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THE JACOBI-ORTHOGONALITY IN
INDEFINITE SCALAR PRODUCT SPACES

Katarina Lukié

ABSTRACT. We generalize the property of Jacobi-orthogonality to indefinite
scalar product spaces. We compare various principles and investigate rela-
tions between Osserman, Jacobi-dual, and Jacobi-orthogonal algebraic curva-
ture tensors. We show that every quasi-Clifford tensor is Jacobi-orthogonal.
We prove that a Jacobi-diagonalizable Jacobi-orthogonal tensor is Jacobi-dual
whenever Jx has no null eigenvectors for all nonnull X. We show that any
algebraic curvature tensor of dimension 3 is Jacobi-orthogonal if and only if it
is of constant sectional curvature. We prove that every 4-dimensional Jacobi-
diagonalizable algebraic curvature tensor is Jacobi-orthogonal if and only if it
is Osserman.

1. Introduction

Recently, Jacobi-orthogonal algebraic curvature tensors have been introduced
as a new potential characterization of Riemannian Osserman tensors, and it has
been proved that any Jacobi-orthogonal tensor is Osserman, while all known Os-
serman tensors are Jacobi-orthogonal [3]. We generalize the concept of Jacobi-
orthogonality to indefinite scalar product spaces and investigate its relations with
some important features such as Osserman, quasi-Clifford, and Jacobi-dual tensors.

Let (V, g) be a scalar product space of dimension n, that is, V is an n-dimension-
al vector space over R, while g is a nondegenerate symmetric bilinear form on V.
The sign of the squared norm, ex = g(X, X), distinguishes all vectors X € V~ {0}
into three different types. A vector X € 'V is spacelike if e x > 0; timelike if ex < 0;
null if ex = 0 and X # 0. Especially, a vector X € V is nonnull if ex # 0 and it
is unit if ex € {—1,1}. We say that X and Y are mutually orthogonal and write
X LY ifg(X,Y)=0. For X LY we have

(1.1) caxipy = 9(aX + BY,aX + BY) = o’cx + Bey.
B
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An important relation between null, timelike, and spacelike vectors is given in
the following lemma (see [I, Lemma 1]).

LEMMA 1.1. Every null N from a scalar product space V can be decomposed as
N =S4T, where S TeV, S LT, andeg = —¢er.

We say that a subspace W of an indefinite scalar product space (V, g) is totally
isotropic if it consists only of null vectors, which implies that any two vectors from
W are mutually orthogonal. In what follows we will use the following well-known
statement about an isotropic supplement of W (see [2], Proposition 1]).

LEMMA 1.2. If W <V is a totally isotropic subspace with a basis (N1, ..., Ny),
then there exists a totally isotropic subspace U <V, disjoint from W, with a basis
(M, ..., My), such that g(N;, M;) = 6;; holds for 1 <i,j < k.

A quadri-linear map R: V* — R is said to be an algebraic curvature tensor on
(V, g) if it satisfies the usual Zy symmetries as well as the first Bianchi identity.
More concretely, an algebraic curvature tensor R € T(V) has the properties

(1.2) R(X,Y,Z,W) = —R(Y, X, Z,W),

(1.3) R(X,Y,Z,W) = —R(X,Y,W, 2),

(1.4) R(X,Y,Z,W) = R(Z,W,X,Y),

(1.5) R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W) =0,

forall X,Y, Z, W V.
The basic example of an algebraic curvature tensor is the tensor R! of constant
sectional curvature 1, defined by
RYX,Y,2,W) =g(Y, Z)g(X,W) - g(X, Z)g(Y, W).
Furthermore, skew-adjoint endomorphisms J on V generate new examples by
RI(XY,Z,W) =g(JX,Z)9(JY.W) = g(JY, Z)g(JX, W) +29(JX,Y)g(JZ,W).

A quasi-Clifford family of rank m is an anti-commutative family of skew-adjoint
endomorphisms J;, for 1 < i < m, such that J? = ¢;Id, for ¢; € R. In other words,
a quasi-Clifford family satisfies the Hurwitz-like relations, J;J; + J;J; = 26;5¢; 1d,
for 1 <i,j < m. We say that an algebraic curvature tensor R is quasi-Clifford if

m
(1.6) R=pR"+ ) mR",
i=1
for some pug,...,um € R, where J;, for 1 < ¢ < m, is some associated quasi-

Clifford family. Especially, R is Clifford if it is quasi-Clifford with ¢; = —1 for
all 1 < ¢ < m. Let us remark that Clifford tensors were observed in [10,12] and
quasi-Clifford tensors were considered in [2].

If By, Es,...,E, €V are mutually orthogonal units, we say that (F1, ..., E,)
is an orthonormal basis of V. The signature of a scalar product space (V,g) is an
ordered pair (p, ¢), where p is the number of negative eg,, while ¢ is the number of
positive eg,. We say that R is Riemannian if p = 0; Lorentzian if p = 1; Kleinian
if p=gq.
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Raising the index we obtain the algebraic curvature operator R = Rf € TA(V).
The polarized Jacobi operator is the linear map J: V2 — V defined by

IX,Y)Z = %(iR(Z, X)Y +R(Z,Y)X)

for all X,Y,Z € V. For each X € V the Jacobi operator Jx is a linear self-adjoint
operator Jx: V — V defined by JxY = J(X,X)Y = RY, X)X for all Y € V.
Using the three-linearity of R, for every Z € V we get

(1.7) JixZ = R(Z,tX)(tX) = *R(Z, X)X = t*Jx Z,
(1.8) IxvZ=RZ,X+Y)X+Y)=IxZ +2(X,Y)Z + 3y Z.

Using (4)) we get that any two Jacobi operators satisfy the compatibility
condition, which means that g(JxY,Y) = ¢g(dy X, X) holds for all X,Y € V. Since
dxX =0and g(JxY,X) = 0, we conclude that for any nonnull X € V the Jacobi
operator Jx is completely determined by its restriction EX: X+ — X called the
reduced Jacobi operator. _

Let R be an algebraic curvature tensor and wx(A) = det(AId —Jx). We say
that R is timelike Osserman if wx is independent of unit timelike X € V. We
say that R is spacelike Osserman if wx is independent of unit spacelike X € V.
Naturally, R is called Osserman if it is both timelike and spacelike Osserman. It is
known that timelike Osserman and spacelike Osserman conditions are equivalent
(see [9]). Tt is easy to see that every quasi-Clifford tensor is Osserman (see [2]).

We say that R is k-stein if there exist constants ci,...,cr € R such that

(1.9) tr((dx))) = (ex)e;

holds for each 1 < j < k and all X € V. It is known that an algebraic curvature
tensor of dimension n is Osserman if and only if it is n-stein (see [11, Lemma
1.7.3]).

We say that R is Jacobi-diagonalizable if Jx is diagonalizable for any nonnull
X. In this case we have

k
(1.10) V = Span{X} & P Ker(Jx — ex X 1d),
=1
where ex A1, . ..,ex A are all eigenvalues of 5 x and @ denotes the direct orthogonal

sum.

The duality principle in the Riemannian setting (g is positive definite) appeared
in [14]. Tts generalization to a pseudo-Riemannian setting (see [4[5]) is given by
the implication

(111) IxY =ex\Y = Jy X =y X.

If (TII) holds for all mutually orthogonal unit X,Y € V, then we say that R is
weak Jacobi-dual, and if (LII]) holds for all X,Y € V with the restriction ex # 0,
we say that R is Jacobi-dual. If R is Jacobi-diagonalizable, it is sufficient to prove
that it is weak Jacobi-dual which we see in the following lemma (see [1.4]).
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LEMMA 1.3. Every Jacobi-diagonalizable algebraic curvature tensor is Jacobi-
dual if and only if it is weak Jacobi-dual.

The condition that R is Jacobi-diagonalizable is strong enough to provide the
equivalence between Osserman and Jacobi-dual property in a pseudo-Riemannian
setting.

THEOREM 1.1. [13] Every Jacobi-diagonalizable algebraic curvature tensor is
Osserman if and only if it is Jacobi-dual.

2. The Jacobi-orthogonality

In [3] we introduced a new concept of Jacobi-orthogonality, and here we gener-
alize it to a pseudo-Riemannian setting. We say that an algebraic curvature tensor
is Jacobi-orthogonal if the implication

(2.1) X1Y = JxY L3y X

holds for all unit X,Y € V. However, it is easy to extend this for all X,Y € V,
which we see in the following lemma.

LEMMA 2.1. If an algebraic curvature tensor is Jacobi-orthogonal, then (2.1))
holds for all XY € V.

PROOF. Suppose R is Jacobi-orthogonal and X L Y. The assertion is obvious
for X =0o0r Y =0. If X and Y are both nonnull, (21]) holds after we rescale them
using (L1).

We consider the case ex # 0 and ey = 0. Since X' is nondegenerate and
contains null Y, according to Lemma [[I} there exist S,7 € X' such that Y =
S+T,S L T,eg = —ep > 0. Since X,S,T are nonnull, X 1 S, and X L T,
using (1)) we get ¢(dxS,dsX) =0 and g(JxT,JrX) = 0. Hence, using (LJ)) and
denoting K = JsX, L = 23(S,T)X, M = JrX, P = JxS, and Q = JxT, we
calculate

(2.2) g(@x(S+AT),ds12rX) = g(P+2Q, K + AL + \*M)
= (9(P, M) +g(Q. L))\* + (9(Q, K) + g(P, L))\.
)

For every \ # +1, using (LI) we get esyar = es(1 =A%) #0,50 X L S+ AT
implies g(Ix (S + AT'),Js+r7X) = 0, where [Z2) gives g(P, M) + g(Q, L) = 0 and
9(Q,K) + g(P,L) = 0. Hence, ([Z2) for A = 1 implies g(Jx (S +T),ds+7X) =0
which proves (ZI]) for one nonnull and one null vector.

It remains to prove (2] for two null vectors X = Ny and Y = N,. If they are
linearly dependent, we have N7 = £ Ny for some £ € R, so Iy, N2 = 0 and therefore
@) holds. If Ny and N» are linearly independent mutually orthogonal vectors,
then they form a basis (N1, Na) of the totally isotropic subspace Span{ Ny, Na} < V.
According to Lemmal[l 2 there exists a basis (M7, M3) of a totally isotropic subspace
of V that is disjoint from Span{Ni, No} and g(N;, M;) = &;5, for 1 < 4,5 < 2. We
can decompose Ny = S + T, where S = (N2 + M3)/2, T = (Ny — M3)/2, and
S, T € Ni+. Since es = —e7 = 1/2 and S L T, repeating the same procedure as in
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the previous part of the proof, we get (Z2) and using already proved implication
(1) for nonnull S + AT and null vector N7 we have (2 for null vectors X = N
and Y = N,. O

Sometimes, it is useful to add the tensor of constant sectional curvature to the
observed algebraic curvature tensor R.

LEMMA 2.2. If an algebraic curvature tensor R is Jacobi-orthogonal, then for
each p € R, the tensor R + puR! is Jacobi-orthogonal.

PROOF. Let J’ be the Jacobi operator associated with the algebraic curvature
tensor R’ = R+ pRY, while X and Y are mutually orthogonal unit vectors. Using
IJxY L X, JyX LY, and the Jacobi-orthogonality of R, we get

g(@%Y, 0y X) = g(IxY + pexY, Iy X + pey X) = g(dxY,dy X) = 0,
which means that R’ = R + uR' is Jacobi-orthogonal. (I

In the Riemannian setting we know that every Clifford algebraic curvature
tensor is Jacobi-orthogonal (see [3]). We use Lemma to give a generalization
to a pseudo-Riemannian setting.

THEOREM 2.1. FEvery quasi-Clifford algebraic curvature tensor is Jacobi-or-
thogonal.

PRrROOF. Let Ji, Ja,...,Jy be a quasi-Clifford family associated to a quasi-
Clifford algebraic curvature tensor of the form (IL6). Consider R = Y_/", y; R’ and
units X 1 Y. Since the endomorphism J; is skew-adjoint, we have g(J; X, X) = 0,
which yields

IxY = pwR (Y, X)X
=1

wi(g(LY, X)J:; X — g(J; X, X)J,Y + 29(J;Y, X)J; X)

=1
33 pig( LY, X)Ji X,
=1

and similarly Jy X =337, 11;9(J; X, Y)J;Y. For units X LY, using that J; is
skew-adjoint for ¢ € {1,2,...,m} and the Hurwitz-like relations, we get

9@0xY,3vX) = (33 mig(TY, X)IX, 33 gl X, V) I;Y )

i=1 j=1
=9 pipig(LY, X)g(J; X, YV )g(J; X, J;Y)
i
=9 wipig(X, Y )g(X, ;Y )g(X, JiJ;Y)

2%
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9
=3 > winig(X, JY)g(X, J;Y)g(X, (JiJ; + J; Ji)Y)

4,3

9
5 D2 2sciig (X, Y )g(X, J;Y)g(X,Y) =0,

2%
which proves that R is Jacobi-orthogonal. According to Lemma it follows that
the quasi-Clifford R + poR! is Jacobi-orthogonal. O

In order to examine the Jacobi-duality of a Jacobi-diagonalizable Jacobi-ortho-
gonal algebraic curvature tensor, we give the following two lemmas which give us

information about Jy X, where Y is an eigenvector of Jx for a nonnull vector
Xewv.

LEMMA 2.3. Let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic cur-
vature tensor. If X € V is a nonnull vector and Y € V;(X) = Ker(Jx — exA; Id),
then Jy X € Span{X} & V;(X).

PROOF. If Jx has only one eigenvalue &x A;, then Span{X} @& V;(X) =V, so
the statement is obvious. Let Z € V;(X) = Ker(gx —exA;Id) for A; # A; and
L=Y +tZ, where t € R. Since Y € V;(X) < X1 and Z € V;(X) < X+ we have
L 1 X, so using the Jacobi-orthogonality of R, Lemma 21 and (3], we get

0=yg(LX,dxL) = g(R(X,Y +12)(Y +tZ),dxY +tIx 2)

=R(X,)Y+tZ)Y +tZex\NY + tEXAjZ>

= Ex(t)\j - t)\i)R(X, Y + ﬁZ, Y, Z)

=ex(\i = N)R(X, Z,Z, V)t + ex(\; — M) R(X,Y,Y, Z)t.
Since this holds for all t € R, we conclude that the coefficient of ¢ is zero and because
of ex(Aj — A;) # 0 we obtain R(X,Y,Y,Z) = 0, and therefore Jy X L Z, which
holds for every Z € V;(X), whenever \; # A,. Since R is Jacobi diagonalizable,
we have (LIO), where exAq,...,ex A are all (different) eigenvalues of Jx, so we
conclude that Jy X € Span{X} & V;(X). O

LEMMA 2.4. Let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic cur-

vature tensor. If X € V is a nonnull vector and Y € V(X) = Ker(Jx — exA1d),
then Jy X = ey AX + Z, where ez = 0.

PROOF. Let Jy X = aX + Z, where Z € X+ and a € R. The compatibility
of Jacobi operators gives g(Jy X, X) = g(dxY,Y), so g(aX + Z,X) = g(ex\Y,Y).
Hence, aex = Aexey and since ex # 0, we get « = ey A and Jy X = ey AX + Z.
From Y € V(X) < X+, we get g(exY — tey X, X +tY) = 0, so using that R is
Jacobi-orthogonal, Lemma 2] (IT), (L8], and the equalities 2J(X,Y)Y = —Jy X,
20(X,Y)X = —JxY, we obtain

0= g(HX-HY(EXY —tey X ), Jexy—tey x (X + ty))
= g(exdxY — texy X + ey dxY — ey Iy X,
%0y X + texeydxY + Pexeydy X + 324xY).
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Since every t € R is a root of the polynomial equation

9(@x1ev(ExY —tey X), dey —tey x (X +1Y)) =0,
we conclude that all coefficients are zero, and therefore the coefficient of ¢ is
E‘%{Eyg(g)(Y, ny) — EBXg(HyX, gyX) = 0, which implies EYEJxY = EXEJyv X be-
cause ex # 0, and therefore eye.,ay = €x€eyrxiz. Since Z € X+, using (),
we get eyex\ey = ex (e \%ex + ez), which gives ez = 0. O

As a consequence of the last two lemmas, we easily get the following theorem.

THEOREM 2.2. Ewvery Jacobi-diagonalizable Jacobi-orthogonal algebraic curva-
ture tensor is Jacobi-dual, when Jx has no null eigenvectors for all nonnull X .

PROOF. Let X and Y be two mutually orthogonal vectors such that ex # 0
and JxY = exAY. Using Lemmapﬂl we get Jy X = ey AX + Z, where ez = 0,
while Lemma gives Z € Ker(Jx — exAId). If Z is null, then it is not an
eigenvector of Jx, which implies Z = 0, so Jy X = ey AX, which proves that R is
Jacobi-dual. O

3. Low dimensional cases

In this section we consider the cases of small dimension n € {3,4}. In dimension
3 we obtain the following expected result.

THEOREM 3.1. FEwery algebraic curvature tensor of dimension 3 is Jacobi-
orthogonal if and only if it is of constant sectional curvature.

PROOF. Suppose R is a 3-dimensional algebraic curvature tensor of constant
sectional curvature p. Since the zero tensor is Jacobi-orthogonal, Lemma[Z2limplies
that R = 0+ pR! is Jacobi-orthogonal.

Conversely, suppose R is a Jacobi-orthogonal algebraic curvature tensor of di-
mension 3. Let (Eq, Ea, E3) be an arbitrary orthonormal basis of V, ¢; = eg,, for
1<i<3,and Riji = R(E;, Ej, Ey, Ey), for i,7,k,1 € {1,2,3}. Using the formula
fR(Ei, Ej)Ek = Zl EIRijklEl and (M), we obtain HEIEQ = €2R2112E2 + €3R2113E3
and Jg, E1 = €1 R1921 F1 + €3R1203F3. Hence, since £y 1 E; and R is Jacobi-
orthogonal, we get Rs113R1223 = 0. Using rescaling we obtain

(3.1) R(B,A,A,C)R(A,B,B,C) =0,

for an arbitrary orthogonal basis (A, B, C') which consists of nonnull vectors.
Consider the basis X = Ey, Y = Ey +tFE3, Z = tegFE> — e9FE3, where t > 1.

Using (L)), we get ex = &1 # 0, ey = &3 + t?e3 # 0, ez = t?c3eq + ez # 0,

9g(X,Y) =0, g(X,Z) = 0 and g(Y,Z) = tezeq — teaes = 0, so (X,Y,Z) is an

orthogonal basis which consists of nonnull vectors, so applying [B.1]) we get

0 = R(EQ 4+ tEg, El, El, tEgEQ — EQEg)R(El, EQ 4+ tEg, EQ =+ tEg, t€3E2 — €2E3)
= (—e2Ro113 + (e3Ra112 — £2R3113)t + £3R3112t”) (R1223 + tR1323)(—€2 — 3t?).
Since this holds for every ¢ > 1, we conclude that the coefficient of ¢ in the polyno-
mial is 0. Thus, using ([3)) and e2 # 0, we get

eaRo113R1332 + (€3R2112 — €2R3113) Ri223 = 0,
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SO m for (A, B7 C) = (Eg, El, EQ) implies (€3R2112 — €2R3113)R1223 = 0. Rescal-
ing the vectors we obtain

(3.2) (ccR(B,A, A, B) —epR(C, A, A,C))R(A, B, B,C) = 0,

for an arbitrary orthogonal basis (A, B, C') which consists of nonnull vectors.

Let (E4, Eo, E3) be an arbitrary orthonormal basis of V and (p, ¢,7) a permu-
tation of the set {1, 2, 3} Let S1 = R2113, So9 = R1223, S3 = R1332, 1{31 = 5253R3223,
kQ = €1€3R3113, and kg = €1€2R2112. From (E:D we get for (A, B7 C) = (Ep, Eq, ET>
gives sps, = 0, and since this holds for an arbitrary permutation (p,q,r) of the set
{1,2,3}, we get that at least two of s1, s2, s3 are zero. Let s, = s, = 0 and suppose
sy # 0. Hence, B2) for (A, B,C) = (Ey, E,, E,) multiplied by e,e4e, # 0, gives
(kp — kyr)s, = 0, which implies k, = k,.

Consider A = Fy +tFEs, B = Es, C = e3tEy — e1Es, for t > 1. Using (1) we
getea = e1+t%e3 # 0,ep = €2 # 0, ec = e3t?e1+e2e3 = t2e1+e3 # 0, g(A, B) = 0,
g(A, C) = €3t€1 *t€1€3 = 0, and g(B, C) = 0, SO (E1 +tE3, EQ, EgtEl 7€1E3) is an
orthogonal basis which consists of nonnull vectors and applying (3:2), (L1, (I2),
([C3), (T4) we compute

((t2€1 + £3)(Ra112 + 2R1903t + R3903t?) — eaR3113(e1 + €3t2)2)
x (= e1R1223 + (e3R2112 — €1R3203)t + £3R1223t”) = 0.

This holds for every t > 1, so the coefficient of ¢ is zero, and using e¢3e3 = 1, we
obtain

—2e163R1595 + (€162 R2112 — €163 R3113) (€162 R2112 — €283 R3203) = 0.
Hence, —2e1e353+ (k3 — k2) (ks — k1) = 0. Thus, using the basis (E,, E,, E,) instead
of (E1, Ea, Es), we get
(3.3) —2¢eq4eps7 + (kp — ki) (kp — kq) = 0,
which with &k, = k, and e4¢, # 0 gives s, = 0, which contradicts s, # 0. Thus,
8p = 84 = s, = 0, which implies
Ro113 = Ri203 = Rizzz2 = 0.

Hence, B3) gives (kp, — kr)(kp — kq) = 0 for any permutation (p,q,r) of the set
{1,2,3}, so at least two of differences ks — ko, ks — k1, and ko — k; are zero, which
implies k1 = ko = k3 = u, and therefore

Ro112 = 1621, R3zi13 = €163, Razasz = €263

Since an algebraic curvature tensor of dimension 3 is uniquely determined by its 6
components Of tensor: R2113, R1223, R1332, R2112, R3113, R3223 (See [15, Pp. 142
144]), the previous equalities imply that R is of constant sectional curvature p. O

Since every 3-dimensional R is 1-stein if and only if it is of constant sectional
curvature (see [6, Proposition 1.120]), the previous theorem implies that every 3-
dimensional R is Jacobi-orthogonal if and only if it is Osserman. In the following
theorem we prove a similar result in dimension 4 using an additional hypothesis
that R is Jacobi-diagonalizable.
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THEOREM 3.2. Fvery Jacobi-diagonalizable algebraic curvature tensor of di-
mension 4 is Osserman if and only if it is Jacobi-orthogonal.

PRrROOF. Suppose R is a Jacobi-diagonalizable Osserman algebraic curvature
tensor of dimension 4. It is well-known that a Lorentzian Osserman algebraic
curvature tensor has constant sectional curvature (see [7,[8]), so it is of the form
R = pR'. Hence, using that 0 is Jacobi-orthogonal and applying Lemma 2.2]
we conclude that Lorentzian R is Jacobi-orthogonal. It remains to deal with a
Riemannian or Kleinian R. Let X and Y be mutually orthogonal unit vectors in V.
Denote X = E;. Since R is Jacobi-diagonalizable, there exists an orthonormal
eigenbasis (E1, Fa, E3, Ey) related to Jg, such that Jg, E; = e\ E;, for 2 < i < 4,
where ¢; = ep;, for 1 < j < 4. Since R is not Lorentzian, we have 1626364 = 1,
as well as 2 = 1, for 1 < i < 4. Denoting Rijii = R(E;, Ej, Ex, Ey), we get
Rillj = g(gElEian) = g(El)\iEi,Ej) = ElAi(SijEi. Hence,

(3.4) Ro112 = €182X2,  Rsiiz =€163)3,  Rut14 = €184,
(3.5) Ro113 = Ro114 = R3114 = 0.
According to Theorem [Tl a Jacobi-diagonalizable Osserman R is Jacobi-dual.

Thus, dg, B = 1\ By, for 2 < i < 4, implies Jg, Eh1 = ;N Eq, so Jg, 1 L Ej for
2 < j < 4, which means 0 = g(Jg, E1, E;) = Riii; and therefore

(3.6) Ri223 = R1224 = R1332 = R1334 = R1442 = R1443 = 0.
Since R is 1-stein, (IJ) holds for j = 1 and we get >, €iexRizai = c1, for x €
{1,2,3,4} (see [1]). Thus, using ([.4) we obtain

€162R2112 + €163 13113 + €164 R4114 = 1,

€162Ra112 + €263 13223 + €264 Ry204 = c1,

€163R3113 + €263 73223 + €364 4334 = c1,

€164R4114 + €264 Ra224 + €364 Ry3314 = 1.
Therefore, subtracting the sum of the two of these equations from the sum of the
remaining two equations, we get c2c3R3203 = €164 R4114, €264R4224 = €163R3113,
and e3e4Ry334 = €162 Ro112. Using (B.4)), we obtain

(3.7) R3203 = €164A1, Rusoa = €163X3, Ruazzqs = €162)0.

For a 1-stein R we also have additional equalities i€ilizyi =0for 1 <z #y <4

(see [1]). Using them for (z,y) € {(2,3),(2,4),(3,4)}, (C2), (C3), and (T4, we

conclude Rogyz = —e164R2113, Rozzs = —ec163R2114, and Rzooy = —e1€2R3114.
Thus, using ([3.5]), we obtain

(3.8) Roys3 = R334 = R3z24 = 0.

Since Osserman R is 2-stein, (CY) holds for j = 2, so we get tr(dg,)? = (eg, )?ca,
which gives

(3.9) A3+ A3+ A7 = e
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Since R is 2-stein, for all 1 < x # y < 4, we get known 2-stein equations (see [1])
2 ) cigjRineiRiyyj + D €igj(Riayj + Riyaj)® = 2e05y02.
1<4,5<4 1<4,5<4
For (z,y) = (2,3), using (L2), (L3), (L4), B3), E.6), and (B3, we get
263 Ro112R3113 + 267 Razoa Razza + e164(Ri234 + Ri34)?
+ e9e3(—R3223)? + e362(—R3203)? + €461 (Raa31 + Razzn)? = 2e2e300.

Using B.7), we compute 4eae3 a3 + 26263(R1234 + Ri324)% + 2626307 = 2e2e300.
Since 2e2e3 # 0, we get co — A2 — 2Mo\3 = (Ri234 + Ri324)? and using (33) we
get (A3 — A2)? = (Ri2sa + Riz24). Similarly, using (L2), (L3), (L), and (LI) we
obtain

(A2 — A\)? = (Ri2a3 + Ri423)* = (Ri324 — 2R1234)%,

(M — A3)? = (Ruase + Riza2)? = (Rigza — 2Ri324)%.
Hence, we get
(3.10) $4(A3 — A2) = Ri23a + Risoa, s3(A2 — A1) = Riza4 — 2R1234,
' s2(As — A3) = Ri1234 — 2R304,

where s9,83,84 € {—1,1}. According to the pigeonhole principle, at least two of
S2, S3, 54 are the same. First, suppose s; = s; = —sy, where (4, j, k) is a permutation
of (2,3,4). Summing the equations in ([3.I0) we obtain

(83 — 84)/\2 + (84 — 82)/\3 + (52 — 83)>\4 =0,

and we conclude (s; — sg)A; + (s — $:)A; = 0, s0 A; = A;. Notice that substituting
si by —si does not change ([BI0) and provides so = s3 = sy4.

If so = s3 = s4 = —1, then substituting eigenvectors Fy, F3 and E, with
—Fs, —FE3 and —FE}4, respectively, we conclude that Ri234 and Ri324 change the
sign, as well as sa, s3, s4. Therefore, without loss of generality we can suppose
So =83 =84 = 1, and get

Ri234 — 2R304 = Ay — A3,
(3.11) Ri324 — 2R1234 = A2 — A4,
Ri234 + Ri324 = A3 — Aa2.

For an arbitrary Y 1 X = F; there exist real numbers ks, k3, k4 such that
Y = kQEQ + kgEg + k4E4, and therefore

IxY =g, (kaEs + k3sEs + kyEy) = kac1doEo + kse1 A3 E3 + kae1 M Ey.
USing mf(mx (BE), (Bﬂ), (m)v and fR(X,Y)Z = Zl EiR(Xﬂ Y, Z, EZ)EZ we

calculate
Iy X = JkyBothsBsthaBs 1 = R(E1, ko Bo + k3E3 + kyEy) (ko Eo + k3 E3 + kyEy)
= k31 Ro112E1 + kokscaRi934 By + kokyca Ri243Fs3
+ kskoeaRi324 By + k3e1 Ri331 E1 + kskaeaRi342 o
+ kakoez R1493F3 + kakaea Riazo Ba + kje1 Riaa1 By
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= (k3e1Ra112 + k321 Riz31 + kie1 Riga1 ) B1 + kakaco(Rizas + Rizo) Eo
+ kokaes(Ri243 + R1423) B3 + koksea(Ri234 + Ri324)FEa

= (k3ea)o + k3esAs + kieada) By + kskaea(Ri23s — 2R1304) B
+ kokaesz(Ri324 — 2R1234) B3 + kokzea(Ri234 + Ri324) Fy

= (k3eg)o + k3esAs + kiea ) By + kaksea(Ms — \3) By
+ kokses( Ao — M) Es + koksea(As — A2) Ey.

Thus, using that (E1, Es, E3, Ey) is an orthonormal basis, we compute

9(AxY,Iv X) = kakskac1e2A2(Aa — A3)g(Ea, Eo)
+ kokskag1e3A3 (A2 — A1) g(Es, E3) + koksksg1£42a(A3 — X2)g(Ey, Ey)
= 51k2k3k4()\2()\4 — )\3) + )\3()\2 - )\4) + )\4()\3 - )\2)) = Oa

which proves that R is Jacobi-orthogonal.

Conversely, let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic cur-
vature tensor of dimension 4. First, we prove that R is weak Jacobi-dual. Let X
and Y be mutually orthogonal unit vectors in V such that JxY = exAY. Our aim
is to prove Jy X = ey AX. Since R is Jacobi-diagonalizable and Jacobi-orthogonal,
X is nonnull and Y € V(X) = Ker(Jx — exAId), using Lemma and Lemma
24 we get Jy X = eyAX + Z, where ez = 0 and Z € V(X) < X+. Moreover,
since g(Z,Y) = g(dy X —eyAX,Y) = g(X,dyY) —ey Ag(X,Y) = 0, it follows that
Z 1Y, so we conclude Z € Span{X,Y}+.

We discuss two cases. The case where Span{X,Y}* is a definite subspace of
V is easy since ez = 0 and Z € Span{X, Y} imply Z = 0.

It remains to deal with the case where Span{X, Y} is indefinite (cx = ey for
a Lorentzian R, ex = —ey for a Kleinian R, while for a Riemannian R there is
no such case). Since Jy X = ey AX + Z, our aim is to prove Z = 0. We assume
7 # 0, where ez = 0 implies Z is null. Since R is Jacobi-diagonalizable, we know
V(X) is nondegenerate such as Span{Y }* NV(X) which contains null vector Z, so
its dimension is at least 2. Thus, since Y € V(X) < X+, we get dimV(X) = 3.
Therefore, V(X) = X+ and Jx = exAId. There exists W € Span{X,Y}+ such
that ey = —ey and we write Y = (Y — ¢W) +¢W for ¢ > 1. Since Y — tW,
tW € V(X), we have Jx (Y —tW) = ex A(Y —tW) and Jx (tW) = ex MW. Using
W 1LY and @), we get ey 4w = ey + t2ew = (1 — t?)ey and e = t2ew.
Therefore sgn(ey _sw) = sgn(ew) = —sgn(ey ) and we apply the solved case to X,
Y —tW and X, tW to obtain Jy_sw X = ey_wAX and Juw X = esw AX. Using
([CR) and JEW,tW)X = Jsw X, we compute

Iy X =dv—twyrewX =y —ew X +20(Y —tW,tW)X + Jew X
— ey AX + 209V, W)X — 200w X + Jew X
=cy_wAX + 2t3(Y, W)X —emwAX = ey X + 2t3(Y, W)X

Since Jy X = ey AX + 2tJ(Y, W)X holds for all ¢ > 1, we get 2J(Y, W)X = 0 and
Jy X = ey AX, contrary to assumption that Z # 0, so Z = 0.
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Therefore, R is weak Jacobi-dual and since R is Jacobi-diagonalizable, using
Lemma [[3] we conclude that R is Jacobi-dual. Finally, Theorem [T implies that
R is Osserman. O

Especially, since Riemannian curvature tensors are Jacobi-diagonalizable, we
get that every algebraic curvature tensor on a positive definite scalar product space
of dimension 4 is Osserman if and only if it is Jacobi-orthogonal.

At the end, we conclude that the Jacobi-orthogonal property is very important
and useful in characterizing Osserman tensors in pseudo-Riemannian settings.
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