= 2 artanh α−2 artanh α−4 − 2 artanh α−2n artanh α−2−2n.

Its limiting case as n → ∞ gives rise to the infinite series identity.

Corollary 4.2.

∞
∑

k=2

artanh
2x

P2k(x)
artanh

2

Q2k(x)
= 2 artanh α−2 artanh α−4.

As particular cases, we record two examples of this corollary:

x =
1

2
:

∞
∑

k=2

artanh
1

F2k

artanh
2

L2k

=
1

4
ln 5 ln

3√
5

,

x = 1 :

∞
∑

k=2

artanh
2

P2k

artanh
2

Q2k

=
1

4
ln 2 ln

3
√

2

4
.

Now, making product of [P2] and [Q3], we have the formula below.

Theorem 4.3.

n
∑

k=1

artanh
x

P2k(x)
√

x2 + 1
artanh

2
√

x2 + 1

Q2k(x)
= artanh2 α−1 − artanh2 α−1−2n.

Letting n → ∞, we get the following infinite series identity.

Corollary 4.3.

∞
∑

k=1

artanh
x

P2k(x)
√

x2 + 1
artanh

2
√

x2 + 1

Q2k(x)
= artanh2 α−1.
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Two particular cases for x = 1/2 and x = 1 read as follows:

x =
1

2
:

∞
∑

k=1

artanh
1√

5F2k

artanh

√
5

L2k

=
1

4
ln2(2 +

√
5),

x = 1 :

∞
∑

k=1

artanh
1√

2P2k

artanh
2
√

2

Q2k

=
1

4
ln2(1 +

√
2).

Analogously, the product of [P3] and [Q2] leads to the following formula.

Theorem 4.4.

n
∑

k=2

artanh
1

P2k−1(x)
artanh

2x

Q2k−1(x)
= artanh2 α−2 − artanh2 α−2n.

By letting n → ∞, we find the infinite series identity below.

Corollary 4.4.
∞

∑

k=2

artanh
1

P2k−1(x)
artanh

2x

Q2k−1(x)
= artanh2 α−2.

Two particular cases are given below as examples:

x =
1

2
:

∞
∑

k=2

artanh
1

F2k−1
artanh

1

L2k−1
=

1

16
ln2 5,

x = 1 :

∞
∑

k=2

artanh
1

P2k−1
artanh

2

Q2k−1
=

1

16
ln2 2.

By multiplying [P4] and [Q5], we have the following formula.

Theorem 4.5.

n
∑

k=2

artanh
2x

P2k(x)
artanh

2(2x2 + 1)

Q2k(x)

= artanh2 α−2 + artanh2 α−4 − artanh2 α−2n − artanh2 α−2−2n.

Its limiting case as n → ∞ results in the infinite series identity.

Corollary 4.5.
∞

∑

k=2

artanh
2x

P2k(x)
artanh

2(2x2 + 1)

Q2k(x)
= artanh2 α−2 + artanh2 α−4.

This identity contains the two infinite series below as particular cases:

x =
1

2
:

∞
∑

k=2

artanh
1

F2k

artanh
3

L2k

=
1

16
ln2 5 +

1

4
ln2 3√

5
,

x = 1 :
∞

∑

k=2

artanh
2

P2k

artanh
6

Q2k

=
1

16
ln2 2 +

1

4
ln2 3

√
2

4
.

Alternatively, the product of [P5] and [Q4] yields the summation formula below.
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Theorem 4.6.

n
∑

k=2

artanh
4x

√
x2 + 1

Q2k−1(x)
artanh

2x2 + 1√
x2 + 1 P2k−1(x)

= artanh2 α−1 + artanh2 α−3 − artanh2 α1−2n − artanh2 α−1−2n.

Its limiting form as n → ∞ becomes the infinite series identity.

Corollary 4.6.

∞
∑

k=2

artanh
4x

√
x2 + 1

Q2k−1(x)
artanh

2x2 + 1√
x2 + 1 P2k−1(x)

= artanh2 α−1 + artanh2 α−3.

This identity implies two further summation formulae:

x =
1

2
:

∞
∑

k=2

artanh

√
5

L2k−1
artanh

3√
5F2k−1

=
1

4
ln2(2 +

√
5) +

1

4
ln2 1 +

√
5

2
,

x = 1 :
∞

∑

k=2

artanh
4
√

2

Q2k−1
artanh

3√
2P2k−1

=
1

4
ln2(1 +

√
2) +

1

4
ln2 1 + 5

√
2

7
.

Finally, we point out that more similar identities can be obtained by using the
telescope method. For example, considering the following two formulae

artanh
x(4x2 + 3)√
x2 + 1 P2k(x)

= artanh α3−2k − artanh α−3−2k,

artanh
2
√

x2 + 1(4x2 + 1)

Q2k(x)
= artanh α3−2k + artanh α−3−2k;

we can derive the identity

n
∑

k=2

artanh
x(4x2 + 3)√
x2 + 1 P2k(x)

artanh
2
√

x2 + 1(4x2 + 1)

Q2k
(x)

= artanh2 α−1 + artanh2 α−3 + artanh2 α−5

− artanh2 α1−2n − artanh2 α−1−2n − artanh2 α−3−2n,

and the corresponding limiting formula

∞
∑

k=2

artanh
x(4x2 + 3)√
x2 + 1 P2k(x)

artanh
2
√

x2 + 1(4x2 + 1)

Q2k
(x)

= artanh2 α−1 + artanh2 α−3 + artanh2 α−5.

Letting x = 1
2 and x = 1, we obtain the following two infinite series:

∞
∑

k=2

artanh
4√

5F2k

artanh
2
√

5

L2k

=
1

4

{

ln2(2+
√

5) + ln2 1+
√

5

2
+ ln2 2+5

√
5

11

}

,

∞
∑

k=2

artanh
7√

2P2k

artanh
10

√
2

Q2k

=
1

4

{

ln2(1+
√

2) + ln2 1+5
√

2

7
+ ln2 1+29

√
2

41

}

.
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5. Identities involving squares of Pk(x) and Qk(x)

Recall the Cassini formula for Fibonacci numbers Fn+1Fn−1 = (−1)n + F 2
n

.
There exist analogous ones for Pell and Pell–Lucas polynomials. They will be
employed in this section to evaluate, in closed forms, four classes of sums about
products of two hyperbolic arctangent functions.

5.1. By making use of the following Cassini–like formulae (cf. Koshy [9,
§14.7])

Pk−1(x) + Pk+1(x) = Qk(x),

Pk−1(x) Pk+1(x) = P2
k(x) + (−1)k;

it is not difficult to deduce from (1.2) and (1.3)

artanh
Q

k
(x)

P2
k
(x) + (−1)k + 1

= artanh
1

Pk−1(x)
+ artanh

1

Pk+1(x)
,(5.1)

artanh
2x Pk(x)

P2
k(x) + (−1)k − 1

= artanh
1

Pk−1(x)
− artanh

1

Pk+1(x)
.(5.2)

They were directly utilized by Melham–Shannon [13] to establish

n
∑

k=1

(−1)k−1 artanh
Q2k+3(x)

P2
2k+3(x)

= artanh
1

P4(x)
+ (−1)n−1 artanh

1

P2n+4(x)
,

n
∑

k=1

artanh
2x

P2k+2(x)
= artanh

1

P3(x)
− artanh

1

P2n+3(x)
.

Instead, we shall utilize both (5.1) and (5.2) to derive further summation formulae
concerning products of two hyperbolic arctangent functions.

§5.1A. . Replacing k by 2k, we can rewrite (5.1) and (5.2) as

artanh
1

P2k−1(x)
+ artanh

1

P2k+1(x)
= artanh

Q2k
(x)

P2
2k

(x) + 2
,

artanh
1

P2k−1(x)
− artanh

1

P2k+1(x)
= artanh

2x

P2k(x)
.

Their multiplication gives rise to

n+1
∑

k=2

artanh
Q2k

(x)

P2
2k(x) + 2

artanh
2x

P2k(x)
=

n+1
∑

k=2

{

artanh2 1
P2k−1(x) − artanh2 1

P2k+1(x)

}

.

Then summing this equation for k from 2 to n + 1 by telescoping and replacing k
by k + 1, we find the following formula.

Theorem 5.1.

n
∑

k=1

artanh
Q2k+2(x)

P2
2k+2(x) + 2

artanh
2x

P2k+2(x)
= artanh2 1

4x2 + 1
− artanh2 1

P2n+3(x)
.

Its limiting case as n → ∞ yields the infinite series identity.
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Corollary 5.1.

∞
∑

k=1

artanh
Q2k+2(x)

P2
2k+2(x) + 2

artanh
2x

P2k+2(x)
= artanh2 1

4x2 + 1
.

By specifying particular values for x, we can derive, from the above corollary,
the following two infinite series identities:

x =
1

2
:

∞
∑

k=1

artanh
L2k+2

F 2
2k+2 + 2

artanh
1

F2k+2
=

1

4
ln2 3,

x = 1 :

∞
∑

k=1

artanh
Q2k+2

P 2
2k+2 + 2

artanh
2

P2k+2
=

1

4
ln2 3

2
.

§5.1B. . Alternatively, (5.1) and (5.2) can be restated under the replacement
k by 2k + 1 as

artanh
1

P2k(x)
+ artanh

1

P2k+2(x)
= artanh

Q2k+1(x)

P2
2k+1(x)

,

artanh
1

P2k(x)
− artanh

1

P2k+2(x)
= artanh

2x P2k+1(x)

P2
2k+1(x) − 2

.

First summing their product for k from 2 to n by telescoping, we get the theorem
below.

Theorem 5.2.

n
∑

k=2

artanh
Q2k+1(x)

P2
2k+1(x)

artanh
2x P2k+1(x)

P2
2k+1(x) − 2

= artanh2 1

P4(x)
− artanh2 1

P2n+2(x)
.

Now letting n → ∞ in this theorem, we deduce the infinite series identity.

Corollary 5.2.

∞
∑

k=2

artanh
Q2k+1(x)

P2
2k+1(x)

artanh
2x P2k+1(x)

P2
2k+1(x) − 2

= artanh2 1

4x(2x2 + 1)
.

We record two interesting formulae by choosing particular values of x:

x =
1

2
:

∞
∑

k=2

artanh
L2k+1

F 2
2k+1

artanh
F2k+1

F 2
2k+1 − 2

=
1

4
ln2 2,

x = 1 :

∞
∑

k=2

artanh
Q2k+1

P 2
2k+1

artanh
2P2k+1

P 2
2k+1 − 2

=
1

4
ln2 13

11
.

We remark that when x 6= 1
2 , the formulae displayed in Theorem 5.2 and

Corollary 5.2 can slightly be modified, by adding the respective initial terms cor-
responding to k = 1, as

n
∑

k=1

artanh
Q2k+1(x)

P2
2k+1(x)

artanh
2x P2k+1(x)

P2
2k+1(x) − 2

= artanh2 1

P2(x)
− artanh2 1

P2n+2(x)
,
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∞
∑

k=1

artanh
Q2k+1(x)

P2
2k+1(x)

artanh
2x P2k+1(x)

P2
2k+1(x) − 2

= artanh2 1

2x
;

where for x = 1, the latter becomes the infinite series identity
∞

∑

k=1

artanh
Q2k+1

P 2
2k+1

artanh
2P2k+1

P 2
2k+1 − 2

=
1

4
ln2 3.

5.2. Analogously, there are also two Cassini–like formulae (cf. Koshy [9,
§14.7]) for Pell–Lucas polynomials

Q
k−1(x) + Q

k+1(x) = 4(x2 + 1) Pk(x),

Q
k−1(x) Q

k+1(x) = Q2
k
(x) + 4(−1)k−1(x2 + 1).

In view of (1.2) and (1.3), we have the addition and difference formulae

artanh
1

Q
k−1(x)

+ artanh
1

Q
k+1(x)

= artanh
4(x2 + 1) Pk(x)

Q2
k
(x) − 4(−1)k(x2 + 1) + 1

,(5.3)

artanh
1

Qk−1(x)
− artanh

1

Qk+1(x)
= artanh

2x Qk(x)

Q2
k(x) − 4(−1)k(x2 + 1) − 1

.(5.4)

The two relations can now be employed, by telescoping, to evaluate finite sums
for both a single hyperbolic arctangent function and products of two hyperbolic
arctangent functions.

§5.2A. . Replacing k by 2k, we can rewrite (5.3) and (5.4) as

artanh
4(x2 + 1) P2k(x)

Q2
2k

(x) − 4x2 − 3
= artanh

1

Q2k−1(x)
+ artanh

1

Q2k+1(x)
,(5.5)

artanh
2x Q2k(x)

Q2
2k(x) − 4x2 − 5

= artanh
1

Q2k−1(x)
− artanh

1

Q2k+1(x)
.(5.6)

Summing for k from 2 to n + 1 by telescoping, and then replacing k by k + 1,
we get from (5.5) the formula bellow.

Theorem 5.3.

n
∑

k=1

(−1)k artanh
4(x2 + 1) P2k+2(x)

Q2
2k+2(x) − 4x2 − 3

= (−1)n artanh
1

Q2n+3(x)
− artanh

1

Q3(x)
.

When n → ∞, the above theorem gives rise to the infinite series evaluation
below.

Corollary 5.3.

∞
∑

k=1

(−1)k artanh
4(x2 + 1) P2k+2(x)

Q2
2k+2(x) − 4x2 − 3

= − artanh
1

2x(4x2 + 3)
.

For this corollary, we have two particular cases bellow:

x =
1

2
:

∞
∑

k=1

(−1)k−1 artanh
5F2k+2

L2
2k+2 − 4

=
1

2
ln

5

3
,
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x = 1 :

∞
∑

k=1

(−1)k−1 artanh
8P2k+2

Q2
2k+2 − 7

=
1

2
ln

15

13
.

Analogously, summing for k from 2 to n + 1 by telescoping and then taking
replacement k → k + 1, we get from (5.6) the series bellow.

Theorem 5.4.

n
∑

k=1

artanh
2x Q2k+2(x)

Q2
2k+2(x) − 4x2 − 5

= artanh
1

Q3(x)
− artanh

1

Q2n+3(x)
.

When n → ∞, the above theorem gives rise to the infinite series evaluation
below.

Corollary 5.4.

∞
∑

k=1

artanh
2x Q2k+2(x)

Q2
2k+2(x) − 4x2 − 5

= artanh
1

2x(4x2 + 3)
.

For particular values of x, we deduce the following two formulae:

x =
1

2
:

∞
∑

k=1

artanh
F2k+2

L2
2k+2 − 6

=
1

2
ln

5

3
,

x = 1 :

∞
∑

k=1

artanh
2Q2k+2

Q2
2k+2 − 9

=
1

2
ln

15

13
.

Furthermore, summing the product of (5.5) and (5.6) for k from 2 to n + 1 and
then replacing k by k + 1, we find the formula in the following theorem.

Theorem 5.5.

n
∑

k=1

artanh
4(x2 + 1) P2k+2(x)

Q2
2k+2(x) − 4x2 − 3

artanh
2x Q2k+2(x)

Q2
2k+2(x) − 4x2 − 5

= artanh2 1

2x(4x2 + 3)
− artanh2 1

Q2n+3(x)
.

When n → ∞, the above theorem gives rise to the infinite series evaluation
below.

Corollary 5.5.

∞
∑

k=1

artanh
4(x2 + 1) P2k+2(x)

Q2
2k+2(x) − 4x2 − 3

artanh
2x Q2k+2(x)

Q2
2k+2(x) − 4x2 − 5

= artanh2 1

2x(4x2 + 3)
.

As applications, it yields the following two infinite series identities:

x =
1

2
:

∞
∑

k=1

artanh
5F2k+2

L2
2k+2 − 4

artanh
L2k+2

L2
2k+2 − 6

=
1

4
ln2 5

3
,

x = 1 :

∞
∑

k=1

artanh
8P2k+2

Q2
2k+2 − 7

artanh
2Q2k+2

Q2
2k+2 − 9

=
1

4
ln2 15

13
.
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§5.2B. . Under the replacement k by 2k − 1, the two equalities in (5.3) and
(5.4) become

artanh
1

Q2k−2(x)
+ artanh

1

Q2k(x)
= artanh

4(x2 + 1) P2k−1(x)

Q2
2k−1(x) + 4x2 + 5

,(5.7)

artanh
1

Q2k−2(x)
− artanh

1

Q2k(x)
= artanh

2x Q2k−1(x)

Q2
2k−1(x) + 4x2 + 3

.(5.8)

Firstly, summing for k from 1 to n by telescoping, we get from (5.7) the fol-
lowing formula.

Theorem 5.6.

n
∑

k=1

(−1)k−1 artanh
4(x2 + 1) P2k−1(x)

Q2
2k−1(x) + 4x2 + 5

= artanh
1

Q0(x)
+ (−1)n−1 artanh

1

Q2n(x)
.

Its limiting case as n → ∞ yields a remarkable series whose sum is independent
of x.

Corollary 5.6 (Independent of x).

∞
∑

k=1

(−1)k−1 artanh
4(x2 + 1) P2k−1(x)

Q2
2k−1(x) + 4x2 + 5

=
1

2
ln 3.

The following two infinite series identities correspond, respectively, to x = 1
2

and x = 1:

x =
1

2
:

∞
∑

k=1

(−1)k−1 artanh
5F2k−1

L2
2k−1 + 6

=
1

2
ln 3,

x = 1 :

∞
∑

k=1

(−1)k−1 artanh
8P2k−1

Q2
2k−1 + 9

=
1

2
ln 3.

Secondly, summing for k from 1 to n, we have from (5.7) another formula.

Theorem 5.7.

n
∑

k=1

artanh
2x Q2k−1(x)

Q2
2k−1(x) + 4x2 + 3

= artanh
1

Q0(x)
− artanh

1

Q2n(x)
.

Its limiting case as n → ∞ yields also a sum whose value is independent of x.

Corollary 5.7 (Independent of x).

∞
∑

k=1

artanh
2x Q2k−1(x)

Q2
2k−1(x) + 4x2 + 3

=
1

2
ln 3.

For special cases, we have the two infinite series identities:

x =
1

2
:

∞
∑

k=1

artanh
L2k−1

L2
2k−1 + 4

=
1

2
ln 3,
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x = 1 :

∞
∑

k=1

artanh
2Q2k−1

Q2
2k−1 + 7

=
1

2
ln 3.

Multiplying (5.7) and (5.8) and then summing for k from 1 to n, we have the
formula below.

Theorem 5.8.

n
∑

k=1

artanh
4(x2 + 1) P2k−1(x)

Q2
2k−1(x) + 4x2 + 5

artanh
2x Q2k−1(x)

Q2
2k−1(x) + 4x2 + 3

= artanh2 1

2
− artanh2 1

Q2n(x)
.

Its limiting case as n → ∞ yields the following series whose value is independent
of x.

Corollary 5.8 (Independent of x).
∞

∑

k=1

artanh
4(x2 + 1) P2k−1(x)

Q2
2k−1(x) + 4x2 + 5

artanh
2x Q2k−1(x)

Q2
2k−1(x) + 4x2 + 3

=
1

4
ln2 3.

In particular, two infinite series identities are given as follows:

x =
1

2
:

∞
∑

k=1

artanh
5F2k−1

L2
2k−1 + 6

artanh
L2k−1

L2
2k−1 + 4

=
1

4
ln2 3,

x = 1 :

∞
∑

k=1

artanh
8P2k−1

Q2
2k−1 + 9

artanh
2Q2k−1

Q2
2k−1 + 7

=
1

4
ln2 3.

5.3. By combining the Cassini–like formula (cf. Koshy [9, §14.10])

(5.9) P2
k
(x) − Pk+λ(x) Pk−λ(x) = (−1)k+λ P2

λ
(x)

with (1.2) and (1.3), we can show the following two identities

artanh
Pk(x)

Pk+λ(x)
+ artanh

Pk−λ(x)

Pk(x)
=















artanh
2 P2

k
(x) + (−1)k P2

λ
(x)

P2k(x) Pλ(x)
, λ odd;

artanh
2 P2

k
(x) − (−1)k P2

λ
(x)

Qλ(x) P2
k
(x)

, λ even;

(5.10)

artanh
Pk(x)

Pk+λ(x)
− artanh

Pk−λ(x)

Pk(x)
=















artanh
(−1)k Pλ(x)

P2k(x)
, λ even;

artanh
(−1)k+1 P2

λ(x)

Qλ(x) P2
k(x)

, λ odd.

(5.11)

By means of (5.11), Melham–Shannon [13] obtained directly
n

∑

k=1

artanh
(−1)k−1

2x P2
k
(x)

= artanh
Pn(x)

Pn+1(x)
, with x 6= 1

2
.
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Similarly, letting λ = 1 in (5.10), we have another one
n

∑

k=1

(−1)k artanh
2 P2

k+2(x) + (−1)k

P2k+4(x)
= (−1)n artanh

Pn+2(x)

Pn+3(x)
− artanh

2x

4x2 + 1
.

Now we are going to examine sums corresponding to the products of (5.10)
and (5.11).

§5.3A. . When λ = 1, rewriting (5.10) and (5.11) as

artanh
Pk(x)

Pk+1(x)
+ artanh

Pk−1(x)

Pk(x)
= artanh

2 P2
k(x) + (−1)k

P2k(x)
,

artanh
Pk(x)

Pk+1(x)
− artanh

Pk−1(x)

Pk(x)
= artanh

(−1)k+1

2x P2
k
(x)

,

and then summing their product for k from 3 to n by telescoping, we find, after
having made replacement k → k + 2 and n → n + 2, the summation formula.

Theorem 5.9.

n
∑

k=1

artanh
(−1)k+1

2x P2
k+2(x)

artanh
2 P2

k+2(x) + (−1)k

P2k+4(x)

= artanh2 Pn+2(x)

Pn+3(x)
− artanh2 2x

4x2 + 1
.

Its limiting case as n → ∞ results in the infinite series identity.

Corollary 5.9.

∞
∑

k=1

artanh
(−1)k+1

2x P2
k+2(x)

artanh
2 P2

k+2(x) + (−1)k

P2k+4(x)

= artanh2 (
√

x2 + 1 − x) − artanh2 2x

4x2 + 1
.

Two particular cases are recorded bellow:

x =
1

2
:

∞
∑

k=1

artanh
(−1)k+1

F 2
k+2

artanh
2F 2

k+2 + (−1)k

F2k+4
=

1

4
ln2(2 +

√
5) − 1

4
ln2 3,

x = 1 :

∞
∑

k=1

artanh
(−1)k+1

2P 2
k+2

artanh
2P 2

k+2 + (−1)k

P2k+4
=

1

4
ln2(1 +

√
2) − 1

4
ln2 7

3
.

§5.3B. . Analogously for λ = 2, both (5.10) and (5.11) become

artanh
Pk(x)

Pk+2(x)
+ artanh

Pk−2(x)

Pk(x)
= artanh

P2
k(x) − 2(−1)kx2

(2x2 + 1) P2
k(x)

,

artanh
Pk(x)

Pk+2(x)
− artanh

Pk−2(x)

Pk(x)
= artanh

2(−1)kx

P2k(x)
.

Summing their product for k from 2 to n+1, and then taking replacement k → k+1,
we find by telescoping another formula.
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Theorem 5.10.

n
∑

k=1

artanh
P2

k+1(x) + 2(−1)kx2

(2x2 + 1) P2
k+1(x)

artanh
2(−1)k+1x

P2k+2(x)

= artanh2 Pn+1(x)

Pn+3(x)
+ artanh2 Pn(x)

Pn+2(x)
− artanh2 1

4x2 + 1
.

The limiting case as n → ∞ is given by the following corollary.

Corollary 5.10.

∞
∑

k=1

artanh
P2

k+1(x) + 2(−1)kx2

(2x2 + 1) P2
k+1(x)

artanh
2(−1)k+1x

P2k+2(x)

= 2 artanh2 β2 − artanh2 1

4x2 + 1
.

For application, we record two identities about Fibonacci and Pell numbers:

x =
1

2
:

∞
∑

k=1

artanh
2F 2

k+1 + (−1)k

3F 2
k+1

artanh
(−1)k+1

F2k+2
=

1

8
ln2 5 − 1

4
ln2 3,

x = 1 :

∞
∑

k=1

artanh
P 2

k+1 + 2(−1)k

3P 2
k+1

artanh
2(−1)k+1

P2k+2
=

1

8
ln2 2 − 1

4
ln2 3

2
.

5.4. Now we are going to work out the counterpart formulae for Q(x) by
employing another Cassini–like formula (cf. Koshy [9, §14.10])
(5.12)

Qk+λ(x) Qk−λ(x) − Q2
k(x) = 4(−1)k+λ(1 + x2) P2

λ(x) = (−1)k+λ(Q2
λ(x) − 4(−1)λ)

as well as two reformulated ones by (1.2) and (1.3):

artanh
Qk(x)

Qk+λ(x)
+ artanh

Qk−λ(x)

Qk(x)
=







artanh
2 Q2

k
(x)+(−1)k(Q2

λ
(x)−4)

Q
λ

(x) Q2
k

(x) , λ even;

artanh
2 Q2

k
(x)−(−1)k(Q2

λ
(x)+4)

4(x2+1) Pλ(x) P2k(x) , λ odd;

(5.13)

artanh
Q

k
(x)

Q
k+λ

(x)
− artanh

Qk−λ(x)

Q
k
(x)

=







artanh
(−1)k(4−Q2

λ
(x))

4(x2+1) Pλ(x) P2k(x) , λ even;

artanh
(−1)k(4+Q2

λ
(x))

Q
λ

(x) Q2
k

(x) , λ odd;

(5.14)

§5.4A. . Letting λ = 1 in (5.13) and (5.14), we have

artanh
Qk(x)

Qk+1(x)
+ artanh

Qk−1(x)

Qk(x)
= artanh

Q2
k
(x) − 2(−1)k(x2 + 1)

2(x2 + 1) P2k(x)
,

artanh
Qk(x)

Qk+1(x)
− artanh

Qk−1(x)

Qk(x)
= artanh

2(−1)k(x2 + 1)

x Q2
k
(x)

.

Multiplying them and then summing the resultant expression for k from 2 to n+1,
we find, under the replacement k → k + 1, the formula below.
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Theorem 5.11.

n
∑

k=1

artanh
2(−1)k+1(x2 + 1)

x Q2
k+1(x)

artanh
Q2

k+1(x) + 2(−1)k(x2 + 1)

2(x2 + 1) P2k+2(x)

= artanh2 Qn+1(x)

Qn+2(x)
− artanh2 x

2x2 + 1
.

As n → ∞, the limiting case evaluates the following infinite series.

Corollary 5.11.

∞
∑

k=1

artanh
2(−1)k+1(x2 + 1)

x Q2
k+1(x)

artanh
Q2

k+1(x) + 2(−1)k(x2 + 1)

2(x2 + 1) P2k+2(x)

= artanh2(
√

x2 + 1 − x) − artanh2 x

2x2 + 1
.

Two special cases are produced below as examples:

x =
1

2
:

∞
∑

k=1

artanh
5(−1)k+1

L2
k+1

artanh
2L2

k+1 + 5(−1)k

5F2k+2
=

1

4
ln2(2 +

√
5) − 1

4
ln2 2,

x = 1 :

∞
∑

k=1

artanh
4(−1)k+1

Q2
k+1

artanh
Q2

k+1 + 4(−1)k

4P2k+2
=

1

4
ln2(1 +

√
2) − 1

4
ln2 2.

§5.4B. . Analogously for λ = 2, we have from (5.13) and (5.14)

artanh
Qk(x)

Qk+2(x)
+ artanh

Qk−2(x)

Qk(x)
= artanh

Q2
k(x) + 8(−1)k(x4 + x2)

(2x2 + 1) Q2
k(x)

artanh
Qk(x)

Q
k+2(x)

− artanh
Qk−2(x)

Q
k
(x)

= artanh
2(−1)k+1x

P2k(x)
.

Summing their product for k from 2 to n + 1, we derive, after replacing k by k + 1,
the formula in the following theorem.

Theorem 5.12.

n
∑

k=1

artanh
2(−1)kx

P2k+2(x)
artanh

Q2
k+1(x) − 8(−1)k(x4 + x2)

(2x2 + 1) Q2
k+1(x)

= artanh2 Qn+1(x)

Q
n+3(x)

+ artanh2 Q
n
(x)

Q
n+2(x)

− artanh2 1

4x2+3
− artanh2 1

2x2+1
.

Letting n → ∞ in this theorem, we get the infinite series evaluation.

Corollary 5.12.

∞
∑

k=1

artanh
2(−1)kx

P2k+2(x)
artanh

Q2
k+1(x) − 8(−1)k(x4 + x2)

(2x2 + 1) Q2
k+1(x)

= 2 artanh2 β2 − artanh2 1

4x2 + 3
− artanh2 1

2x2 + 1
.

This formula implies the two infinite series identities:
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x =
1

2
:

∞
∑

k=1

artanh
(−1)k

F2k+2
artanh

2L2
k+1 − 5(−1)k

3L2
k+1

= −1

8
ln2 5 − 1

4
ln2 5

3
,

x =
1

2
:

∞
∑

k=1

artanh
2(−1)k

P2k+2
artanh

Q2
k+1 − 16(−1)k

3Q2
k+1

= −1

8
ln2 2 − 1

4
ln2 4

3
.

Concluding Comments. We have presented a systematic treatment to the
infinite series of hyperbolic arctangent function by making use of the telescoping
method. However, there exist several important series in the literature that are not
covered due to the space limitation. For instance, Ling [10,11] and Zucker [14,15]
evaluated different classes of series involving hyperbolic functions, respectively, by
employing Weierstrass and Jacobi elliptic functions. The interested reader are
advised to consult these papers and the references therein.
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