# THE JACOBI-ORTHOGONALITY IN INDEFINITE SCALAR PRODUCT SPACES 

Katarina Lukić


#### Abstract

We generalize the property of Jacobi-orthogonality to indefinite scalar product spaces. We compare various principles and investigate relations between Osserman, Jacobi-dual, and Jacobi-orthogonal algebraic curvature tensors. We show that every quasi-Clifford tensor is Jacobi-orthogonal. We prove that a Jacobi-diagonalizable Jacobi-orthogonal tensor is Jacobi-dual whenever $\mathcal{J}_{X}$ has no null eigenvectors for all nonnull $X$. We show that any algebraic curvature tensor of dimension 3 is Jacobi-orthogonal if and only if it is of constant sectional curvature. We prove that every 4-dimensional Jacobidiagonalizable algebraic curvature tensor is Jacobi-orthogonal if and only if it is Osserman.


## 1. Introduction

Recently, Jacobi-orthogonal algebraic curvature tensors have been introduced as a new potential characterization of Riemannian Osserman tensors, and it has been proved that any Jacobi-orthogonal tensor is Osserman, while all known Osserman tensors are Jacobi-orthogonal [3. We generalize the concept of Jacobiorthogonality to indefinite scalar product spaces and investigate its relations with some important features such as Osserman, quasi-Clifford, and Jacobi-dual tensors.

Let $(\mathcal{V}, g)$ be a scalar product space of dimension $n$, that is, $\mathcal{V}$ is an $n$-dimensional vector space over $\mathbb{R}$, while $g$ is a nondegenerate symmetric bilinear form on $\mathcal{V}$. The sign of the squared norm, $\varepsilon_{X}=g(X, X)$, distinguishes all vectors $X \in \mathcal{V} \backslash\{0\}$ into three different types. A vector $X \in \mathcal{V}$ is spacelike if $\varepsilon_{X}>0$; timelike if $\varepsilon_{X}<0$; null if $\varepsilon_{X}=0$ and $X \neq 0$. Especially, a vector $X \in \mathcal{V}$ is nonnull if $\varepsilon_{X} \neq 0$ and it is unit if $\varepsilon_{X} \in\{-1,1\}$. We say that $X$ and $Y$ are mutually orthogonal and write $X \perp Y$ if $g(X, Y)=0$. For $X \perp Y$ we have

$$
\begin{equation*}
\varepsilon_{\alpha X+\beta Y}=g(\alpha X+\beta Y, \alpha X+\beta Y)=\alpha^{2} \varepsilon_{X}+\beta^{2} \varepsilon_{Y} \tag{1.1}
\end{equation*}
$$

2020 Mathematics Subject Classification: Primary 53B30; Secondary 53B20.
Key words and phrases: indefinite metric, Osserman tensor, Jacobi-orthogonality, Jacobiduality, quasi-Clifford tensor.

Supported by the Ministry of Education, Science and Technological Developments of the Republic of Serbia: grant number 451-03-68/2022-14/200104.

Communicated by Zoran Rakić.

An important relation between null, timelike, and spacelike vectors is given in the following lemma (see [1, Lemma 1]).

Lemma 1.1. Every null $N$ from a scalar product space $\mathcal{V}$ can be decomposed as $N=S+T$, where $S, T \in \mathcal{V}, S \perp T$, and $\varepsilon_{S}=-\varepsilon_{T}$.

We say that a subspace $W$ of an indefinite scalar product space $(\mathcal{V}, g)$ is totally isotropic if it consists only of null vectors, which implies that any two vectors from $W$ are mutually orthogonal. In what follows we will use the following well-known statement about an isotropic supplement of $W$ (see [2, Proposition 1]).

Lemma 1.2. If $\mathcal{W} \leqslant \mathcal{V}$ is a totally isotropic subspace with a basis $\left(N_{1}, \ldots, N_{k}\right)$, then there exists a totally isotropic subspace $\mathcal{U} \leqslant \mathcal{V}$, disjoint from $\mathcal{W}$, with a basis $\left(M_{1}, \ldots, M_{k}\right)$, such that $g\left(N_{i}, M_{j}\right)=\delta_{i j}$ holds for $1 \leqslant i, j \leqslant k$.

A quadri-linear map $R: \mathcal{V}^{4} \rightarrow \mathbb{R}$ is said to be an algebraic curvature tensor on $(\mathcal{V}, g)$ if it satisfies the usual $\mathbb{Z}_{2}$ symmetries as well as the first Bianchi identity. More concretely, an algebraic curvature tensor $R \in \mathfrak{T}_{4}^{0}(\mathcal{V})$ has the properties

$$
\begin{gather*}
R(X, Y, Z, W)=-R(Y, X, Z, W),  \tag{1.2}\\
R(X, Y, Z, W)=-R(X, Y, W, Z)  \tag{1.3}\\
R(X, Y, Z, W)=R(Z, W, X, Y)  \tag{1.4}\\
R(X, Y, Z, W)+R(Y, Z, X, W)+R(Z, X, Y, W)=0 \tag{1.5}
\end{gather*}
$$

for all $X, Y, Z, W \in \mathcal{V}$.
The basic example of an algebraic curvature tensor is the tensor $R^{1}$ of constant sectional curvature 1 , defined by

$$
R^{1}(X, Y, Z, W)=g(Y, Z) g(X, W)-g(X, Z) g(Y, W)
$$

Furthermore, skew-adjoint endomorphisms $J$ on $\mathcal{V}$ generate new examples by $R^{J}(X, Y, Z, W)=g(J X, Z) g(J Y, W)-g(J Y, Z) g(J X, W)+2 g(J X, Y) g(J Z, W)$.

A quasi-Clifford family of rank $m$ is an anti-commutative family of skew-adjoint endomorphisms $J_{i}$, for $1 \leqslant i \leqslant m$, such that $J_{i}^{2}=c_{i} \mathrm{Id}$, for $c_{i} \in \mathbb{R}$. In other words, a quasi-Clifford family satisfies the Hurwitz-like relations, $J_{i} J_{j}+J_{j} J_{i}=2 \delta_{i j} c_{i} \mathrm{Id}$, for $1 \leqslant i, j \leqslant m$. We say that an algebraic curvature tensor $R$ is quasi-Clifford if

$$
\begin{equation*}
R=\mu_{0} R^{1}+\sum_{i=1}^{m} \mu_{i} R^{J_{i}} \tag{1.6}
\end{equation*}
$$

for some $\mu_{0}, \ldots, \mu_{m} \in \mathbb{R}$, where $J_{i}$, for $1 \leqslant i \leqslant m$, is some associated quasiClifford family. Especially, $R$ is Clifford if it is quasi-Clifford with $c_{i}=-1$ for all $1 \leqslant i \leqslant m$. Let us remark that Clifford tensors were observed in $\mathbf{1 0}, \mathbf{1 2}$ and quasi-Clifford tensors were considered in [2].

If $E_{1}, E_{2}, \ldots, E_{n} \in \mathcal{V}$ are mutually orthogonal units, we say that $\left(E_{1}, \ldots, E_{n}\right)$ is an orthonormal basis of $\mathcal{V}$. The signature of a scalar product space $(\mathcal{V}, g)$ is an ordered pair $(p, q)$, where $p$ is the number of negative $\varepsilon_{E_{i}}$, while $q$ is the number of positive $\varepsilon_{E_{i}}$. We say that $R$ is Riemannian if $p=0$; Lorentzian if $p=1$; Kleinian if $p=q$.

Raising the index we obtain the algebraic curvature operator $\mathcal{R}=R^{\sharp} \in \mathfrak{T}_{3}^{1}(\mathcal{V})$. The polarized Jacobi operator is the linear map $\mathcal{J}: \mathcal{V}^{3} \rightarrow \mathcal{V}$ defined by

$$
\mathcal{J}(X, Y) Z=\frac{1}{2}(\mathcal{R}(Z, X) Y+\mathcal{R}(Z, Y) X)
$$

for all $X, Y, Z \in \mathcal{V}$. For each $X \in \mathcal{V}$ the Jacobi operator $\mathcal{J}_{X}$ is a linear self-adjoint operator $\mathcal{J}_{X}: \mathcal{V} \rightarrow \mathcal{V}$ defined by $\mathcal{J}_{X} Y=\mathcal{J}(X, X) Y=\mathcal{R}(Y, X) X$ for all $Y \in \mathcal{V}$. Using the three-linearity of $\mathcal{R}$, for every $Z \in \mathcal{V}$ we get

$$
\begin{gather*}
\mathcal{J}_{t X} Z=\mathcal{R}(Z, t X)(t X)=t^{2} \mathcal{R}(Z, X) X=t^{2} \mathcal{J}_{X} Z,  \tag{1.7}\\
\mathcal{J}_{X+Y} Z=\mathcal{R}(Z, X+Y)(X+Y)=\mathcal{J}_{X} Z+2 \mathcal{J}(X, Y) Z+\mathcal{J}_{Y} Z . \tag{1.8}
\end{gather*}
$$

Using (1.4) we get that any two Jacobi operators satisfy the compatibility condition, which means that $g\left(\mathcal{J}_{X} Y, Y\right)=g\left(\mathcal{J}_{Y} X, X\right)$ holds for all $X, Y \in \mathcal{V}$. Since $\mathcal{J}_{X} X=0$ and $g\left(\mathcal{J}_{X} Y, X\right)=0$, we conclude that for any nonnull $X \in \mathcal{V}$ the Jacobi operator $\mathcal{J}_{X}$ is completely determined by its restriction $\widetilde{\mathcal{J}}_{X}: X^{\perp} \rightarrow X^{\perp}$ called the reduced Jacobi operator.

Let $R$ be an algebraic curvature tensor and $\widetilde{w}_{X}(\lambda)=\operatorname{det}\left(\lambda \operatorname{Id}-\widetilde{\jmath}_{X}\right)$. We say that $R$ is timelike Osserman if $\widetilde{w}_{X}$ is independent of unit timelike $X \in \mathcal{V}$. We say that $R$ is spacelike Osserman if $\widetilde{w}_{X}$ is independent of unit spacelike $X \in \mathcal{V}$. Naturally, $R$ is called Osserman if it is both timelike and spacelike Osserman. It is known that timelike Osserman and spacelike Osserman conditions are equivalent (see $\mathbf{9}$ ). It is easy to see that every quasi-Clifford tensor is Osserman (see [2]).

We say that $R$ is $k$-stein if there exist constants $c_{1}, \ldots, c_{k} \in \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{tr}\left(\left(\mathcal{J}_{X}\right)^{j}\right)=\left(\varepsilon_{X}\right)^{j} c_{j} \tag{1.9}
\end{equation*}
$$

holds for each $1 \leqslant j \leqslant k$ and all $X \in \mathcal{V}$. It is known that an algebraic curvature tensor of dimension $n$ is Osserman if and only if it is $n$-stein (see [11, Lemma 1.7.3]).

We say that $R$ is Jacobi-diagonalizable if $\mathcal{J}_{X}$ is diagonalizable for any nonnull $X$. In this case we have

$$
\begin{equation*}
\mathcal{V}=\operatorname{Span}\{X\} \oplus \bigoplus_{l=1}^{k} \operatorname{Ker}\left(\widetilde{\mathcal{J}}_{X}-\varepsilon_{X} \lambda_{l} \mathrm{Id}\right) \tag{1.10}
\end{equation*}
$$

where $\varepsilon_{X} \lambda_{1}, \ldots, \varepsilon_{X} \lambda_{k}$ are all eigenvalues of $\tilde{\mathscr{J}}_{X}$ and $\oplus$ denotes the direct orthogonal sum.

The duality principle in the Riemannian setting ( $g$ is positive definite) appeared in 14. Its generalization to a pseudo-Riemannian setting (see 4, 5) is given by the implication

$$
\begin{equation*}
\mathcal{J}_{X} Y=\varepsilon_{X} \lambda Y \Longrightarrow \mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X \tag{1.11}
\end{equation*}
$$

If (1.11) holds for all mutually orthogonal unit $X, Y \in \mathcal{V}$, then we say that $R$ is weak Jacobi-dual, and if (1.11) holds for all $X, Y \in \mathcal{V}$ with the restriction $\varepsilon_{X} \neq 0$, we say that $R$ is Jacobi-dual. If $R$ is Jacobi-diagonalizable, it is sufficient to prove that it is weak Jacobi-dual which we see in the following lemma (see [1, 4]).

Lemma 1.3. Every Jacobi-diagonalizable algebraic curvature tensor is Jacobidual if and only if it is weak Jacobi-dual.

The condition that $R$ is Jacobi-diagonalizable is strong enough to provide the equivalence between Osserman and Jacobi-dual property in a pseudo-Riemannian setting.

Theorem 1.1. 13 Every Jacobi-diagonalizable algebraic curvature tensor is Osserman if and only if it is Jacobi-dual.

## 2. The Jacobi-orthogonality

In 3 we introduced a new concept of Jacobi-orthogonality, and here we generalize it to a pseudo-Riemannian setting. We say that an algebraic curvature tensor is Jacobi-orthogonal if the implication

$$
\begin{equation*}
X \perp Y \Longrightarrow \mathcal{J}_{X} Y \perp \mathcal{J}_{Y} X \tag{2.1}
\end{equation*}
$$

holds for all unit $X, Y \in \mathcal{V}$. However, it is easy to extend this for all $X, Y \in \mathcal{V}$, which we see in the following lemma.

Lemma 2.1. If an algebraic curvature tensor is Jacobi-orthogonal, then (2.1) holds for all $X, Y \in \mathcal{V}$.

Proof. Suppose $R$ is Jacobi-orthogonal and $X \perp Y$. The assertion is obvious for $X=0$ or $Y=0$. If $X$ and $Y$ are both nonnull, (2.1) holds after we rescale them using (1.7).

We consider the case $\varepsilon_{X} \neq 0$ and $\varepsilon_{Y}=0$. Since $X^{\perp}$ is nondegenerate and contains null $Y$, according to Lemma 1.1, there exist $S, T \in X^{\perp}$ such that $Y=$ $S+T, S \perp T, \varepsilon_{S}=-\varepsilon_{T}>0$. Since $X, S, T$ are nonnull, $X \perp S$, and $X \perp T$, using (2.1) we get $g\left(\mathcal{J}_{X} S, \mathscr{J}_{S} X\right)=0$ and $g\left(\mathscr{J}_{X} T, \mathscr{J}_{T} X\right)=0$. Hence, using (1.8) and denoting $K=\mathcal{J}_{S} X, L=2 \mathcal{J}(S, T) X, M=\mathcal{J}_{T} X, P=\mathcal{J}_{X} S$, and $Q=\mathcal{J}_{X} T$, we calculate

$$
\begin{align*}
g\left(\mathcal{J}_{X}(S+\lambda T), \mathcal{J}_{S+\lambda T} X\right) & =g\left(P+\lambda Q, K+\lambda L+\lambda^{2} M\right)  \tag{2.2}\\
& =(g(P, M)+g(Q, L)) \lambda^{2}+(g(Q, K)+g(P, L)) \lambda
\end{align*}
$$

For every $\lambda \neq \pm 1$, using (1.1) we get $\varepsilon_{S+\lambda T}=\varepsilon_{S}\left(1-\lambda^{2}\right) \neq 0$, so $X \perp S+\lambda T$ implies $g\left(\mathcal{J}_{X}(S+\lambda T), \mathcal{J}_{S+\lambda T} X\right)=0$, where (2.2) gives $g(P, M)+g(Q, L)=0$ and $g(Q, K)+g(P, L)=0$. Hence, (2.2) for $\lambda=1$ implies $g\left(\mathcal{J}_{X}(S+T), \mathcal{J}_{S+T} X\right)=0$ which proves (2.1) for one nonnull and one null vector.

It remains to prove (2.1) for two null vectors $X=N_{1}$ and $Y=N_{2}$. If they are linearly dependent, we have $N_{1}=\xi N_{2}$ for some $\xi \in \mathbb{R}$, so $\mathcal{J}_{N_{1}} N_{2}=0$ and therefore (2.1) holds. If $N_{1}$ and $N_{2}$ are linearly independent mutually orthogonal vectors, then they form a basis $\left(N_{1}, N_{2}\right)$ of the totally isotropic subspace $\operatorname{Span}\left\{N_{1}, N_{2}\right\} \leqslant \mathcal{V}$. According to Lemma 1.2 there exists a basis $\left(M_{1}, M_{2}\right)$ of a totally isotropic subspace of $\mathcal{V}$ that is disjoint from $\operatorname{Span}\left\{N_{1}, N_{2}\right\}$ and $g\left(N_{i}, M_{j}\right)=\delta_{i j}$, for $1 \leqslant i, j \leqslant 2$. We can decompose $N_{2}=S+T$, where $S=\left(N_{2}+M_{2}\right) / 2, T=\left(N_{2}-M_{2}\right) / 2$, and $S, T \in N_{1}^{\perp}$. Since $\varepsilon_{S}=-\varepsilon_{T}=1 / 2$ and $S \perp T$, repeating the same procedure as in
the previous part of the proof, we get (2.2) and using already proved implication (2.1) for nonnull $S+\lambda T$ and null vector $N_{1}$ we have (2.1) for null vectors $X=N_{1}$ and $Y=N_{2}$.

Sometimes, it is useful to add the tensor of constant sectional curvature to the observed algebraic curvature tensor $R$.

Lemma 2.2. If an algebraic curvature tensor $R$ is Jacobi-orthogonal, then for each $\mu \in \mathbb{R}$, the tensor $R+\mu R^{1}$ is Jacobi-orthogonal.

Proof. Let $\mathcal{J}^{\prime}$ be the Jacobi operator associated with the algebraic curvature tensor $R^{\prime}=R+\mu R^{1}$, while $X$ and $Y$ are mutually orthogonal unit vectors. Using $\mathcal{J}_{X} Y \perp X, \mathfrak{J}_{Y} X \perp Y$, and the Jacobi-orthogonality of $R$, we get

$$
g\left(\mathcal{J}_{X}^{\prime} Y, \mathcal{J}_{Y}^{\prime} X\right)=g\left(\mathcal{J}_{X} Y+\mu \varepsilon_{X} Y, \mathcal{J}_{Y} X+\mu \varepsilon_{Y} X\right)=g\left(\mathcal{J}_{X} Y, \mathcal{J}_{Y} X\right)=0
$$

which means that $R^{\prime}=R+\mu R^{1}$ is Jacobi-orthogonal.
In the Riemannian setting we know that every Clifford algebraic curvature tensor is Jacobi-orthogonal (see [3]). We use Lemma 2.2 to give a generalization to a pseudo-Riemannian setting.

Theorem 2.1. Every quasi-Clifford algebraic curvature tensor is Jacobi-orthogonal.

Proof. Let $J_{1}, J_{2}, \ldots, J_{m}$ be a quasi-Clifford family associated to a quasiClifford algebraic curvature tensor of the form (1.6). Consider $R=\sum_{i=1}^{m} \mu_{i} R^{J_{i}}$ and units $X \perp Y$. Since the endomorphism $J_{i}$ is skew-adjoint, we have $g\left(J_{i} X, X\right)=0$, which yields

$$
\begin{aligned}
\mathcal{J}_{X} Y & =\sum_{i=1}^{m} \mu_{i} \mathcal{R}^{J_{i}}(Y, X) X \\
& =\sum_{i=1}^{m} \mu_{i}\left(g\left(J_{i} Y, X\right) J_{i} X-g\left(J_{i} X, X\right) J_{i} Y+2 g\left(J_{i} Y, X\right) J_{i} X\right) \\
& =3 \sum_{i=1}^{m} \mu_{i} g\left(J_{i} Y, X\right) J_{i} X
\end{aligned}
$$

and similarly $\mathcal{J}_{Y} X=3 \sum_{j=1}^{m} \mu_{j} g\left(J_{j} X, Y\right) J_{j} Y$. For units $X \perp Y$, using that $J_{i}$ is skew-adjoint for $i \in\{1,2, \ldots, m\}$ and the Hurwitz-like relations, we get

$$
\begin{aligned}
g\left(\mathcal{J}_{X} Y, \mathcal{J}_{Y} X\right) & =g\left(3 \sum_{i=1}^{m} \mu_{i} g\left(J_{i} Y, X\right) J_{i} X, 3 \sum_{j=1}^{m} \mu_{j} g\left(J_{j} X, Y\right) J_{j} Y\right) \\
& =9 \sum_{i, j} \mu_{i} \mu_{j} g\left(J_{i} Y, X\right) g\left(J_{j} X, Y\right) g\left(J_{i} X, J_{j} Y\right) \\
& =9 \sum_{i, j} \mu_{i} \mu_{j} g\left(X, J_{i} Y\right) g\left(X, J_{j} Y\right) g\left(X, J_{i} J_{j} Y\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{9}{2} \sum_{i, j} \mu_{i} \mu_{j} g\left(X, J_{i} Y\right) g\left(X, J_{j} Y\right) g\left(X,\left(J_{i} J_{j}+J_{j} J_{i}\right) Y\right) \\
& =\frac{9}{2} \sum_{i, j} 2 \delta_{i j} c_{i} \mu_{i} \mu_{j} g\left(X, J_{i} Y\right) g\left(X, J_{j} Y\right) g(X, Y)=0
\end{aligned}
$$

which proves that $R$ is Jacobi-orthogonal. According to Lemma 2.2 it follows that the quasi-Clifford $R+\mu_{0} R^{1}$ is Jacobi-orthogonal.

In order to examine the Jacobi-duality of a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor, we give the following two lemmas which give us information about $\mathcal{J}_{Y} X$, where $Y$ is an eigenvector of $\mathcal{J}_{X}$ for a nonnull vector $X \in \mathcal{V}$.

Lemma 2.3. Let $R$ be a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor. If $X \in \mathcal{V}$ is a nonnull vector and $Y \in \mathcal{V}_{i}(X)=\operatorname{Ker}\left(\widetilde{\mathcal{J}}_{X}-\varepsilon_{X} \lambda_{i} \mathrm{Id}\right)$, then $\mathcal{J}_{Y} X \in \operatorname{Span}\{X\} \oplus \mathcal{V}_{i}(X)$.

Proof. If $\tilde{\mathcal{J}}_{X}$ has only one eigenvalue $\varepsilon_{X} \lambda_{i}$, then $\operatorname{Span}\{X\} \oplus \mathcal{V}_{i}(X)=\mathcal{V}$, so the statement is obvious. Let $Z \in \nu_{j}(X)=\operatorname{Ker}\left(\widetilde{\mathscr{J}}_{X}-\varepsilon_{X} \lambda_{j}\right.$ Id) for $\lambda_{j} \neq \lambda_{i}$ and $L=Y+t Z$, where $t \in \mathbb{R}$. Since $Y \in \mathcal{V}_{i}(X) \leqslant X^{\perp}$ and $Z \in \mathcal{V}_{j}(X) \leqslant X^{\perp}$ we have $L \perp X$, so using the Jacobi-orthogonality of $R$, Lemma 2.1, and (1.3), we get

$$
\begin{aligned}
0=g\left(\mathcal{J}_{L} X, \mathscr{J}_{X} L\right) & =g\left(\mathcal{R}(X, Y+t Z)(Y+t Z), \mathscr{J}_{X} Y+t \mathcal{J}_{X} Z\right) \\
& =R\left(X, Y+t Z, Y+t Z, \varepsilon_{X} \lambda_{i} Y+t \varepsilon_{X} \lambda_{j} Z\right) \\
& =\varepsilon_{X}\left(t \lambda_{j}-t \lambda_{i}\right) R(X, Y+t Z, Y, Z) \\
& =\varepsilon_{X}\left(\lambda_{i}-\lambda_{j}\right) R(X, Z, Z, Y) t^{2}+\varepsilon_{X}\left(\lambda_{j}-\lambda_{i}\right) R(X, Y, Y, Z) t
\end{aligned}
$$

Since this holds for all $t \in \mathbb{R}$, we conclude that the coefficient of $t$ is zero and because of $\varepsilon_{X}\left(\lambda_{j}-\lambda_{i}\right) \neq 0$ we obtain $R(X, Y, Y, Z)=0$, and therefore $\mathcal{J}_{Y} X \perp Z$, which holds for every $Z \in \mathcal{V}_{j}(X)$, whenever $\lambda_{j} \neq \lambda_{i}$. Since $R$ is Jacobi diagonalizable, we have (1.10), where $\varepsilon_{X} \lambda_{1}, \ldots, \varepsilon_{X} \lambda_{k}$ are all (different) eigenvalues of $\widetilde{\mathcal{J}}_{X}$, so we conclude that $\mathcal{J}_{Y} X \in \operatorname{Span}\{X\} \oplus \mathcal{V}_{i}(X)$.

Lemma 2.4. Let $R$ be a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor. If $X \in \mathcal{V}$ is a nonnull vector and $Y \in \mathcal{V}(X)=\operatorname{Ker}\left(\widetilde{\mathcal{J}}_{X}-\varepsilon_{X} \lambda \mathrm{Id}\right)$, then $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X+Z$, where $\varepsilon_{Z}=0$.

Proof. Let $\mathcal{J}_{Y} X=\alpha X+Z$, where $Z \in X^{\perp}$ and $\alpha \in \mathbb{R}$. The compatibility of Jacobi operators gives $g\left(\mathcal{J}_{Y} X, X\right)=g\left(\mathcal{J}_{X} Y, Y\right)$, so $g(\alpha X+Z, X)=g\left(\varepsilon_{X} \lambda Y, Y\right)$. Hence, $\alpha \varepsilon_{X}=\lambda \varepsilon_{X} \varepsilon_{Y}$ and since $\varepsilon_{X} \neq 0$, we get $\alpha=\varepsilon_{Y} \lambda$ and $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X+Z$. From $Y \in \mathcal{V}(X) \leqslant X^{\perp}$, we get $g\left(\varepsilon_{X} Y-t \varepsilon_{Y} X, X+t Y\right)=0$, so using that $R$ is Jacobi-orthogonal, Lemma 2.1, (1.7), (1.8), and the equalities $2 \mathcal{J}(X, Y) Y=-\mathcal{J}_{Y} X$, $2 \mathcal{J}(X, Y) X=-\mathcal{J}_{X} Y$, we obtain

$$
\begin{aligned}
0= & g\left(\mathcal{J}_{X+t Y}\left(\varepsilon_{X} Y-t \varepsilon_{Y} X\right), \mathcal{J}_{\varepsilon_{X} Y-t \varepsilon_{Y} X}(X+t Y)\right) \\
= & g\left(\varepsilon_{X} \mathcal{J}_{X} Y-t \varepsilon_{X} \mathcal{J}_{Y} X+t^{2} \varepsilon_{Y} \mathcal{J}_{X} Y-t^{3} \varepsilon_{Y} \mathcal{J}_{Y} X,\right. \\
& \left.\varepsilon_{X}^{2} \mathcal{J}_{Y} X+t \varepsilon_{X} \varepsilon_{Y} \mathcal{J}_{X} Y+t^{2} \varepsilon_{X} \varepsilon_{Y} \mathcal{J}_{Y} X+t^{3} \varepsilon_{Y}^{2} \mathcal{J}_{X} Y\right) .
\end{aligned}
$$

Since every $t \in \mathbb{R}$ is a root of the polynomial equation

$$
g\left(\mathcal{J}_{X+t Y}\left(\varepsilon_{X} Y-t \varepsilon_{Y} X\right), \mathcal{J}_{\varepsilon_{X} Y-t \varepsilon_{Y} X}(X+t Y)\right)=0
$$

we conclude that all coefficients are zero, and therefore the coefficient of $t$ is $\varepsilon_{X}^{2} \varepsilon_{Y} g\left(\mathfrak{J}_{X} Y, \mathscr{J}_{X} Y\right)-\varepsilon_{X}^{3} g\left(\mathfrak{J}_{Y} X, \mathscr{J}_{Y} X\right)=0$, which implies $\varepsilon_{Y} \varepsilon_{\mathcal{J}_{X} Y}=\varepsilon_{X} \varepsilon_{\mathcal{J}_{Y} X}$ because $\varepsilon_{X} \neq 0$, and therefore $\varepsilon_{Y} \varepsilon_{\varepsilon_{X} \lambda Y}=\varepsilon_{X} \varepsilon_{\varepsilon_{Y} \lambda X+Z}$. Since $Z \in X^{\perp}$, using (1.1), we get $\varepsilon_{Y} \varepsilon_{X}^{2} \lambda^{2} \varepsilon_{Y}=\varepsilon_{X}\left(\varepsilon_{Y}^{2} \lambda^{2} \varepsilon_{X}+\varepsilon_{Z}\right)$, which gives $\varepsilon_{Z}=0$.

As a consequence of the last two lemmas, we easily get the following theorem.
Theorem 2.2. Every Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor is Jacobi-dual, when $\mathcal{J}_{X}$ has no null eigenvectors for all nonnull $X$.

Proof. Let $X$ and $Y$ be two mutually orthogonal vectors such that $\varepsilon_{X} \neq 0$ and $\mathcal{J}_{X} Y=\varepsilon_{X} \lambda Y$. Using Lemma [2.4] we get $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X+Z$, where $\varepsilon_{Z}=0$, while Lemma 2.3 gives $Z \in \operatorname{Ker}\left(\widetilde{\mathcal{J}}_{X}-\varepsilon_{X} \lambda\right.$ Id $)$. If $Z$ is null, then it is not an eigenvector of $\mathcal{J}_{X}$, which implies $Z=0$, so $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X$, which proves that $R$ is Jacobi-dual.

## 3. Low dimensional cases

In this section we consider the cases of small dimension $n \in\{3,4\}$. In dimension 3 we obtain the following expected result.

Theorem 3.1. Every algebraic curvature tensor of dimension 3 is Jacobiorthogonal if and only if it is of constant sectional curvature.

Proof. Suppose $R$ is a 3 -dimensional algebraic curvature tensor of constant sectional curvature $\mu$. Since the zero tensor is Jacobi-orthogonal, Lemma 2.2 implies that $R=0+\mu R^{1}$ is Jacobi-orthogonal.

Conversely, suppose $R$ is a Jacobi-orthogonal algebraic curvature tensor of dimension 3 . Let $\left(E_{1}, E_{2}, E_{3}\right)$ be an arbitrary orthonormal basis of $\mathcal{V}$, $\varepsilon_{i}=\varepsilon_{E_{i}}$, for $1 \leqslant i \leqslant 3$, and $R_{i j k l}=R\left(E_{i}, E_{j}, E_{k}, E_{l}\right)$, for $i, j, k, l \in\{1,2,3\}$. Using the formula $\mathcal{R}\left(E_{i}, E_{j}\right) E_{k}=\sum_{l} \varepsilon_{l} R_{i j k l} E_{l}$ and (1.3), we obtain $\mathcal{J}_{E_{1}} E_{2}=\varepsilon_{2} R_{2112} E_{2}+\varepsilon_{3} R_{2113} E_{3}$ and $\mathcal{J}_{E_{2}} E_{1}=\varepsilon_{1} R_{1221} E_{1}+\varepsilon_{3} R_{1223} E_{3}$. Hence, since $E_{1} \perp E_{2}$ and $R$ is Jacobiorthogonal, we get $R_{2113} R_{1223}=0$. Using rescaling we obtain

$$
\begin{equation*}
R(B, A, A, C) R(A, B, B, C)=0 \tag{3.1}
\end{equation*}
$$

for an arbitrary orthogonal basis $(A, B, C)$ which consists of nonnull vectors.
Consider the basis $X=E_{1}, Y=E_{2}+t E_{3}, Z=t \varepsilon_{3} E_{2}-\varepsilon_{2} E_{3}$, where $t>1$. Using (1.1), we get $\varepsilon_{X}=\varepsilon_{1} \neq 0, \varepsilon_{Y}=\varepsilon_{2}+t^{2} \varepsilon_{3} \neq 0, \varepsilon_{Z}=t^{2} \varepsilon_{3}^{2} \varepsilon_{2}+\varepsilon_{2}^{2} \varepsilon_{3} \neq 0$, $g(X, Y)=0, g(X, Z)=0$ and $g(Y, Z)=t \varepsilon_{3} \varepsilon_{2}-t \varepsilon_{2} \varepsilon_{3}=0$, so $(X, Y, Z)$ is an orthogonal basis which consists of nonnull vectors, so applying (3.1) we get

$$
\begin{aligned}
0 & =R\left(E_{2}+t E_{3}, E_{1}, E_{1}, t \varepsilon_{3} E_{2}-\varepsilon_{2} E_{3}\right) R\left(E_{1}, E_{2}+t E_{3}, E_{2}+t E_{3}, t \varepsilon_{3} E_{2}-\varepsilon_{2} E_{3}\right) \\
& =\left(-\varepsilon_{2} R_{2113}+\left(\varepsilon_{3} R_{2112}-\varepsilon_{2} R_{3113}\right) t+\varepsilon_{3} R_{3112} t^{2}\right)\left(R_{1223}+t R_{1323}\right)\left(-\varepsilon_{2}-\varepsilon_{3} t^{2}\right) .
\end{aligned}
$$

Since this holds for every $t>1$, we conclude that the coefficient of $t$ in the polynomial is 0 . Thus, using (1.3) and $\varepsilon_{2} \neq 0$, we get

$$
\varepsilon_{2} R_{2113} R_{1332}+\left(\varepsilon_{3} R_{2112}-\varepsilon_{2} R_{3113}\right) R_{1223}=0
$$

so (3.1) for $(A, B, C)=\left(E_{3}, E_{1}, E_{2}\right)$ implies $\left(\varepsilon_{3} R_{2112}-\varepsilon_{2} R_{3113}\right) R_{1223}=0$. Rescaling the vectors we obtain

$$
\begin{equation*}
\left(\varepsilon_{C} R(B, A, A, B)-\varepsilon_{B} R(C, A, A, C)\right) R(A, B, B, C)=0 \tag{3.2}
\end{equation*}
$$

for an arbitrary orthogonal basis $(A, B, C)$ which consists of nonnull vectors.
Let $\left(E_{1}, E_{2}, E_{3}\right)$ be an arbitrary orthonormal basis of $\mathcal{V}$ and $(p, q, r)$ a permutation of the set $\{1,2,3\}$. Let $s_{1}=R_{2113}, s_{2}=R_{1223}, s_{3}=R_{1332}, k_{1}=\varepsilon_{2} \varepsilon_{3} R_{3223}$, $k_{2}=\varepsilon_{1} \varepsilon_{3} R_{3113}$, and $k_{3}=\varepsilon_{1} \varepsilon_{2} R_{2112}$. From (3.1) we get for $(A, B, C)=\left(E_{p}, E_{q}, E_{r}\right)$ gives $s_{p} s_{q}=0$, and since this holds for an arbitrary permutation $(p, q, r)$ of the set $\{1,2,3\}$, we get that at least two of $s_{1}, s_{2}, s_{3}$ are zero. Let $s_{p}=s_{q}=0$ and suppose $s_{r} \neq 0$. Hence, (3.2) for $(A, B, C)=\left(E_{q}, E_{r}, E_{p}\right)$ multiplied by $\varepsilon_{p} \varepsilon_{q} \varepsilon_{r} \neq 0$, gives $\left(k_{p}-k_{r}\right) s_{r}=0$, which implies $k_{p}=k_{r}$.

Consider $A=E_{1}+t E_{3}, B=E_{2}, C=\varepsilon_{3} t E_{1}-\varepsilon_{1} E_{3}$, for $t>1$. Using (1.1) we get $\varepsilon_{A}=\varepsilon_{1}+t^{2} \varepsilon_{3} \neq 0, \varepsilon_{B}=\varepsilon_{2} \neq 0, \varepsilon_{C}=\varepsilon_{3}^{2} t^{2} \varepsilon_{1}+\varepsilon_{1}^{2} \varepsilon_{3}=t^{2} \varepsilon_{1}+\varepsilon_{3} \neq 0, g(A, B)=0$, $g(A, C)=\varepsilon_{3} t \varepsilon_{1}-t \varepsilon_{1} \varepsilon_{3}=0$, and $g(B, C)=0$, so $\left(E_{1}+t E_{3}, E_{2}, \varepsilon_{3} t E_{1}-\varepsilon_{1} E_{3}\right)$ is an orthogonal basis which consists of nonnull vectors and applying (3.2), (1.1), (1.2), (1.3), (1.4) we compute

$$
\begin{aligned}
\left(\left(t^{2} \varepsilon_{1}+\varepsilon_{3}\right)\right. & \left.\left(R_{2112}+2 R_{1223} t+R_{3223} t^{2}\right)-\varepsilon_{2} R_{3113}\left(\varepsilon_{1}+\varepsilon_{3} t^{2}\right)^{2}\right) \\
& \times\left(-\varepsilon_{1} R_{1223}+\left(\varepsilon_{3} R_{2112}-\varepsilon_{1} R_{3223}\right) t+\varepsilon_{3} R_{1223} t^{2}\right)=0
\end{aligned}
$$

This holds for every $t>1$, so the coefficient of $t$ is zero, and using $\varepsilon_{1}^{2} \varepsilon_{2}^{2} \varepsilon_{3}^{2}=1$, we obtain

$$
-2 \varepsilon_{1} \varepsilon_{3} R_{1223}^{2}+\left(\varepsilon_{1} \varepsilon_{2} R_{2112}-\varepsilon_{1} \varepsilon_{3} R_{3113}\right)\left(\varepsilon_{1} \varepsilon_{2} R_{2112}-\varepsilon_{2} \varepsilon_{3} R_{3223}\right)=0
$$

Hence, $-2 \varepsilon_{1} \varepsilon_{3} s_{2}^{2}+\left(k_{3}-k_{2}\right)\left(k_{3}-k_{1}\right)=0$. Thus, using the basis $\left(E_{q}, E_{r}, E_{p}\right)$ instead of $\left(E_{1}, E_{2}, E_{3}\right)$, we get

$$
\begin{equation*}
-2 \varepsilon_{q} \varepsilon_{p} s_{r}^{2}+\left(k_{p}-k_{r}\right)\left(k_{p}-k_{q}\right)=0 \tag{3.3}
\end{equation*}
$$

which with $k_{p}=k_{r}$ and $\varepsilon_{q} \varepsilon_{p} \neq 0$ gives $s_{r}=0$, which contradicts $s_{r} \neq 0$. Thus, $s_{p}=s_{q}=s_{r}=0$, which implies

$$
R_{2113}=R_{1223}=R_{1332}=0
$$

Hence, (3.3) gives $\left(k_{p}-k_{r}\right)\left(k_{p}-k_{q}\right)=0$ for any permutation $(p, q, r)$ of the set $\{1,2,3\}$, so at least two of differences $k_{3}-k_{2}, k_{3}-k_{1}$, and $k_{2}-k_{1}$ are zero, which implies $k_{1}=k_{2}=k_{3}=\mu$, and therefore

$$
R_{2112}=\varepsilon_{1} \varepsilon_{2} \mu, \quad R_{3113}=\varepsilon_{1} \varepsilon_{3} \mu, \quad R_{3223}=\varepsilon_{2} \varepsilon_{3} \mu
$$

Since an algebraic curvature tensor of dimension 3 is uniquely determined by its 6 components of tensor: $R_{2113}, R_{1223}, R_{1332}, R_{2112}, R_{3113}, R_{3223}$ (see [15, pp.142144]), the previous equalities imply that $R$ is of constant sectional curvature $\mu$.

Since every 3 -dimensional $R$ is 1 -stein if and only if it is of constant sectional curvature (see [6, Proposition 1.120]), the previous theorem implies that every 3dimensional $R$ is Jacobi-orthogonal if and only if it is Osserman. In the following theorem we prove a similar result in dimension 4 using an additional hypothesis that $R$ is Jacobi-diagonalizable.

Theorem 3.2. Every Jacobi-diagonalizable algebraic curvature tensor of dimension 4 is Osserman if and only if it is Jacobi-orthogonal.

Proof. Suppose $R$ is a Jacobi-diagonalizable Osserman algebraic curvature tensor of dimension 4. It is well-known that a Lorentzian Osserman algebraic curvature tensor has constant sectional curvature (see [7, $\mathbf{8}$ ), so it is of the form $R=\mu R^{1}$. Hence, using that 0 is Jacobi-orthogonal and applying Lemma 2.2, we conclude that Lorentzian $R$ is Jacobi-orthogonal. It remains to deal with a Riemannian or Kleinian $R$. Let $X$ and $Y$ be mutually orthogonal unit vectors in $\mathcal{V}$. Denote $X=E_{1}$. Since $R$ is Jacobi-diagonalizable, there exists an orthonormal eigenbasis $\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ related to $\mathcal{J}_{E_{1}}$ such that $\mathcal{J}_{E_{1}} E_{i}=\varepsilon_{1} \lambda_{i} E_{i}$, for $2 \leqslant i \leqslant 4$, where $\varepsilon_{j}=\varepsilon_{E_{j}}$, for $1 \leqslant j \leqslant 4$. Since $R$ is not Lorentzian, we have $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}=1$, as well as $\varepsilon_{i}^{2}=1$, for $1 \leqslant i \leqslant 4$. Denoting $R_{i j k l}=R\left(E_{i}, E_{j}, E_{k}, E_{l}\right)$, we get $R_{i 11 j}=g\left(\mathcal{J}_{E_{1}} E_{i}, E_{j}\right)=g\left(\varepsilon_{1} \lambda_{i} E_{i}, E_{j}\right)=\varepsilon_{1} \lambda_{i} \delta_{i j} \varepsilon_{i}$. Hence,

$$
\begin{gather*}
R_{2112}=\varepsilon_{1} \varepsilon_{2} \lambda_{2}, \quad R_{3113}=\varepsilon_{1} \varepsilon_{3} \lambda_{3}, \quad R_{4114}=\varepsilon_{1} \varepsilon_{4} \lambda_{4}  \tag{3.4}\\
R_{2113}=R_{2114}=R_{3114}=0 \tag{3.5}
\end{gather*}
$$

According to Theorem [1.1, a Jacobi-diagonalizable Osserman $R$ is Jacobi-dual. Thus, $\mathcal{J}_{E_{1}} E_{i}=\varepsilon_{1} \lambda_{i} E_{i}$, for $2 \leqslant i \leqslant 4$, implies $\mathcal{J}_{E_{i}} E_{1}=\varepsilon_{i} \lambda_{i} E_{1}$, so $\mathcal{J}_{E_{i}} E_{1} \perp E_{j}$ for $2 \leqslant j \leqslant 4$, which means $0=g\left(\mathcal{J}_{E_{i}} E_{1}, E_{j}\right)=R_{1 i i j}$ and therefore

$$
\begin{equation*}
R_{1223}=R_{1224}=R_{1332}=R_{1334}=R_{1442}=R_{1443}=0 \tag{3.6}
\end{equation*}
$$

Since $R$ is 1 -stein, (1.9) holds for $j=1$ and we get $\sum_{i} \varepsilon_{i} \varepsilon_{x} R_{i x x i}=c_{1}$, for $x \in$ $\{1,2,3,4\}$ (see [1]). Thus, using (1.4) we obtain

$$
\begin{aligned}
& \varepsilon_{1} \varepsilon_{2} R_{2112}+\varepsilon_{1} \varepsilon_{3} R_{3113}+\varepsilon_{1} \varepsilon_{4} R_{4114}=c_{1} \\
& \varepsilon_{1} \varepsilon_{2} R_{2112}+\varepsilon_{2} \varepsilon_{3} R_{3223}+\varepsilon_{2} \varepsilon_{4} R_{4224}=c_{1} \\
& \varepsilon_{1} \varepsilon_{3} R_{3113}+\varepsilon_{2} \varepsilon_{3} R_{3223}+\varepsilon_{3} \varepsilon_{4} R_{4334}=c_{1} \\
& \varepsilon_{1} \varepsilon_{4} R_{4114}+\varepsilon_{2} \varepsilon_{4} R_{4224}+\varepsilon_{3} \varepsilon_{4} R_{4334}=c_{1}
\end{aligned}
$$

Therefore, subtracting the sum of the two of these equations from the sum of the remaining two equations, we get $\varepsilon_{2} \varepsilon_{3} R_{3223}=\varepsilon_{1} \varepsilon_{4} R_{4114}, \varepsilon_{2} \varepsilon_{4} R_{4224}=\varepsilon_{1} \varepsilon_{3} R_{3113}$, and $\varepsilon_{3} \varepsilon_{4} R_{4334}=\varepsilon_{1} \varepsilon_{2} R_{2112}$. Using (3.4), we obtain

$$
\begin{equation*}
R_{3223}=\varepsilon_{1} \varepsilon_{4} \lambda_{4}, \quad R_{4224}=\varepsilon_{1} \varepsilon_{3} \lambda_{3}, \quad R_{4334}=\varepsilon_{1} \varepsilon_{2} \lambda_{2} \tag{3.7}
\end{equation*}
$$

For a 1-stein $R$ we also have additional equalities $\sum_{i} \varepsilon_{i} R_{i x y i}=0$ for $1 \leqslant x \neq y \leqslant 4$ (see [1]). Using them for $(x, y) \in\{(2,3),(2,4),(3,4)\}$, (1.2), (1.3), and (1.4), we conclude $R_{2443}=-\varepsilon_{1} \varepsilon_{4} R_{2113}, R_{2334}=-\varepsilon_{1} \varepsilon_{3} R_{2114}$, and $R_{3224}=-\varepsilon_{1} \varepsilon_{2} R_{3114}$. Thus, using (3.5), we obtain

$$
\begin{equation*}
R_{2443}=R_{2334}=R_{3224}=0 \tag{3.8}
\end{equation*}
$$

Since Osserman $R$ is 2 -stein, (1.9) holds for $j=2$, so we get $\operatorname{tr}\left(\mathcal{J}_{E_{1}}\right)^{2}=\left(\varepsilon_{E_{1}}\right)^{2} c_{2}$, which gives

$$
\begin{equation*}
\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=c_{2} \tag{3.9}
\end{equation*}
$$

Since $R$ is 2 -stein, for all $1 \leqslant x \neq y \leqslant 4$, we get known 2 -stein equations (see $\mathbf{1}$ )

$$
2 \sum_{1 \leqslant i, j \leqslant 4} \varepsilon_{i} \varepsilon_{j} R_{i x x j} R_{i y y j}+\sum_{1 \leqslant i, j \leqslant 4} \varepsilon_{i} \varepsilon_{j}\left(R_{i x y j}+R_{i y x j}\right)^{2}=2 \varepsilon_{x} \varepsilon_{y} c_{2}
$$

For $(x, y)=(2,3)$, using (1.2), (1.3), (1.4), (3.5), (3.6), and (3.8), we get

$$
\begin{aligned}
& 2 \varepsilon_{1}^{2} R_{2112} R_{3113}+2 \varepsilon_{4}^{2} R_{4224} R_{4334}+\varepsilon_{1} \varepsilon_{4}\left(R_{1234}+R_{1324}\right)^{2} \\
& +\varepsilon_{2} \varepsilon_{3}\left(-R_{3223}\right)^{2}+\varepsilon_{3} \varepsilon_{2}\left(-R_{3223}\right)^{2}+\varepsilon_{4} \varepsilon_{1}\left(R_{4231}+R_{4321}\right)^{2}=2 \varepsilon_{2} \varepsilon_{3} c_{2}
\end{aligned}
$$

Using (3.7), we compute $4 \varepsilon_{2} \varepsilon_{3} \lambda_{2} \lambda_{3}+2 \varepsilon_{2} \varepsilon_{3}\left(R_{1234}+R_{1324}\right)^{2}+2 \varepsilon_{2} \varepsilon_{3} \lambda_{4}^{2}=2 \varepsilon_{2} \varepsilon_{3} c_{2}$. Since $2 \varepsilon_{2} \varepsilon_{3} \neq 0$, we get $c_{2}-\lambda_{4}^{2}-2 \lambda_{2} \lambda_{3}=\left(R_{1234}+R_{1324}\right)^{2}$ and using (3.9) we get $\left(\lambda_{3}-\lambda_{2}\right)^{2}=\left(R_{1234}+R_{1324}\right)^{2}$. Similarly, using (1.2), (1.3), (1.4), and (1.5) we obtain

$$
\begin{aligned}
& \left(\lambda_{2}-\lambda_{4}\right)^{2}=\left(R_{1243}+R_{1423}\right)^{2}=\left(R_{1324}-2 R_{1234}\right)^{2} \\
& \left(\lambda_{4}-\lambda_{3}\right)^{2}=\left(R_{1432}+R_{1342}\right)^{2}=\left(R_{1234}-2 R_{1324}\right)^{2}
\end{aligned}
$$

Hence, we get

$$
\begin{align*}
& s_{4}\left(\lambda_{3}-\lambda_{2}\right)=R_{1234}+R_{1324}, s_{3}\left(\lambda_{2}-\lambda_{4}\right)=R_{1324}-2 R_{1234}, \\
& s_{2}\left(\lambda_{4}-\lambda_{3}\right)=R_{1234}-2 R_{1324} \tag{3.10}
\end{align*}
$$

where $s_{2}, s_{3}, s_{4} \in\{-1,1\}$. According to the pigeonhole principle, at least two of $s_{2}, s_{3}, s_{4}$ are the same. First, suppose $s_{i}=s_{j}=-s_{k}$, where $(i, j, k)$ is a permutation of $(2,3,4)$. Summing the equations in (3.10) we obtain

$$
\left(s_{3}-s_{4}\right) \lambda_{2}+\left(s_{4}-s_{2}\right) \lambda_{3}+\left(s_{2}-s_{3}\right) \lambda_{4}=0
$$

and we conclude $\left(s_{j}-s_{k}\right) \lambda_{i}+\left(s_{k}-s_{i}\right) \lambda_{j}=0$, so $\lambda_{i}=\lambda_{j}$. Notice that substituting $s_{k}$ by $-s_{k}$ does not change (3.10) and provides $s_{2}=s_{3}=s_{4}$.

If $s_{2}=s_{3}=s_{4}=-1$, then substituting eigenvectors $E_{2}, E_{3}$ and $E_{4}$ with $-E_{2},-E_{3}$ and $-E_{4}$, respectively, we conclude that $R_{1234}$ and $R_{1324}$ change the sign, as well as $s_{2}, s_{3}, s_{4}$. Therefore, without loss of generality we can suppose $s_{2}=s_{3}=s_{4}=1$, and get

$$
\begin{align*}
R_{1234}-2 R_{1324} & =\lambda_{4}-\lambda_{3} \\
R_{1324}-2 R_{1234} & =\lambda_{2}-\lambda_{4}  \tag{3.11}\\
R_{1234}+R_{1324} & =\lambda_{3}-\lambda_{2}
\end{align*}
$$

For an arbitrary $Y \perp X=E_{1}$ there exist real numbers $k_{2}, k_{3}, k_{4}$ such that $Y=k_{2} E_{2}+k_{3} E_{3}+k_{4} E_{4}$, and therefore

$$
\mathcal{J}_{X} Y=\mathcal{J}_{E_{1}}\left(k_{2} E_{2}+k_{3} E_{3}+k_{4} E_{4}\right)=k_{2} \varepsilon_{1} \lambda_{2} E_{2}+k_{3} \varepsilon_{1} \lambda_{3} E_{3}+k_{4} \varepsilon_{1} \lambda_{4} E_{4}
$$

Using (1.2)-(1.5), (3.5), (3.6), (3.11), and $\mathcal{R}(X, Y) Z=\sum_{i} \varepsilon_{i} R\left(X, Y, Z, E_{i}\right) E_{i}$ we calculate

$$
\begin{aligned}
\mathcal{J}_{Y} X= & \mathcal{J}_{k_{2} E_{2}+k_{3} E_{3}+k_{4} E_{4}} E_{1}=\mathcal{R}\left(E_{1}, k_{2} E_{2}+k_{3} E_{3}+k_{4} E_{4}\right)\left(k_{2} E_{2}+k_{3} E_{3}+k_{4} E_{4}\right) \\
= & k_{2}^{2} \varepsilon_{1} R_{2112} E_{1}+k_{2} k_{3} \varepsilon_{4} R_{1234} E_{4}+k_{2} k_{4} \varepsilon_{3} R_{1243} E_{3} \\
& +k_{3} k_{2} \varepsilon_{4} R_{1324} E_{4}+k_{3}^{2} \varepsilon_{1} R_{1331} E_{1}+k_{3} k_{4} \varepsilon_{2} R_{1342} E_{2} \\
& +k_{4} k_{2} \varepsilon_{3} R_{1423} E_{3}+k_{4} k_{3} \varepsilon_{2} R_{1432} E_{2}+k_{4}^{2} \varepsilon_{1} R_{1441} E_{1}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(k_{2}^{2} \varepsilon_{1} R_{2112}+k_{3}^{2} \varepsilon_{1} R_{1331}+k_{4}^{2} \varepsilon_{1} R_{1441}\right) E_{1}+k_{3} k_{4} \varepsilon_{2}\left(R_{1342}+R_{1432}\right) E_{2} \\
& +k_{2} k_{4} \varepsilon_{3}\left(R_{1243}+R_{1423}\right) E_{3}+k_{2} k_{3} \varepsilon_{4}\left(R_{1234}+R_{1324}\right) E_{4} \\
= & \left(k_{2}^{2} \varepsilon_{2} \lambda_{2}+k_{3}^{2} \varepsilon_{3} \lambda_{3}+k_{4}^{2} \varepsilon_{4} \lambda_{4}\right) E_{1}+k_{3} k_{4} \varepsilon_{2}\left(R_{1234}-2 R_{1324}\right) E_{2} \\
& +k_{2} k_{4} \varepsilon_{3}\left(R_{1324}-2 R_{1234}\right) E_{3}+k_{2} k_{3} \varepsilon_{4}\left(R_{1234}+R_{1324}\right) E_{4} \\
= & \left(k_{2}^{2} \varepsilon_{2} \lambda_{2}+k_{3}^{2} \varepsilon_{3} \lambda_{3}+k_{4}^{2} \varepsilon_{4} \lambda_{4}\right) E_{1}+k_{3} k_{4} \varepsilon_{2}\left(\lambda_{4}-\lambda_{3}\right) E_{2} \\
& +k_{2} k_{4} \varepsilon_{3}\left(\lambda_{2}-\lambda_{4}\right) E_{3}+k_{2} k_{3} \varepsilon_{4}\left(\lambda_{3}-\lambda_{2}\right) E_{4} .
\end{aligned}
$$

Thus, using that $\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ is an orthonormal basis, we compute

$$
\begin{aligned}
& g\left(\mathcal{J}_{X} Y, \mathscr{J}_{Y} X\right)=k_{2} k_{3} k_{4} \varepsilon_{1} \varepsilon_{2} \lambda_{2}\left(\lambda_{4}-\lambda_{3}\right) g\left(E_{2}, E_{2}\right) \\
& +k_{2} k_{3} k_{4} \varepsilon_{1} \varepsilon_{3} \lambda_{3}\left(\lambda_{2}-\lambda_{4}\right) g\left(E_{3}, E_{3}\right)+k_{2} k_{3} k_{4} \varepsilon_{1} \varepsilon_{4} \lambda_{4}\left(\lambda_{3}-\lambda_{2}\right) g\left(E_{4}, E_{4}\right) \\
& \quad=\varepsilon_{1} k_{2} k_{3} k_{4}\left(\lambda_{2}\left(\lambda_{4}-\lambda_{3}\right)+\lambda_{3}\left(\lambda_{2}-\lambda_{4}\right)+\lambda_{4}\left(\lambda_{3}-\lambda_{2}\right)\right)=0
\end{aligned}
$$

which proves that $R$ is Jacobi-orthogonal.
Conversely, let $R$ be a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor of dimension 4. First, we prove that $R$ is weak Jacobi-dual. Let $X$ and $Y$ be mutually orthogonal unit vectors in $\mathcal{V}$ such that $\mathcal{J}_{X} Y=\varepsilon_{X} \lambda Y$. Our aim is to prove $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X$. Since $R$ is Jacobi-diagonalizable and Jacobi-orthogonal, $X$ is nonnull and $Y \in \mathcal{V}(X)=\operatorname{Ker}\left(\widetilde{\mathscr{J}}_{X}-\varepsilon_{X} \lambda \mathrm{Id}\right)$, using Lemma 2.3 and Lemma 2.4, we get $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X+Z$, where $\varepsilon_{Z}=0$ and $Z \in \mathcal{V}(X) \leqslant X^{\perp}$. Moreover, since $g(Z, Y)=g\left(\partial_{Y} X-\varepsilon_{Y} \lambda X, Y\right)=g\left(X, \mathscr{J}_{Y} Y\right)-\varepsilon_{Y} \lambda g(X, Y)=0$, it follows that $Z \perp Y$, so we conclude $Z \in \operatorname{Span}\{X, Y\}^{\perp}$.

We discuss two cases. The case where $\operatorname{Span}\{X, Y\}^{\perp}$ is a definite subspace of $\mathcal{V}$ is easy since $\varepsilon_{Z}=0$ and $Z \in \operatorname{Span}\{X, Y\}^{\perp}$ imply $Z=0$.

It remains to deal with the case where $\operatorname{Span}\{X, Y\}^{\perp}$ is indefinite $\left(\varepsilon_{X}=\varepsilon_{Y}\right.$ for a Lorentzian $R, \varepsilon_{X}=-\varepsilon_{Y}$ for a Kleinian $R$, while for a Riemannian $R$ there is no such case). Since $\mathscr{J}_{Y} X=\varepsilon_{Y} \lambda X+Z$, our aim is to prove $Z=0$. We assume $Z \neq 0$, where $\varepsilon_{Z}=0$ implies $Z$ is null. Since $R$ is Jacobi-diagonalizable, we know $\mathcal{V}(X)$ is nondegenerate such as $\operatorname{Span}\{Y\}^{\perp} \cap \mathcal{V}(X)$ which contains null vector $Z$, so its dimension is at least 2 . Thus, since $Y \in \mathcal{V}(X) \leqslant X^{\perp}$, we get $\operatorname{dim} \mathcal{V}(X)=3$. Therefore, $\mathcal{V}(X)=X^{\perp}$ and $\widetilde{\mathcal{J}}_{X}=\varepsilon_{X} \lambda$ Id. There exists $W \in \operatorname{Span}\{X, Y\}^{\perp}$ such that $\varepsilon_{W}=-\varepsilon_{Y}$ and we write $Y=(Y-t W)+t W$ for $t>1$. Since $Y-t W$, $t W \in \mathcal{V}(X)$, we have $\mathcal{J}_{X}(Y-t W)=\varepsilon_{X} \lambda(Y-t W)$ and $\mathcal{J}_{X}(t W)=\varepsilon_{X} \lambda t W$. Using $W \perp Y$ and (1.1), we get $\varepsilon_{Y-t W}=\varepsilon_{Y}+t^{2} \varepsilon_{W}=\left(1-t^{2}\right) \varepsilon_{Y}$ and $\varepsilon_{t W}=t^{2} \varepsilon_{W}$. Therefore $\operatorname{sgn}\left(\varepsilon_{Y-t W}\right)=\operatorname{sgn}\left(\varepsilon_{t W}\right)=-\operatorname{sgn}\left(\varepsilon_{Y}\right)$ and we apply the solved case to $X$, $Y-t W$ and $X, t W$ to obtain $\mathcal{J}_{Y-t W} X=\varepsilon_{Y-t W} \lambda X$ and $\mathcal{J}_{t W} X=\varepsilon_{t W} \lambda X$. Using (1.8) and $\mathcal{J}(t W, t W) X=\mathcal{J}_{t W} X$, we compute

$$
\begin{aligned}
\mathcal{J}_{Y} X & =\mathcal{J}_{(Y-t W)+t W} X=\mathcal{J}_{Y-t W} X+2 \mathcal{J}(Y-t W, t W) X+\mathcal{J}_{t W} X \\
& =\varepsilon_{Y-t W} \lambda X+2 t \mathcal{J}(Y, W) X-2 \mathcal{J}_{t W} X+\mathcal{J}_{t W} X \\
& =\varepsilon_{Y-t W} \lambda X+2 t \mathcal{J}(Y, W) X-\varepsilon_{t W} \lambda X=\varepsilon_{Y} \lambda X+2 t \mathcal{J}(Y, W) X
\end{aligned}
$$

Since $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X+2 t \mathcal{J}(Y, W) X$ holds for all $t>1$, we get $2 \mathcal{J}(Y, W) X=0$ and $\mathcal{J}_{Y} X=\varepsilon_{Y} \lambda X$, contrary to assumption that $Z \neq 0$, so $Z=0$.

Therefore, $R$ is weak Jacobi-dual and since $R$ is Jacobi-diagonalizable, using Lemma 1.3, we conclude that $R$ is Jacobi-dual. Finally, Theorem 1.1 implies that $R$ is Osserman.

Especially, since Riemannian curvature tensors are Jacobi-diagonalizable, we get that every algebraic curvature tensor on a positive definite scalar product space of dimension 4 is Osserman if and only if it is Jacobi-orthogonal.

At the end, we conclude that the Jacobi-orthogonal property is very important and useful in characterizing Osserman tensors in pseudo-Riemannian settings.

## References

1. V. Andrejić, Strong duality principle for four-dimensional Osserman manifolds, Kragujevac J. Math. 33 (2010), 17-28.
2. V. Andrejić, K. Lukić, On quasi-Clifford Osserman curvature tensors, Filomat 33 (2019), 1241-1247.
3. $\qquad$ The orthogonality principle for Osserman manifolds, Acta Math. Hungar., to appear, arXiv:2308.14851 [math.DG]
4. V. Andrejić, Z. Rakić, On the duality principle in pseudo-Riemannian Osserman manifolds, J. Geom. Phys. 57 (2007), 2158-2166.
5. $\qquad$ , On some aspects of duality principle, Kyoto J. Math. 55 (2015), 567-577.
6. A. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb., 3. Folge 10, Springer-Verlag, Berlin, 1987.
7. N. Blažić, N. Bokan, P. Gilkey, A Note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), 227-230.
8. E. García-Río, D.N. Kupeli, M.E. Vázquez-Abal, On a problem of Osserman in Lorentzian geometry, Differ. Geom. Appl. 7 (1997), 85-100.
9. E. García-Río, D.N. Kupeli, M.E. Vázquez-Abal, R. Vázquez-Lorenzo, Affine Osserman connections and their Riemann extensions, Differ. Geom. Appl. 11 (1999), 145-153.
10. P. Gilkey, Manifolds whose curvature operator has constant eigenvalues at the basepoint, J. Geom. Anal. 4 (1994), 155-158.
11. $\qquad$ , Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, 2001.
12. P. Gilkey, A. Swann, L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Q. J. Math., Oxf. II. Ser. 46 (1995), 299-320.
13. Y. Nikolayevsky, Z. Rakić, The duality principle for Osserman algebraic curvature tensors, Linear Algebra Appl. 504 (2016), 574-580.
14. Z. Rakić, On duality principle in Osserman manifolds, Linear Algebra Appl. 296 (1999), 183-189.
15. S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity, Wiley, 1972.

Faculty of Mathematics
(Received 3108 2023) University of Belgrade
Belgrade
Serbia
katarina.lukic@matf.bg.ac.rs

