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ARITHMETIC FUNCTIONS
AT FACTORIAL ARGUMENTS

Jean-Marie De Koninck and William Verreault

Abstract. For various arithmetic functions f : N → R, the behavior of f(n!)
and that of

∑

n6N
f(n!) can be intriguing. For instance, for some functions f ,

we have f(n!) =
∑

k6n
f(k), for others, we have f(n!) =

∑

p6n
f(p) (where

the sum runs over all the primes p 6 n). Also, for some f , their minimum
order coincides with limn→∞ f(n!), for others, it is their maximum order that
does so. Here, we elucidate such phenomena and more generally, we embark
on a study of f(n!) and of

∑

n6N
f(n!) for a wide variety of arithmetical

functions f . In particular, letting d(n) and σ(n) stand respectively for the
number of positive divisors of n and the sum of the positive divisors of n, we
obtain new accurate asymptotic expansions for d(n!) and σ(n!). Furthermore,
setting ρ1(n) := max{d | n : d 6

√
n} and observing that no one has yet

obtained an asymptotic value for
∑

n6N
ρ1(n) as N → ∞, we show how one

can obtain the asymptotic value of
∑

n6N
ρ1(n!).

1. Introduction

It is common to enquire about the average order of an arithmetic function
f : N → R by first examining the behavior of the sum

∑

n6N f(n) for large N .
What if we replace the argument n by n! ? More precisely, given an arithmetic
function f , how does f(n!) behave for large n and what is the asymptotic value of
∑

n6N f(n!) as N → ∞ ? These are natural questions to ask. Yet, in the literature,

there seems to be only a handful of results regarding the study of f(n!) and that of
∑

n6N f(n!) for classical arithmetic functions f . One of the first such functions to
have been closely examined for its exact order at factorial arguments is the number
of positive divisors function d(n). In fact, Ramanujan [30,31] obtained interesting
estimates for d(n!), and later, Erdős, Graham, Ivić, and Pomerance [16] refined his
findings, whereas more recently, Jakimczuk [26, 27] obtained estimates for σ(n!),
where σ(n) stands for the sum of the positive divisors of n.
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46 DE KONINCK AND VERREAULT

Here, more generally, we embark on a study of f(n!) and of
∑

n6N f(n!) for

a wide variety of classical arithmetic functions f . Besides the functions d(n) and
σ(n) just mentioned, we will pay particular attention to the arithmetic functions

ω(n) :=
∑

p|n
p, Ω(n) :=

∑

pα‖n

α, β(n) :=
∑

p|n
p, B(n) :=

∑

pα‖n

αp,

B1(n) :=
∑

pα‖n

pα, γ(n) :=
∏

p|n
p, η(n) := η(pa1

1 · · · par
r ) = a1 · · · ar,

the Euler totient function φ and finally the middle divisors functions

ρ1(n) := max
{

d | n : d 6
√

n
}

and ρ2(n) := min
{

d | n : d >
√

n
}

.

In Section 2, we examine the case of the middle divisors of n!. Then, preliminary
results and statements regarding additive and multiplicative functions are given in
Sections 3 and 4. In Section 5, for various arithmetic functions f , we compare
the behavior of f(n!) with the maximal order of f(n) or their minimal order. The
proofs of the results regarding additive and multiplicative functions are laid out
in Section 6. We conclude with Section 7 where we show that the counterpart at
factorial arguments of the famous Chowla conjecture holds and we examine the
behavior of various similar sums.

As we will see, several of the estimates that we obtain are almost straightfor-
ward whereas others are non trivial and in fact give way to new results, in particular
to new asymptotic expansions for d(n!), σ(n!) and η(n!).

From here on, the letter p is reserved for primes while the letter c with or
without subscript stands for an explicit constant, but not necessarily the same at
each occurrence. Also, we let π(x) stand for the number of primes not exceeding x.
Finally, given an arithmetic function f , we will often refer to the sum

Sf (n) :=
∑

26m6n

f(n).

2. The middle divisors of n!

Before we examine the cases of additive and multiplicative functions, which
are somewhat easier to study, we shall first consider a case of arithmetic functions
which are neither additive nor multiplicative. We are interested in the middle
divisors ρ1(n) and ρ2(n) of a positive integer n, which are defined as

ρ1(n) := max{d | n : d 6
√

n} and ρ2(n) := min{d | n : d >
√

n}.

In particular, ρ1(n) 6
√

n 6 ρ2(n) and ρ1(n)ρ2(n) = n.
In 1976, Tenenbaum [32] proved that

(2.1)
∑

n6N

ρ2(n) =
π2

12

N2

log N

(

1 + O
( 1

log N

))
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and that for any given ε > 0, there exists N0 = N0(ε) such that for all N > N0,

(2.2)
N3/2

(log N)δ+ε
<

∑

n6N

ρ1(n) ≪ N3/2

(log N)δ(log log N)1/2
,

where δ = 1 − 1 + log log 2

log 2
≈ 0.086071.

In 2020, De Koninck and Razafindrasoanaivolala [8] generalised estimate (2.1)
by establishing that, given any real number a > 0 and any positive integer k,

∑

n6N

ρ2(n)a = c0
Na+1

log N
+ c1

Na+1

log2 N
+ · · · + ck−1

Na+1

logk N
+ O

( Na+1

logk+1 N

)

,

where, for ℓ = 0, 1, . . . , k − 1, the constants cℓ = cℓ(a) are explicitly given. They
also proved that, given any integer k > 1 and any real number r > −1,

∑

n6N

ρ2(n)

ρ1(n)r
= h0

N2

log N
+ h1

N2

log2 N
+ · · · + hk−1

N2

logk N
+ O

(
N2

logk+1 N

)

where h0 =
ζ(r + 2)

2
and for each 1 6 ℓ 6 k − 1,

hℓ =

(
r + 2

2

)

cℓ +
ℓ−1∑

ν=0

rcν

2

ℓ−1∏

m=ν

(
m + 1

2

)

,

with, for each ν = 0, 1, . . . , ℓ,

cν =
ν!

(r + 2)ν+1

ν∑

j=0

(r + 2)j(−1)jζ(j)(r + 2)

j!
.

In 2008, Ford [18] considerably improved (2.2) by showing that

∑

n6N

ρ1(n) ≍ N3/2

(log N)δ(log log N)3/2
.

Interestingly, no asymptotic formula for the sum
∑

n6N ρ1(n) has yet been found.

Recently, De Koninck and Razafindrasoanaivolala [9] established that

∑

46n6N
n6=prime

log ρ2(n)

log ρ1(n)
= N log log N + O(N)

and also that, for all N sufficiently large,

c1 N <
∑

26n6N

log ρ1(n)

log ρ2(n)
< c2 N,

where

c1 = 1 − log 2 +

∫ 2

1

1 − log u

u(u + 1)
du +

∫ ∞

3

u − 1

u + 1

ρ(u − 1)

u
du ≈ 0.528087,

c2 = 2 − 2 log 2 ≈ 0.613706.
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As we will now see, the behavior of each of the six sums
(2.3)
∑

n6N

ρ1(n!),
∑

n6N

ρ2(n!),
∑

n6N

ρ1(n!)

ρ2(n!)
,

∑

n6N

ρ2(n!)

ρ1(n!)
,

∑

26n6N

log ρ1(n!)

log ρ2(n!)
,

∑

26n6N

log ρ2(n!)

log ρ1(n!)

is more manageable.

Theorem 2.1. Letting c be the positive constant appearing below estimate
(6.26), we have

∑

n6N

ρ1(n!) =
√

N !
(

1 + O
( 1

N c

))

and
∑

n6N

ρ2(n!) =
√

N !
(

1 + O
( 1

N c

))

.

Theorem 2.2. Letting c be as above, we have
∑

n6N

ρ1(n!)

ρ2(n!)
= N + O

(
N1−c

)
and

∑

n6N

ρ2(n!)

ρ1(n!)
= N + O

(
N1−c

)
.

Theorem 2.3. We have
∑

26n6N

log ρ1(n!)

log ρ2(n!)
= N + O(1) and

∑

26n6N

log ρ2(n!)

log ρ1(n!)
= N + O(1).

Observe that the main difficulty in finding an estimate for any of the sums
appearing in (2.3) at arguments n (and not n!) is that the values of the function
ρ1(n) (resp. ρ2(n)) are spread out over the interval [1,

√
n] (resp. [

√
n, n]). On the

contrary, the values of ρ1(n!) and ρ2(n!) are all near
√

n!, as is made clear in the
following proposition.

Proposition 2.1. To any given sufficiently large integer n, one can associate
two positive integers d1 < d2 both dividing n! and satisfying

(2.4)
(

1 − 1

nc

)√
n! < d1 <

√
n! < d2 <

(

1 +
2

nc

)√
n!,

where c is the constant appearing below estimate (6.26), thereby implying that

(2.5)
(

1 − 1

nc

)√
n! < ρ1(n!) <

√
n! < ρ2(n!) <

(

1 +
2

nc

)√
n!.

Numerical data. In the proof of Proposition 2.1 stated in Section 6.6, we will
create the numbers d1 = d1(n) alluded to in (2.4) so that d1 6 ρ1(n). Interestingly,
one can check that d1 = ρ1(n) in the cases n = 7, 10, 22. These are perhaps the
only ones with that particular property. In the particular cases n = 10, 20, 30, 40,
we obtain the following data.

n n! d1 ⌊
√

n!⌋ ⌊
√

n!⌋/d1

10 3 628 800 1890 1904 1.007407407
28 · 34 · 52 · 7 2 · 33 · 5 · 7

20 2 432 902 008 176 640 000 1 558 878 750 1 559 776 268 1.000575746
218 · 38 · 54 · 72 · 11 · 13 · 17 · 19 2 · 33 · 54 · 11 · 13 · 17 · 19

When n = 30,

n! = 265 252 859 812 191 058 636 308 480 000 000
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= 226 · 314 · 57 · 74 · 112 · 132 · 17 · 19 · 23 · 29,

d1 = 16 283 616 779 520 000 = 211 · 310 · 54 · 17 · 19 · 23 · 29,

⌊
√

n!⌋ = 16 286 585 271 694 955,

⌊
√

n!⌋/d1 = 1.000182299.

When n = 40,

n! = 815 915 283 247 897 734 345 611 269 596 115 894 272 000 000 000

= 238 · 318 · 59 · 75 · 113 · 133 · 172 · 192 · 23 · 29 · 31 · 37,

d1 = 903 280 055 273 332 645 708 800

= 210 · 315 · 52 · 7 · 11 · 133 · 19 · 23 · 29 · 31 · 37,

⌊
√

n!⌋ = 903 280 290 523 322 408 635 610,

⌊
√

n!⌋/d1 = 1.000000260.

Observe that ρ1(10!) = 1 890, ρ1(20!) = 1 559 376 000,
ρ1(30!) = 16 286 248 192 500 000, and ρ1(40!) = 903 280 055 273 332 645 708 800.

3. The case of additive functions

As a first example of additive functions, let us consider the function f(n) =
log n, for which we have f(n!) =

∑

k6n log k = Slog(n). As we will see, for large

families of functions f , we do have that f(n!) = Sf (n).

3.1. Small additive functions. We first consider the case of the “small”
additive functions ω(n) and Ω(n).

Theorem 3.1. We have ω(n!) = π(n) and Ω(n!) = SΩ(n). Moreover,

ω(n!) =
n

log n

(

1 + O
( 1

log n

))

,

Ω(n!) = n
(

log log n + c1 + c2 + O
( 1

log n

))

,

where c1 = γ +
∑

p

(
log(1 − 1

p ) + 1
p

)
and c2 =

∑

p
1

p(p−1) (here, γ stands for the

Euler-–Mascheroni constant).

The proof of Theorem 3.1 will be given in Section 6. Beforehand, we should
mention that the average order of each of the functions ω(n) and Ω(n) has been
studied with great accuracy. In particular, it is well known (see for instance formulas
(6.11) and (6.12) in the book of De Koninck and Luca [12]) that

∑

n6N

ω(n) = N
(

log log N + c1 + O
( 1

log N

))

,

∑

n6N

Ω(n) = N
(

log log N + c1 + c2 + O
( 1

log N

))

.(3.1)
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Similarly, it was proved by De Koninck [5] that

∑

26n6N

1

ω(n)
=

N

log log N

(

1 + O
( 1

log log N

))

,

∑

26n6N

1

Ω(n)
=

N

log log N

(

1 + O
( 1

log log N

))

.

In fact, more accurate formulas can be found in Chapter 5 of the book of De
Koninck and Ivić [11]. In addition, De Koninck [6] proved that

∑

26n6N

Ω(n)

ω(n)
= N + c2

N

log log N
+ O

( N

(log log N)2

)

.

On the other hand, as we will see, the behavior of the sum
∑

26n6N 1/π(n)

turns out to have a connection with the function ω(n!), and interestingly the study
of that particular sum has a long history, a survey of which can be found in [7].
The best known estimate is due to Ivić [23] and can be stated as follows:

(3.2)
∑

26n6N

1

π(n)
=

1

2
log2 N − log N − log log N + c3 + O

( 1

log N

)

,

where c3 is an absolute constant that is known to satisfy 6.6840 < c3 < 6.7830 (see
Berkane and Dusart [3]).

Analogous results for sums of the “small” additive functions ω(n) and Ω(n) at
factorial arguments are fairly easy to obtain. In fact, as we will see in Section 6,
one can obtain most of the following results by combining the above estimates with
Theorem 3.1.

Theorem 3.2. We have

∑

n6N

ω(n!) =
N2

2 log N

(

1 + O
( 1

log N

))

,(3.3)

∑

n6N

Ω(n!) =
N2

2

(

log log N + c1 + c2 + O
( 1

log N

))

,(3.4)

∑

26n6N

1

ω(n!)
=

1

2
log2 N − log N − log log N + c3 + O

( 1

log N

)

,(3.5)

∑

26n6N

1

Ω(n!)
=

log N

log log N

(

1 + O
( 1

log log N

))

,(3.6)

∑

26n6N

Ω(n!)

ω(n!)
= N(log N log log N + (c1 + c2) log N + O(log log N)).(3.7)

3.2. Large additive functions. Next, we consider the “large” additive func-
tions β(n), B(n) and B1(n) defined in Section 1. For these, we have the following.
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Theorem 3.3. For each integer n > 2,

β(n!) =
∑

p6n

p, B(n!) = SB(n), and B1(n!) =
∑

p6n

pαp(n),

where αp(n) is defined below in (6.1). Moreover, for all n > 2,

β(n!) =
n2

2 log n

(

1 + O
( 1

log n

))

,(3.8)

B(n!) =
π2

12

n2

log n

(

1 + O
( 1

log n

))

,(3.9)

B1(n!) = 2n−s2(n) + O
((√

3
)n)

,(3.10)

where s2(n) stands for the sum of the binary digits of n.

Let us recall that Alladi and Erdős [2] have proved that

(3.11)
∑

n6N

β(n) ∼ π2

12

N2

log N
(N → ∞),

and that De Koninck and Ivić [10] later showed that (3.11) can be improved to

∑

n6N

β(n) =

M∑

i=1

biN
2

logi N
+ O

(
N2

logM+1 N

)

,

where M is any preassigned positive integer and where each bi is a computable
constant, with b1 = π2/12. Regarding the function B and B1, Ivić [22] proved that

∑

n6N

B(n) =
∑

n6N

β(n) + O(N2/3) and
∑

n6N

B1(n) =
∑

n6N

β(n) + O(N2/3),

from which it follows in particular that

∑

n6N

B(n) =
π2

12

N2

log N

(

1 + O
( 1

log N

))

(3.12)

∑

n6N

B1(n) =
π2

12

N2

log N

(

1 + O
( 1

log N

))

.(3.13)

Incidently, Ivić [20] proved that

∑

26n6N

1

β(n)
=

N

e
√

2 log N log log N+O(
√

log N log log log N)
,

an estimate that was later slightly improved by Ivić and Pomerance [24].
The factorial counterparts of (3.11), (3.12) and (3.13) are as follows.

Theorem 3.4. As N becomes large,

∑

26n6N

β(n!) =
N3

6 log N

(

1 + O
( 1

log N

))

,(3.14)
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∑

26n6N

B(n!) =
π2

36

N3

log N

(

1 + O
( 1

log N

))

,(3.15)

∑

26n6N

B1(n!) = 2N+O(log N).(3.16)

Furthermore, letting f be any one of the three functions β, B and B1, we have

∞∑

n=2

1

f(n!)
< ∞.

4. The case of multiplicative functions

4.1. Classical sums. Let us first consider the multiplicative functions γ and
φ already mentioned in Section 1.

Theorem 4.1. We have

(4.1) γ(n!) =
∏

p6n

p and φ(n!) = n!
∏

p6n

(1 − 1/p).

Moreover,

(4.2) γ(n!) = e(1+o(1))n and φ(n!) ∼ n!
e−γ

log n
(n → ∞).

Perhaps the most challenging estimates of f(n!) come from multiplicative func-
tions f that are neither completely nor strongly multiplicative, for reasons that will
be detailed in Section 6.2. Of particular interest are the functions d(n) and σ(n),
as well as their higher-order variants dk(n) and σκ(n) for integers k > 2 and real
numbers κ. Here dk(n) :=

∑

a1···ak=n 1 is the number of ways of representing n as

a product of k positive integers and σκ(n) :=
∑

d|n dκ is the sum of the κ-th powers

of the positive divisors of n.
Ramanujan [30] studied the behavior of d(n!) by first conjecturing that for any

given ε > 0,

C
n

log n (1−ε) < d(n!) < C
n

log n (1+ε),

where C = (1 + 1)
√

1 + 1
2

3

√

1 + 1
3

4

√

1 + 1
4 · · · ≈ 3.51750, and by later proving [31]

the more explicit formula

(4.3) d(n!) = C
n

log n +o
(

n
log2 n

)

(n → ∞).

See Andrews and Berndt [1] for more on these estimates. Much later, Erdős,
Graham, Ivić, and Pomerance [16] obtained an asymptotic series expansion for
log d(n!) by showing that for any given integer M > 0,

d(n!) = exp

{

n

log n

M∑

ℓ=0

cℓ

logℓ(n)
+ O

( n

logM+2 n

)
}

,
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where cℓ =

∫ ∞

1

log(⌊t⌋ + 1)

t2 logℓ t dt. In particular,

(4.4) log d(n!) ∼ c0
n

log n
(n → ∞),

where c0 can be shown to be equal to log C. This is because, on the one hand,

c0 =

∫ ∞

1

log(⌊t⌋ + 1)

t2 dt =
∞∑

s=1

∫ s+1

s

log(s + 1)

t2 dt

=

∞∑

s=2

log s

∫ s

s−1

dt

t2 =

∞∑

s=2

log s

s(s − 1)
,

while on the other hand,

log C =

∞∑

s=1

1

s
log

(

1 +
1

s

)

=

∞∑

s=1

1

s
(log(s + 1) − log s)

=

∞∑

s=2

( 1

s − 1
− 1

s

)

log s =

∞∑

s=2

log s

s(s − 1)
.

In fact, as we will see, each cℓ is given by a similar explicit formula, and furthermore

(4.5) cℓ = (ℓ + 1)! + O
(
(1 − 2−ℓ−1)ℓ!

)
.

We shall generalize these results to dk(n!).

Theorem 4.2. Given integers k > 2 and M > 0, we have

dk(n!) = exp

{

n

log n

M∑

ℓ=0

c
(k)
ℓ

logℓ n
+ O

( n

logM+2 n

)
}

,

where

(4.6) c
(k)
ℓ = ℓ!

ℓ∑

j=0

1

j!

∞∑

s=1

logj s

s
log

(

1 +
k − 1

s

)

.

Moreover,

c
(k)
ℓ = (k − 1)(ℓ + 1)! + O

(
(k − 1)2(1 − 2−ℓ−1)ℓ!

)
.

In particular, Theorem 4.2 implies that for each integer k > 2,

(4.7) log dk(n!) ∼ c
(k)
0

n

log n
(n → ∞).

Remark 4.1. Equation (4.6) allows one to estimate each of the constants

c
(k)
ℓ for fixed ℓ and k. For instance, the first five values in the case k = 2 are

c
(2)
0 ≈ 1.2578, c

(2)
1 ≈ 2.1139, c

(2)
2 ≈ 6.1145, c

(2)
3 ≈ 24.1764, c

(2)
4 ≈ 120.3601. It is

readily seen that approximation (4.5) is rapidly accurate.

In the same vein, Fedorov [17] studied the number of divisors of the central
binomial coefficient

(2n
n

)
and obtained a similar asymptotic series. These results

are easily extended to the function dk(n).
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Theorem 4.3. Given integers k > 2 and M > 0, for each integer n > 2, we
have

(4.8)
1

log k
log dk

((
2n

n

))

= π(2n) − π(n) +
n

log n

M∑

ℓ=0

bℓ

logℓ n
+ O

( n

logM+2 n

)

,

where bℓ =
∞∑

n=1

∫ n+1

n+1/2

logℓ t

t2 dt.

Remark 4.2. Note that the right-hand side of (4.8) does not depend on k.
Moreover, we can also deduce from this equality and the computation b0 = log 4 − 1
that

log dk

((
2n

n

))

∼ log k · log 4 · n

log n
(n → ∞).

It is clear that the same ideas can be used with the multiplicative function

η already defined in Section 1 and for which we have log η(n!) ∼ e0
n

log n
, where

e0 =

∫ ∞

1

log⌊t⌋
t2 dt =

∞∑

s=1

log s

s(s + 1)
. This asymptotic formula was first obtained by

Jakimczuk [25], but it was stated in a slightly different form, much weaker than
the full statement we will now provide.

Theorem 4.4. Given any integer M > 0, we have

η(n!) = exp

{

n

log n

M∑

ℓ=0

eℓ

logℓ n
+ O

(
n

logM+2 n

)}

,

where eℓ = ℓ!

ℓ∑

j=0

1

j!

∞∑

s=1

logj(s + 1)

s + 1
log

(

1 +
1

s

)

.

As for the sum of the positive divisors of n!, it was studied by Jakimczuk
[26,27], who obtained that σ(n!) ∼ eγn! log n (n → ∞), and, more explicitly, that

σ(n!) = eγ
√

2πn
(n

e

)n

log n
(

1 + O
( 1

log n

))

.

The proof of these results relies on convoluted arguments. Here, we simplify the
proof and consider the more general function σκ(n!) for any fixed κ > 1, while at
the same time improving the error term.

Theorem 4.5. For all integers n > 2,

σ(n!) = n! eγ log n
(

1 + O
( 1

log3 n

))

,

and for any real κ > 1,

σκ(n!) = (n!)κ ζ(κ)
(

1 + O
( log n

n

))

.
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Here ζ(·) is the Riemann zeta function

(4.9) ζ(s) =
∑

n>1

1

ns
=

∏

p

(

1 − 1

ps

)−1

(Re(s) > 1).

4.2. Sums of multiplicative functions running over factorials. Accord-
ing to Wintner’s theorem (see Theorem 6.13 in the book of De Koninck and
Luca [12]), if two arithmetic functions f(n) and g(n) are connected through the
relation

∞∑

n=1

f(n)

ns
= ζ(s)

∞∑

n=1

g(n)

ns
for all real s > 1

and if moreover
∑∞

n=1 g(n)/n converges absolutely, then
∑

n6N f(n) = (c+o(1))N

as N → ∞, where c :=
∑∞

n=1 g(n)/n. Applying this theorem to the multiplicative
function γ(n)/n, one finds that

(4.10)
∑

n6N

γ(n)

n
= (c + o(1))N, where c =

∏

p

(

1 − 1

p(p + 1)

)

(see [12, Problem 6.5] for the details). Using (4.10) and partial summation, we
obtain that

∑

n6N

γ(n) =
( c

2
+ o(1)

)

N2 (N → ∞).

Also, it is known (see Theorems 320, 324, and 330 in Hardy and Wright [19]) that
∑

n6N

φ(n) =
3

π2 N2 + O(N log N),

∑

n6N

d(n) = N
(

log N + 2γ − 1 + O(N−1/2)
)

,

∑

n6N

σ(n) =
π2

12
N2 + O(N log N).

Moreover, one can prove (see Problem 6.12 and Theorem 6.19 in [12]) that
∑

n6N

log d(n) = log 2 · N
(

log log N + c1 + c4 + O
( 1

log N

))

,

where c1 = γ +
∑

p

(
log(1 − 1

p ) + 1
p

)
and c4 =

∑

p
log(1+1/p)

p(p−1) . For the sums of

σ(n)/φ(n) and φ(n)/σ(n), we have the following.

Proposition 4.1. Given any arbitrarily small number δ > 0,
∑

n6N

σ(n)

φ(n)
= d1N + O(N

1
2 +δ) and

∑

n6N

φ(n)

σ(n)
= d2N + O(N

1
2 +δ),

where

d1 =
∏

p

(

1 +
2p2 − 1

p(p + 1)(p − 1)2

)

≈ 3.61744,
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d2 =
∏

p

(

1 − 2

p(p + 1)
− p − 1

p2

( 1

(p + 1)(p2 + p + 1)

+
1

(p2 + p + 1)(p3 + p2 + p + 1)
+ · · ·

))

≈ 0.45783.

Although we do not claim that the results in Proposition 4.1 are new, we could
not find them in the literature, so for the sake of completeness we shall prove them
in Section 6.3.

For sums running over factorials, we have the following.

Theorem 4.6. We have
∑

n6N

γ(n!) = eN+O
(

N
log N

)

,(4.11)

∑

n6N

φ(n!) = e−γ N !

log N

(

1 + O
( 1

log3 N

))

,(4.12)

∑

n6N

log d(n!) =
c0

2

N2

log N

(

1 + O
( 1

log N

))

,(4.13)

∑

n6N

σ(n!) = eγN ! log N
(

1 + O
( 1

log3 N

))

,(4.14)

∑

n6N

σ(n!)

φ(n!)
= e2γ

(
N log2 N − 2N log N + 2N

) (

1 + O
( 1

log3 N

))

,(4.15)

∑

n6N

φ(n!)

σ(n!)
= e−2γ N

log2 N

(

1 + O
( 1

log3 N

))

.(4.16)

5. Comparing f(n!) with the extremal orders of f(n)

In Sections 3 and 4, we compared estimates of sums of additive and multiplica-
tive functions with their factorial counterparts. It is also interesting to compare
the behavior of f(n!) with the maximum and minimum values of f(n).

In this section, we will use the estimate

(5.1) log n! = n log n − n + O(log n),

which follows from the fact that
∑

k6n log k =
∫ n

1 log t dt + O(log n), which itself
represents a weak form of Stirling’s formula

(5.2) n! ∼
(n

e

)n√
2πn (n → ∞).

Estimate (5.1) thus implies that, as n → ∞,

(5.3) log n ∼ log log n! and n ∼ log n!

log log n!
.

Sometimes f(n!) is very far from the maximum of f(n) over n 6 N . For
instance, maxn6N Ω(n) = ⌊log N/ log 2⌋, with equality if and only if k is the largest
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positive integer such that n = 2k 6 N . However, by combining Theorem 3.1 and
(5.3), we get that

Ω(n!) ∼ log n!
log log log n!

log log n!
(n → ∞),

so that for large n, Ω(n!) < log(n!), whereas for infinitely many integers n we have
Ω(n) > 1.4 log n.

In other instances, f(n!) is almost as large as f(n). Indeed, we know that

integers n 6 N have at most (1 + o(1)) log N
log log N distinct prime factors, with equality

if and only if n is the product of the first y primes, where y is chosen maximally so
that n =

∏

p6y p 6 N . We thus have ω(n) = π(y), and since ω(n!) = π(n), we see
that it is almost of this form, and indeed we have

ω(n!) ∼ log n!

(log log n!)2 (n → ∞).

There is a similar pattern for γ(n). Indeed, it is clear that maxn6x γ(n) =
∏

p6y p

where y is chosen as above. Thus we see that maxn6x γ(n) = γ(y!) = x1+o(1) as
x → ∞, since y ∼ log x. On the other hand,

γ(n!) ∼ (n!)
1+o(1)

log log n! (n → ∞).

Similarly, for d(n), a classical result of Wigert [34] gives

log d(n) 6
log 2 log n

log log n
+ O

( log n

(log log n)2

)

,

with equality if and only if n is the product of the first r primes with r large, while
we see from (4.4) and (5.3) that

log d(n!) ∼ c0
log n!

(log log n!)2 (n → ∞),

as already observed in [16]. More generally,

log dk(n) 6 (log k + o(1))
log n

log log n
(n → ∞),

and we get from (4.7) that

log dk(n!) ∼ c
(k)
0

log n!

(log log n!)2 (n → ∞).

On the other hand, sometimes f(n!) attains the minimal or maximal value of
f(n). For example, we have

φ(n!) ∼ e−γ n!

log log n!
and σ(n!) ∼ eγn! log log n! (n → ∞),

while it is known (see Theorems 323, 328 in [19]) that

lim inf
n→∞

φ(n) log log n

n
= e−γ and lim sup

n→∞

σ(n)

n log log n
= eγ .
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In other words, while the minimal order of φ(n) log log n
n exists and is equal to e−γ , the

subsequence
( φ(n!) log log n!

n!

)

n>1
does converge to e−γ as n → ∞. In the same man-

ner, while the maximal order of σ(n)
n log log n exists and is equal to eγ , the subsequence

( σ(n!)
n! log log n!

)

n>1 converges to eγ .

Regarding the generalized sum of divisors function at factorial arguments, we
have that, given any real number κ > 1,

lim sup
n→∞

σκ(n)

nκ
= ζ(κ),

while we know from Theorem 4.5 that, for κ > 1,

σκ(n!) ∼ (n!)κ ζ(κ) (n → ∞).

6. Proofs of the main results

6.1. Useful tools. One of our main tools will be de Polignac’s formula (at-
tributed by Dickson [15] to Legendre)

(6.1) n! =
∏

p6n

pαp(n), where αp(n) =

∞∑

i=1

⌊
n

pi

⌋

=

⌊logp n⌋
∑

i=1

⌊
n

pi

⌋

.

This formula can be somewhat simplified. Indeed, it is easy to show that

(6.2)

∞∑

i=1

⌊
n

pi

⌋

=
n − sp(n)

p − 1
,

where sp(n) stands for the sum of the digits of n in base p. For a proof of (6.2),
see Problem 438 in the book of De Koninck and Mercier [13].

We will also rely on classical analytic number theory results. In particular,
setting Li(x) :=

∫ x

2
dt

log t , we will be using the prime number theorem in the form

(6.3) π(x) = Li(x) + O
(
x exp

(
−

√

log x
))

,

a consequence of Theorem 12.2 in the book of Ivić [21]. We shall also at times use
the prime number theorem in the simpler form

(6.4) π(N) =
N

log N

(

1 + O
( 1

log N

))

,

which can be equivalently stated as

(6.5) θ(N) = N + O
( N

log N

)

,

where θ is the Chebyshev function

(6.6) θ(N) :=
∑

p6N

log p.
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From the prime number theorem, one easily deduces the following asymptotic
formula for the sum of the primes up to N :

(6.7)
∑

p6N

p =
N2

2 log N

(

1 + O

(
1

log N

))

.

We will also need Mertens’ theorem in its strong form obtained by Dusart [14]:

(6.8)
∏

p6N

(

1 − 1

p

)

=
e−γ

log N

(

1 + O
( 1

log3 N

))

.

6.2. Proofs of Theorems 3.1, 3.3, and 4.1. Let f be an additive function
and g a multiplicative function. Recall that we say that f is completely additive
(resp. g is completely multiplicative) if f(nm) = f(n) + f(m) (resp., g(nm) =
g(n)g(m)) for any positive integers n and m. Also, f is strongly additive (resp. g
is strongly multiplicative) if for any prime p and positive integer a, f(pa) = f(p)
(resp. g(pa) = g(p)).

Note that ω and β are strongly additive, whereas Ω and B are completely
additive.

Let us first state the following easily established proposition.

Proposition 6.1. Let g a strongly additive (resp. strongly multiplicative) func-
tion. Then g(n!) =

∑

m6n g(m) (resp. g(n!) =
∏

p6n g(p)).

The first identity in Theorem 3.1 is a consequence of Proposition 6.1. The
proof of the second identity, namely Ω(n!) = SΩ(n), simply follows from the fact
that Ω(n) is a completely additive function and therefore that

Ω(n!) =
∑

m6n

Ω(m) = SΩ(n).

The last two estimates in Theorem 3.1 follow respectively from estimates (6.4)
and (3.1).

The first identity in Theorem 3.3 follows from Proposition 6.1.
The proof of the second one, namely of the identity B(n!) = SB(n), is imme-

diate as it follows from the fact that B(n) is completely additive.
Estimates (3.8) and (3.9) are immediate consequences of (3.12) and (6.7).
The proof of estimate (3.10) goes as follows. Using de Polignac’s formula (6.1)

and the fact that B1 is additive, we have

B1(n!) = B1

(
∏

p6n

pαp(n)
)

=
∑

p6n

pαp(n)(6.9)

= 2α2(n) +
∑

36p6n

pαp(n) = 2n−s2(n) +
∑

36p6n

p
n−sp(n)

p−1 ,

where we made use of formula (6.2). First observe that

(6.10)
∑

36p6n

p
n−sp(n)

p−1 <
∑

36p6n

pn/(p−1) =
(√

3
)n

(

1 +
∑

56p6n

(
p1/(p−1)

√
3

)n )

.
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Since
p1/(p−1)

√
3

<
9

10
for each prime p > 5, it follows that

∑

56p6n

(
p1/(p−1)

√
3

)n

<

(
9

10

)n

· π(n) < 2 (n > 5),

an inequality which substituted in (6.10) gives

(6.11)
∑

36p6n

p
n−sp(n)

p−1 < (
√

3)n(1 + 2) ≪ (
√

3)n,

which inserted in (6.9) completes the proof of estimate (3.10).
Observing that both γ(n) and φ(n)/n are strongly multiplicative functions,

the identities in (4.1) follow from Proposition 6.1. Moreover, using the identity
log γ(n!) =

∑

p6n log p, which by the prime number theorem in the form (6.5) is

asymptotic to n as n → ∞, proves the first identity in (4.2). The last estimate in
(4.2) follows from Mertens’ theorem given through estimate (6.8). Gathering these
observations, the proof of Theorem 4.1 is complete.

6.3. Proofs of Theorems 3.2, 3.4, and 4.6. Note that (3.5) is an immediate
consequence of (3.2). The other estimates in Theorem 3.2 follow at once from
standard analytic number theory techniques, including partial summation which
we will use repetitively without further mention. For instance, it follows from
Theorem 3.1 and (6.4) that

∑

26n6N

ω(n!) =
∑

26n6N

n

log n

(

1 + O
( 1

log n

))

=
N2

2 log N

(

1 + O
( 1

log N

))

,

which proves (3.3).
We skip the proof of estimate (3.4) since it can be obtained in a similar manner.
The proofs of (3.5) and (3.6) are similar. Hence, we only prove (3.6). By

Theorem 3.1, we have
∑

26n6N

1

Ω(n!)
=

∑

26n6N

1

n
(

log log n + c1 + c2 + O
(

1
log n

))

=
∑

26n6N

1

n log log n
(
1 + O

(
1

log log n

))

=
∑

26n6N

1

n log log n

(

1 + O
( 1

log log n

))

.

The main term is
∑

26n6N

1

n log log n
=

log N + O(1)

log log N
−

∫ N

2

log t + O(1)

t log t(log log t)2 dt.

Integrating by parts, this last integral is

≪
∫ N

2

dt

t(log log t)2 =
log N

(log log N)2 + O(1) −
∫ N

2

dt

t(log log t)3 = O
( log N

(log log N)2

)

.
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The same upper bound holds for the remaining sum in the error term since

∑

26n6N

1

n(log log n)2 =

∫ N

2

dt

t(log log t)2 + O(1).

Combining these estimates yields (3.6).
Finally, combining Theorem 3.1 with (3.1) and (6.4) gives

∑

26n6N

Ω(n!)

ω(n!)
=

∑

26n6N

log n
(

log log n + c1 + c2 + O
(

1
log n

))

1 + O
(

1
log n

)

=
∑

26n6N

log n
(

log log n + c1 + c2 + O
( 1

log n

))(

1 + O
( 1

log n

))

=
∑

26n6N

log n log log n + (c1 + c2)
∑

26n6N

log n + O

(
∑

26n6N

log log n

)

= S1 + S2 + S3,

say. Clearly, S2 = (c1 + c2) N log N + O(N) by (5.1), and S3 = O(N log log N).
Also, from (5.1), we obtain

S1 = (N log N + O(N)) log log N −
∫ N

2

(t log t + O(t))

t log t
dt

= (N log N + O(N)) log log N + O(N) = N log N log log N + O(N log log N).

Estimate (3.7) then follows.
We now prove Theorem 3.4. From Theorem 3.3, we know that

∑

26n6N

β(n!) =
∑

26n6N

n2

2 log n

(

1 + O

(
1

log n

))

.

Approximating the sum by an integral and using integration by parts, we find that

∑

26n6N

n2

2 log n
=

∫ N

2

t2

2 log t
dt + O(1) =

N3

6 log N
+ O(1).

Combining these last two asymptotic formulas proves (3.14). The proof of (3.15)
is along the same lines. Estimate (3.16) is a consequence of the two inequalities

∑

n6N

B1(n!) <
∑

n6N

4 · 2n = 2N+3,

∑

n6N

B1(n!) >
∑

26n6N

2n− log n
log 2 −1 ≫ 2N+O(log N),

where in the first set of inequalities we used the fact that B1(n!) < 2n + 3(
√

3)n <
4 · 2n, a consequence of (6.9) and (6.11), while in the second set of inequalities we

used the fact that s2(n) =
⌊ log n

log 2

⌋
+ 1 6

log n
log 2 + 1.
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Finally, using estimate (3.8), we have that B1(n!) > B(n!) > β(n!) ≫ n2

log n ,

implying that if f stands for any of the functions β, B and B1, we obtain that
∞∑

n=2

1

f(n!)
≪

∞∑

n=2

log n

n2 <
∞∑

n=2

1

n3/2
< ∞,

which completes the proof of Theorem 3.4.
Before proceeding with the proof of Theorem 4.6, we give a proof of Proposi-

tion 4.1.

Proof of Proposition 4.1. First observe that for any real number s > 1,
∞∑

n=1

σ(n)/φ(n)

ns
=

∏

p

(

1 +
σ(p)/φ(p)

ps
+

σ(p2)/φ(p2)

p2s
+ · · ·

)

= ζ(s)
∏

p

(

1 − 1

ps

)

×
(

1 +
(p + 1)/(p − 1)

ps
+

(p2 + p + 1)/(p(p − 1))

p2s
+ · · ·

)

= ζ(s)F (s),

say. It is clear that

F (s) =
∏

p

(

1 +

(
(p + 1)/(p − 1)

ps
− 1

ps

)

+

(
(p2 + p + 1)/(p(p − 1))

p2s
− (p + 1)/(p − 1)

p2s

)

+ · · ·
)

.

Since we intend to use Wintner’s theorem (already mentioned in Subsection 4.2, as
well as its refinement given in Problem 6.3 od [12]), we need to check that F (s)
converges absolutely at s = 1

2 + δ and verify that indeed F (1) = d1. One can
easily check that the first of these two conditions is satisfied. To verify the second
condition, observe that

F (1) =
∏

p

(

1 +
2

p(p − 1)
+

1

p3(p − 1)
+

1

p5(p − 1)
+ · · ·

)

=
∏

p

(

1 +
2

p(p − 1)
+

1

p(p + 1)(p − 1)2

)

=
∏

p

(

1 +
2p2 − 1

p(p + 1)(p − 1)2

)

.

We can therefore apply Wintner’s theorem, thereby establishing our first claim.
To establish the second claim, one can proceed as above and in the end obtain

that
∑∞

n=1

φ(n)/σ(n)

ns
= ζ(s)G(s), with

G(1) =
∏

p

(

1 − 2

p(p + 1)
− p − 1

p2

( 1

(p + 1)(p2 + p + 1)

+
1

(p2 + p + 1)(p3 + p2 + p + 1)
+ · · ·

))

,
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thus completing the proof of our second assertion. �

We now prove Theorem 4.6. To prove (4.11), we will show that
∑

n6N

γ(n!) = eθ(N)+O(log N),

where θ is the Chebyshev function defined in (6.6), since then the result will follow
from the prime number theorem in the form (6.5). From here on, we let pi stand
for the i-th prime. Now, let r be the unique integer satisfying pr 6 N < pr+1.
Observing that for all n ∈ [pi, pi+1), the term γ(n!) remains unchanged and in fact
is equal to

∏

p6pi
p, one can easily see that

(6.12)
∑

n6N

γ(n!) =

r−1∑

i=1

(pi+1 − pi)
∏

p6pi

p + (N − pr)
∏

p6pr

p.

Using Bertrand’s postulate, we have that pi+1 − pi < pi and therefore

(6.13)

r−1∑

i=1

(pi+1 − pi)
∏

p6pi

p <

r−1∑

i=1

pi

∏

p6pi

p <

r−1∑

i=1

∏

p6pi+1

p < r
∏

p6pr

p.

Combining (6.12) and (6.13), we may write that

(6.14) (N −pr)
∏

p6pr

p <
∑

n6N

γ(n!) < r
∏

p6pr

p+(N −pr)
∏

p6pr

p = (N −pr+r)
∏

p6pr

p.

From the definition of θ(N), we have

(6.15)
∏

p6pr

p =
∏

p6N

p = eθ(N).

On the other hand, it is clear that N − pr < N − pr + r < N , implying that both
N − pr and N − pr + r are eO(log N). Combining this observation with (6.14) and
(6.15), it is immediate that

∑

n6N γ(n!) = eθ(N)eO(log N) = eθ(N)+O(log N), thus

completing the proof of (4.11).
To prove (4.12), first observe that

∑

26n6N

n!

log n
=

N !

log N

(

1 +
1

N

log N

log(N − 1)
+

1

N(N − 1)

log(N − 1)

log(N − 2)
+ · · ·

)

=
N !

log N

(

1 + O
( 1

N

))

,

and, similarly,
∑

26n6N

n!

log4 n
=

N !

log4 N

(

1 + O
( 1

N

))

.

Combining these estimates with Theorem 4.1 and (6.8), we obtain

∑

26n6N

φ(n!) =
∑

26n6N

n!
e−γ

log n

(

1 + O
( 1

log3 n

))

= e−γ N !

log N

(

1 + O
( 1

log3 N

))

,

which proves (4.12).
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The proof of (4.14) is similar. On the other hand, (4.13) follows from partial
summation after using the estimate

log d(n!) = c0
n

log n
+ O

( n

log2 n

)

,

a consequence of (4.3).
Using the first estimate in the statement of Theorem 4.5, the second formula

in the statement of Theorem 4.1 and estimate (6.8) (Mertens’ theorem), we may
write that

σ(n!)

φ(n!)
= e2γ log2 n

(

1 + O
( 1

log3 n

))(

1 + O
( 1

log3 n

))

= e2γ log2 n
(

1 + O
( 1

log3 n

))

.

Summing this last expression over all integers n ∈ [2, N ], we obtain

∑

26n6N

σ(n!)

φ(n!)
= e2γ

∑

26n6N

log2 n
(

1 + O
( 1

log3 n

))

= e2γ
(

1 + O
( 1

log3 N

)) ∫ N

2
log2 t dt

= e2γ(N log2 N − 2N log N + 2N)
(

1 + O
( 1

log3 N

))

,

thus establishing (4.15).
The proof of (4.16) follows along the same lines, thus completing the proof of

Theorem 4.6.

6.4. Proofs of Theorems 4.2, 4.3, and 4.4. Our approach is at first similar
to the one used in [16] for k = 2. For a general k > 2, recall that dk(pa) =

(
k+a−1

k−1

)
,

so that, in light of (6.1), we have

dk(n!) =
∏

p6n

(
k + αp(n) − 1

k − 1

)

.

It is more convenient to work with log dk(n!), splitting the resulting sum at p = n3/4.
Since (

k + αp(n) − 1

k − 1

)

≪k αk−1
p (n)

and αp(n) < n
p−1 (this last inequality following from (6.2)), we get

∑

p6n3/4

log

(
k + αp(n) − 1

k − 1

)

≪k

∑

p6n3/4

log
( n

p − 1

)

≪k log n
∑

p6n3/4

1 ≪k n3/4,

where in this last inequality we used (6.4).
For p ∈ (n3/4, n], we have αp(n) = ⌊n/p⌋. We therefore have

(6.16)
∑

n3/4<p6n

log

(
k + αp(n) − 1

k − 1

)

=

∫ n

n3/4

log

(
k +

⌊
n
x

⌋
− 1

k − 1

)

dπ(x).
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Writing π(x) = Li(x) + E(x) where E(x) = O(x exp(−
√

log x)) by (6.3), partial
summation on the right-hand side of (6.16) gives

I :=

∫ n

n3/4

log

(
k +

⌊
n
x

⌋
− 1

k − 1

)
dx

log x

as the main term, while the contribution of the error term is
∫ n

n3/4

log

(
k +

⌊
n
x

⌋
− 1

k − 1

)

dE(x) ≪k log n

∫ n

n3/4

dE(x) ≪k n log n exp
(

−
√

log n
)
.

To estimate the remaining integral I, we start with the substitution t = n/x
so that

I = n

∫ n1/4

1
log

(
k + ⌊t⌋ − 1

k − 1

)
dt

t2 log(n/t)
.

Since 1 6 t 6 n1/4, we have that for any fixed integer M > 0,

1

log(n/t)
=

1

log n
(
1 − log t

log n

) =
1

log n

{
M∑

ℓ=0

( log t

log n

)ℓ

+ O
( log t

log n

)M+1
}

,

from which we get

(6.17) I =
n

log n

∫ n1/4

1
log

(
k + ⌊t⌋ − 1

k − 1

) {
M∑

ℓ=0

( log t

log n

)ℓ

+ O
( log t

log n

)M+1
}

dt

t2 .

Since

∫ ∞

n1/4

log

(
k + ⌊t⌋ − 1

k − 1

)

(log t)ℓ dt

t2 converges and since

∫ ∞

n1/4

log

(
k + ⌊t⌋ − 1

k − 1

)

(log t)ℓ dt

t2 ≪k

∫ ∞

n1/4

logℓ+1 t

t2 dt ≪k
logℓ+1 n

n1/4

for ℓ = 0, 1, . . . , M , the error term in (6.17) is

O
( n

logM+2 n

∫ n1/4

1
log

(
k + ⌊t⌋ − 1

k − 1

)

logM+1 t
dt

t2

)

= O
( n

logM+2 n

)

,

while the main term is

n

log n

M∑

ℓ=0

1

(log n)ℓ

{
∫ ∞

1
log

(
k + ⌊t⌋ − 1

k − 1

)

logℓ t
dt

t2 + O
( logℓ+1 n

n1/4

)
}

=
n

log n

M∑

ℓ=0

c
(k)
ℓ

(log n)ℓ
+ O(n3/4),

where

(6.18) c
(k)
ℓ =

∫ ∞

1
log

(
k + ⌊t⌋ − 1

k − 1

)

logℓ t
dt

t2 .

This proves Theorem 4.2 with the constants given in (6.18). We note that similar
constants appeared in [8, 29], where the authors worked with integrals involving
fractional parts. Here we use the same approach as the one used in these papers
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to show that the constants given in (6.18) can be expressed as in (4.6). Indeed, we
have

c
(k)
ℓ =

∞∑

s=1

∫ s+1

s

log

(
k + s − 1

k − 1

)

logℓ t
dt

t2 =

∞∑

s=1

log

(
k + s − 1

k − 1

)

Iℓ(s),

where Iℓ(s) :=

∫ s+1

s

logℓ t

t2 dt. Integrating by parts, we get

Iℓ(s) = − logℓ t

t

∣
∣
∣

s+1

s
+ ℓ

∫ s+1

s

logℓ−1 t

t2 dt =
logℓ s

s
− logℓ(s + 1)

s + 1
+ ℓ · Iℓ−1(s).

Repeating this ℓ − 1 times and observing that I0(s) =
∫ s+1

s t−2 dt = 1
s(s+1) , we get

Iℓ(s) =
logℓ s

s
− logℓ(s + 1)

s + 1

+

ℓ−1∑

i=1

ℓ(ℓ − 1) · · · (ℓ − i + 1)
( logℓ−i s

s
− logℓ−i(s + 1)

s + 1

)

+
ℓ!

s(s + 1)

=

ℓ∑

i=0

ℓ!

(ℓ − i)!

( logℓ−i s

s
− logℓ−i(s + 1)

s + 1

)

,

from which we obtain that

c
(k)
ℓ =

∞∑

s=1

log

(
k + s − 1

k − 1

) ℓ∑

i=0

ℓ!

(ℓ − i)!

( logℓ−i s

s
− logℓ−i(s + 1)

s + 1

)

=

ℓ∑

i=0

ℓ!

(ℓ − i)!

∞∑

s=1

log

(
k + s − 1

k − 1

)( logℓ−i s

s
− logℓ−i(s + 1)

s + 1

)

=

ℓ∑

i=0

ℓ!

(ℓ − i)!

∞∑

s=1

(

log

(
k + s − 1

k − 1

)

− log

(
k + s − 2

k − 1

))
logℓ−i s

s

=
ℓ∑

i=0

ℓ!

(ℓ − i)!

∞∑

s=1

log
(k + s − 1

s

) logℓ−i s

s
.

Summing the terms backwards, we get the desired expression (4.6). Finally, observe
that

∞∑

s=1

logj s

s
log

(

1 +
k − 1

s

)

= O(1) + (k − 1)

∞∑

s=1

logj s

s2 + O

(

(k − 1)2
∞∑

s=1

logj s

s3

)

.

Approximating the sum by an integral, we have

∞∑

s=1

logj s

s2 =

∫ ∞

1

logj t

t2 dt + O(1) =

∫ ∞

0
tje−t dt + O(1) = Γ(j + 1) + O(1),
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where Γ(j + 1) is the Gamma function at j + 1, which equals j!. In the same way,

∞∑

s=1

logj s

s3 = O
( j!

2j+1

)

,

so that

c
(k)
ℓ = ℓ!

ℓ∑

j=0

(

k − 1 + O

(
(k − 1)2

2j+1

))

= (k − 1)(ℓ + 1)! + O
(
(k − 1)2(1 − 2−ℓ−1)ℓ!

)
.

This proves the last claim of Theorem 4.2.
Theorem 4.4 is proved in the exact same way, but with the simpler constants

eℓ =

∫ ∞

1

log⌊t⌋ logℓ t

t2 dt (ℓ > 0).

To prove Theorem 4.3, first observe that
(

2n

n

)

=
∏

p62n

pαp(2n
n ), where αp

(
2n

n

)

=
∑

j>1

(⌊2n

pj

⌋

− 2
⌊ n

pj

⌋)

.

It follows that

log dk

((
2n

n

))

=
∑

p62n

log

(
k + αp

(2n
n

)
− 1

k − 1

)

.

If n < p 6 2n, then log
(k+αp(2n

n )−1
k−1

)
reduces to log k, so that

∑

n<p62n

log

(
k + αp

(2n
n

)
− 1

k − 1

)

= (π(2n) − π(n)) log k.

To deal with the remaining part, we use the same method as in the proof of Theorem
4.2 to obtain that for any integer M > 0,

∑

p6n

log

(
k + αp

(2n
n

)
− 1

k − 1

)

=
n

log n

M∑

ℓ=0

b
(k)
ℓ

logℓ n
+ O

( n

logM+2 n

)

,

where this time

b
(k)
ℓ =

∫ ∞

1
log

(
k + [2t] − 2[t] − 1

k − 1

)

logℓ t
dt

t2 .

Now observe that the integrand vanishes unless n + 1
2 6 t < n + 1 for some integer

n > 1, in which case it becomes t−2 logℓ t log k. The result then follows.

6.5. Proof of Theorem 4.5. According to Mertens’ theorem already stated
in (6.8),

∏

p6x(1 − 1/p) ∼ e−γ/ log x as x → ∞. Perhaps surprisingly, the behavior

of the somewhat similar product
∏

p6n(1 − p−αp(n)−1) is very different, since as we
will now see it is asymptotic to 1 as n → ∞.
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Lemma 6.1. For integers n > 2,

∏

p6n

(

1 − 1

pαp(n)+1

)

= 1 + O
( log n

n

)

.

Proof. First set A(n) :=
∏

p6n

(

1 − 1

pαp(n)+1

)

. Clearly, A(n) < 1 for all

n > 2. We will therefore focus our attention on finding a lower bound for A(n)
which is “very close” to 1.

Let r > 3 be a fixed integer (which will eventually be chosen to be large). Then,

A(n) =
∏

p6n/r

(

1 − 1

pαp(n)+1

)

·
∏

n/r<p6n

(

1 − 1

pαp(n)+1

)

= A′
r(n) · A′′

r(n),

say. Since, for each prime p 6 n, we have αp(n) > 1, it follows that
1

pαp(n)+1
6

1

p2

and therefore that 1 − 1

pαp(n)+1
> 1 − 1

p2 , which means that

A
′′

r (n) =
∏

n/r<p6n

(

1 − 1

pαp(n)+1

)

>
∏

n/r<p6n

(

1 − 1

p2

)

.

Since for all y ∈ (0, 1), we have log(1 − y) > −2y, we may write that

(6.19) A
′′

r (n) > exp

{
∑

n/r<p6n

log(1 − 1/p2)

}

> exp

{

− 2
∑

n/r<p6n

1

p2

}

.

Now observe that

(6.20)
∑

n/r<p6n

1

p2 <
∑

p>n/r

1

p2 <

∫ ∞

n/r

dt

t2 =
r

n
.

Using (6.20) in (6.19), we obtain

(6.21) A
′′

r (n) > exp
{

− 2
r

n

}

= 1 + O
( r

n

)

.

We now move to find a lower bound for A′
r(n). First observe that for p 6 n/r,

we have αp(n) >
⌊

n
p

⌋
> ⌊r⌋ = r, which implies that αp(n)+1 > r +1 and therefore

that

(6.22) A′
r(n) >

∏

p6n/r

(

1 − 1

pr+1

)

>
∏

p

(

1 − 1

pr+1

)

=
1

ζ(r + 1)
.

Approximating (4.9) by an integral, we have for any real s > 3,

ζ(s) 6 1 +
1

2s
+

∫ ∞

2
t−s dt = 1 +

1

2s
+

1

2s−1(s − 1)
6 1 +

1

2s
+

1

2s
= 1 +

2

2s
.

Using this inequality with s = r + 1 in (6.22), we find that

(6.23) A′
r(n) >

1

ζ(r + 1)
>

1

1 + 1/2r
> 1 − 1

2r
.
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Combining (6.21) with (6.23), while choosing r =
⌊ log n

log 2

⌋
, we obtain that

(6.24) A(n) = A′
r(n) · A′′

r (n) >
(

1 + O
( log n

n

))

·
(

1 + O
( 1

n

))

= 1 + O
( log n

n

)

.

Combining (6.24) with our first observation to the effect that A(n) < 1 establishes

that A(n) = 1 + O
( log n

n

)
, thus completing the proof of Lemma 6.1. �

We can now prove Theorem 4.5. Let κ > 1 and observe that for any prime
power pa,

(6.25) σκ(pa) = 1 + pκ + · · · + paκ =
p(a+1)κ − 1

pκ − 1
= paκ 1 − 1/p(a+1)κ

1 − 1/pκ
.

It follows from equations (6.1) and (6.25) that

σκ(n!) =
∏

p6n

pαp(n)κ 1 − 1/p(αp(n)+1)κ

1 − 1/pκ
=

(n!)κ

∏

p6n(1 − 1
pκ )

·
∏

p6n

(

1 − 1

p(αp(n)+1)κ

)

.

Letting Aκ(n) =
∏

p6n(1 − 1/p(αp(n)+1)κ), we see from (6.8) that

σ(n!) = n!eγ log n
(

1 + O
( 1

log3 n

))

· A1(n),

and from (4.9) that σκ(n!) = (n!)κζ(κ) · Aκ(n) for κ > 1. Observing that 1 >
Aκ(n) > A1(n) = A(n), we conclude that the estimate in Lemma 6.1 holds for any
fixed κ > 1, and the result follows.

6.6. Proofs of Theorems 2.1, 2.2, and 2.3. Studying sums of the middle
divisors is much easier at factorial arguments because, according to Proposition
2.1, the values of ρ1(n!) and ρ2(n!) are close to

√
n!.

Proof of Proposition 2.1. First of all, it is clear that (2.5) is an immediate
consequence of (2.4). We will therefore focus on the proof of (2.4). We start with
the following construction. First recall that

n! =
∏

p6n

pαp(n), where αp(n) =
n − sp(n)

p − 1
,

with sp(n) standing for the sum of the digits of n in base p. Observing that
αp(n) = 1 for all primes p ∈ (n/2, n], we may write the factorisation of n! as

n! = 2 · · · 2
︸ ︷︷ ︸

α2(n) times

· 3 · · · 3
︸ ︷︷ ︸

α3(n) times

· 5 · · · 5
︸ ︷︷ ︸

α5(n) times

· · · pπ(n/2)+1 · · · pπ(n),

where pi stands for the i-th prime, and therefore in the above pπ(n) = P (n!) = P (n),
the largest prime factor of n.

Set w1 = w1(n) := pπ(n/2)+1 · · · pπ(n) and w2 = w2(n) = n!/w1, so that

n! = 2α2(n) · 3α3(n) · · · p
αpk

(n)
k

︸ ︷︷ ︸

w2

· pk+1 · · · pπ(n)
︸ ︷︷ ︸

w1

,

where k = π(n/2).
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Recall the following result of Tijdeman [33].

Given an infinite sequence n1 < n2 < · · · of B-friable numbers

(or B-smooth numbers), there exists a positive constant c(B)
such that

(6.26) ni+1 − ni ≪ ni

logc(B) ni

.

It is easily seen that if B1 < B2, then c(B2) > c(B1). Therefore, one can assume
the existence of a positive number c satisfying c 6 c(B) for all integers B > 2. In
fact, Langevin [28] later obtained a lower bound for this constant c, a very small
one indeed (actually somewhat smaller than 1/1036) but nevertheless effective. In
the following, we will therefore assume that c ∈ (0, 1).

For convenience, let us assume that n > 6 and consider the set S of all the
divisors of w2 which are no larger than

√
n!/w1 and let r := max S. Finally, let

d1 = r · w1. It is clear that d1 | n! and that d1 6
√

n!.

Since w1 = w1(n) > 1, it follows that
√

n! is never an integer. Furthermore,
observe that if

n1 < n2 < · · · < nk =: d1 <
√

n! < nk+1 =: d+
1

is the list of all the positive divisors of n! smaller than
√

n! plus the one located
immediately after

√
n!, then it follows from (6.26) that for some positive constant A,

(6.27) nk+1 − nk = d+
1 − d1 < A

d1

(log d1)c
.

Since the function t/(log t)c is increasing for all t > e, it follows from (6.27) that

(6.28) d+
1 − d1 < A

√
n!

(
log

√
n!

)c ,

and therefore that

d1 > d+
1 − A

√
n!

(
log

√
n!

)c >
√

n! − A

√
n!

(
log

√
n!

)c .

Using a weak form of Stirling’s formula, we have
√

n! >
(

n
e

)n/2
, thereby implying

that

(6.29) (log
√

n!)c >
(n

2
(log n − 1)

)c

> nc,

provided n > 21.
Using (6.29) in (6.28), we obtain

d1 >
√

n! −
√

n!

nc
=

√
n!

(

1 − 1

nc

)

,

thus completing the proof of the inequalities on the left-hand side of (2.4). Those
on the right-hand side will easily follow by simply setting d2 := n!/d1; indeed, we
then have

d2 =
n!

d1
<

n!

(1 − 1/nc)
√

n!
<

√
n!

(

1 +
2

nc

)

,

provided n is sufficiently large. �
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We will also be using the following lemma, whose proof is immediate.

Lemma 6.2. For any given integer N > 1, we have

N∑

n=1

n! = N !
(

1 + O
( 1

N

))

and

N∑

n=1

√
n! =

√
N !

(

1 + O
( 1√

N

))

.

We now prove Theorem 2.1. It follows from Proposition 2.1 that

(6.30)
∑

n6N

ρ1(n!) =
∑

n6N

√
n!

(

1 + O
( 1

nc

))

=
∑

n6N

√
n! + O

(
∑

n6N

√
n!

nc

)

.

Observe that
∑

n6N

√
n!

nc
=

√
N !

N c

(

1 +
( N

N − 1

)c 1√
N

+
( N

N − 2

)c 1
√

N(N − 1)
+ · · ·

)

=

√
N !

N c

(

1 + O
( 1√

N

))

= O

(√
N !

N c

)

.(6.31)

Substituting (6.31) in (6.30), and using Lemma 6.2, we get that

∑

n6N

ρ1(n!) =
∑

n6N

√
n! + O

(√
N !

N c

)

=
√

N !

(

1 + O

(
1√
N

))

+ O

(√
N !

N c

)

=
√

N !

(

1 + O

(
1

N c

))

,

thus proving the first estimate of Theorem 2.1. The second estimate is obtained
through a similar reasoning.

We move on to Theorem 2.2. Using Proposition 2.1, we obtain
(6.32)

∑

n6N

ρ1(n!)

ρ2(n!)
=

∑

n6N

√
n!(1 + O(1/nc))√
n!(1 + O(1/nc))

=
∑

n6N

(

1 + O
( 1

nc

))

= N + O

(
∑

n6N

1

nc

)

.

Approximating this last sum by an integral, we get

∑

n6N

1

nc
=

∫ N

1

1

tc
dt + O(1) =

N1−c

1 − c
+ O(1) = O(N1−c).

Using this last estimate in (6.32), we obtain that

∑

n6N

ρ1(n!)

ρ2(n!)
= N + O(N1−c),

thus establishing the first estimate of Theorem 2.2. The second estimate can be
proved in a similar manner.

To prove Theorem 2.3, we use Proposition 2.1 and Stirling’s formula (5.2) to
obtain

∑

26n6N

log ρ1(n!)

log ρ2(n!)
=

∑

26n6N

log(
√

n! (1 + O(1/nc)))

log(
√

n! (1 + O(1/nc)))
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=
∑

26n6N

log
√

n! + log(1 + O(1/nc))

log
√

n! + log(1 + O(1/nc))

=
∑

26n6N

log
√

n! + O(1/nc)

log
√

n! + O(1/nc)
=

∑

26n6N

1 + O
(

1
nc log

√
n!

)

1 + O
(

1
nc log

√
n!

)

=
∑

26n6N

(

1 + O
( 1

nc+1 log n

))

= N + O

(
∑

26n6N

1

nc+1 log n

)

= N + O(1),

since the series
∑∞

n=2

1

nc+1 log n
converges. This establishes the first estimate in

Theorem 2.3. The second estimate is proved similarly.

7. An analogue of Chowla’s conjecture for factorial arguments

Also of interest is the behavior of the quotient f(n!)
f(n−1)! for various arithmetic

functions f . For instance, in [16], the authors showed that

d(n!)

d((n − 1)!)
= 1 +

P (n)

n
+ O

( 1

n1/2

)

,

where P (n) is the largest prime factor of n. Such ratios of arithmetic functions are
easier to manage for some large classes of arithmetic functions. For instance, if f
is completely additive, then

f(n!)

f((n − 1)!)
= 1 +

f(n)

Sf (n − 1)
,

while if f is strongly additive,

f(n!)

f((n − 1)!)
=







1 + f(n)∑

p6n−1
f(p)

if n is prime,

1 otherwise.

In particular, the additive functions ω, Ω, and β are such that the ratio of their
consecutive values at factorial arguments is ∼ 1 as n → ∞.

On the other hand, for the multiplicative functions γ and φ, the results are
more interesting. This is because, for every completely multiplicative function f ,
we have

f(n!)

f((n − 1)!)
= f(n),

and for every strongly multiplicative function f , we have

f(n!)

f((n − 1)!)
=

{

f(n) if n is prime,

1 otherwise.
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Because γ(n) and φ(n)/n are strongly multiplicative functions, we obtain that

γ(n!)

γ((n − 1)!)
=

{

n if n is prime,

1 otherwise,

and

φ(n!)

φ((n − 1)!
=

{

n − 1 if n is prime,

n otherwise.

Let us now consider the Liouville function λ(n) := (−1)Ω(n). A famous conjec-
ture due to Chowla [4] in its simplest form can be stated as follows.

Conjecture (Chowla) As N → ∞,
∑

n6N

λ(n)λ(n + 1) = o(N).

Interestingly, the analogous form of Chowla’s conjecture at factorial arguments
is true. Indeed, we have the following result.

Theorem 7.1. As N → ∞,
∑

n6N

λ(n!)λ((n + 1)!) = o(N).

Proof. The proof is quite straightforward and in fact, as we will see, it is a
consequence of the prime number theorem. We will show that

(7.1)
∑

26n6N

λ((n − 1)!)λ(n!) = o(N) (N → ∞).

Clearly,

λ((n − 1)!)λ(n!) = (−1)

∑

k6n−1
Ω(k)+

∑

k6n
Ω(k)

= (−1)
2
∑

k6n−1
Ω(k)+Ω(n)

= (−1)Ω(n) = λ(n).

Therefore, in order to prove (7.1), we only need to prove that

(7.2)
∑

26n6N

λ(n) = o(N) (N → ∞).

Recall that if we let µ stand for the Möbius function, then the prime number
theorem implies that

(7.3)
∑

26n6N

µ(n) = o(N) (N → ∞)

(see for instance Theorem 5.3 in [12]). Now, one can easily verify the identity

(7.4) λ(n) =
∑

d2k=n

µ(k) (n > 1).
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Setting M(N) :=
∑

n6N µ(n), estimate (7.3) implies that M(N) = o(N) as N → ∞
and therefore that, given any arbitrarily small ε > 0, there exists a large number
N0 (which we can assume to be sufficiently large so that 1/N0 < ε/2) such that

(7.5) M(N) <
ε

4
N for all N > N0.

Then, for any integer N > N0, in light of (7.4), we have

1

N

N∑

n=1

λ(n) =
1

N

N∑

d=1

∑

16k6N/d2

µ(k) =
1

N

N∑

d=1

M(N/d2)(7.6)

=
1

N

N0∑

d=1

M(N/d2) +
1

N

N∑

d=N0+1

M(N/d2) = S1 + S2,

say. Choosing N > N3
0 , for each d 6 N0, we have that

N

d2 >
N3

0

N2
0

= N0 and we can
therefore apply inequality (7.5) and obtain that

(7.7) S1 <
1

N

N0∑

d=1

ε

4

N

d2 <
π2

6

ε

4
<

ε

2
.

On the other hand, trivially,

(7.8) S2 6
1

N

N∑

d=N0+1

N

d2 <

∫ N

N0

dt

t2 <
1

N0
<

ε

2
.

Gathering (7.7) and (7.8) in (7.6) proves estimate (7.2) and therefore completes the
proof of Theorem 7.1. �

Remark 7.1. By a similar reasoning, one can show that Chowla’s conjecture
is in fact equivalent to the statement

∑

n6N

λ((n − 1)!)λ((n + 1)!) = o(N) (N → ∞).

Remark 7.2. It is clear that one can adapt the proof of Theorem 7.1 to prove
that if (an)n>1 is any sequence of positive integers (not necessarily monotonic),
then

(7.9)
∑

n6N

λ(an)λ(nan) = o(N) (N → ∞).

Hence, by choosing an = (n − 1)! in (7.9), we obtain (7.1). On the other hand, by
choosing an = n and thereafter an = P (n), we have

∑

n6N

λ(n)λ(n2) = o(N) (N → ∞)

and
∑

n6N

λ(P (n))λ(nP (n)) = o(N) (N → ∞).
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Moreover, according to a more general version of Chowla’s conjecture, given any
positive integer k,

(7.10)
∑

n6N

λ(n)λ(n + 1) · · · λ(n + k − 1) = o(N) (N → ∞).

It is clear that one can adapt the proof of Theorem 7.1 to prove that if k is an even
integer, then the factorial version of (7.10) holds as well.
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