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THE JACOBI-ORTHOGONALITY IN

INDEFINITE SCALAR PRODUCT SPACES

Katarina Lukić

Abstract. We generalize the property of Jacobi-orthogonality to indefinite
scalar product spaces. We compare various principles and investigate rela-
tions between Osserman, Jacobi-dual, and Jacobi-orthogonal algebraic curva-
ture tensors. We show that every quasi-Clifford tensor is Jacobi-orthogonal.
We prove that a Jacobi-diagonalizable Jacobi-orthogonal tensor is Jacobi-dual
whenever JX has no null eigenvectors for all nonnull X. We show that any
algebraic curvature tensor of dimension 3 is Jacobi-orthogonal if and only if it
is of constant sectional curvature. We prove that every 4-dimensional Jacobi-
diagonalizable algebraic curvature tensor is Jacobi-orthogonal if and only if it
is Osserman.

1. Introduction

Recently, Jacobi-orthogonal algebraic curvature tensors have been introduced
as a new potential characterization of Riemannian Osserman tensors, and it has
been proved that any Jacobi-orthogonal tensor is Osserman, while all known Os-
serman tensors are Jacobi-orthogonal [3]. We generalize the concept of Jacobi-
orthogonality to indefinite scalar product spaces and investigate its relations with
some important features such as Osserman, quasi-Clifford, and Jacobi-dual tensors.

Let (V, g) be a scalar product space of dimension n, that is, V is an n-dimension-
al vector space over R, while g is a nondegenerate symmetric bilinear form on V.
The sign of the squared norm, εX = g(X, X), distinguishes all vectors X ∈ Vr {0}
into three different types. A vector X ∈ V is spacelike if εX > 0; timelike if εX < 0;
null if εX = 0 and X 6= 0. Especially, a vector X ∈ V is nonnull if εX 6= 0 and it
is unit if εX ∈ {−1, 1}. We say that X and Y are mutually orthogonal and write
X ⊥ Y if g(X, Y ) = 0. For X ⊥ Y we have

(1.1) εαX+βY = g(αX + βY, αX + βY ) = α2εX + β2εY .
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An important relation between null, timelike, and spacelike vectors is given in
the following lemma (see [1, Lemma 1]).

Lemma 1.1. Every null N from a scalar product space V can be decomposed as

N = S + T , where S, T ∈ V, S ⊥ T , and εS = −εT .

We say that a subspace W of an indefinite scalar product space (V, g) is totally
isotropic if it consists only of null vectors, which implies that any two vectors from
W are mutually orthogonal. In what follows we will use the following well-known
statement about an isotropic supplement of W (see [2, Proposition 1]).

Lemma 1.2. If W 6 V is a totally isotropic subspace with a basis (N1, . . . , Nk),
then there exists a totally isotropic subspace U 6 V, disjoint from W, with a basis

(M1, . . . , Mk), such that g(Ni, Mj) = δij holds for 1 6 i, j 6 k.

A quadri-linear map R : V4 → R is said to be an algebraic curvature tensor on
(V, g) if it satisfies the usual Z2 symmetries as well as the first Bianchi identity.
More concretely, an algebraic curvature tensor R ∈ T0

4(V) has the properties

R(X, Y, Z, W ) = −R(Y, X, Z, W ),(1.2)

R(X, Y, Z, W ) = −R(X, Y, W, Z),(1.3)

R(X, Y, Z, W ) = R(Z, W, X, Y ),(1.4)

R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) = 0,(1.5)

for all X, Y, Z, W ∈ V.
The basic example of an algebraic curvature tensor is the tensor R1 of constant

sectional curvature 1, defined by

R1(X, Y, Z, W ) = g(Y, Z)g(X, W ) − g(X, Z)g(Y, W ).

Furthermore, skew-adjoint endomorphisms J on V generate new examples by

RJ(X, Y, Z, W ) = g(JX, Z)g(JY, W ) − g(JY, Z)g(JX, W ) + 2g(JX, Y )g(JZ, W ).

A quasi-Clifford family of rank m is an anti-commutative family of skew-adjoint
endomorphisms Ji, for 1 6 i 6 m, such that J2

i = ci Id, for ci ∈ R. In other words,
a quasi-Clifford family satisfies the Hurwitz-like relations, JiJj + JjJi = 2δijci Id,
for 1 6 i, j 6 m. We say that an algebraic curvature tensor R is quasi-Clifford if

(1.6) R = µ0R1 +

m∑

i=1

µiR
Ji ,

for some µ0, . . . , µm ∈ R, where Ji, for 1 6 i 6 m, is some associated quasi-
Clifford family. Especially, R is Clifford if it is quasi-Clifford with ci = −1 for
all 1 6 i 6 m. Let us remark that Clifford tensors were observed in [10, 12] and
quasi-Clifford tensors were considered in [2].

If E1, E2, . . . , En ∈ V are mutually orthogonal units, we say that (E1, . . . , En)
is an orthonormal basis of V. The signature of a scalar product space (V, g) is an
ordered pair (p, q), where p is the number of negative εEi

, while q is the number of
positive εEi

. We say that R is Riemannian if p = 0; Lorentzian if p = 1; Kleinian
if p = q.
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Raising the index we obtain the algebraic curvature operator R = R♯ ∈ T1
3(V).

The polarized Jacobi operator is the linear map J : V3 → V defined by

J(X, Y )Z =
1

2
(R(Z, X)Y + R(Z, Y )X)

for all X, Y, Z ∈ V. For each X ∈ V the Jacobi operator JX is a linear self-adjoint
operator JX : V → V defined by JXY = J(X, X)Y = R(Y, X)X for all Y ∈ V.
Using the three-linearity of R, for every Z ∈ V we get

JtXZ = R(Z, tX)(tX) = t2R(Z, X)X = t2JXZ,(1.7)

JX+Y Z = R(Z, X + Y )(X + Y ) = JXZ + 2J(X, Y )Z + JY Z.(1.8)

Using (1.4) we get that any two Jacobi operators satisfy the compatibility
condition, which means that g(JXY, Y ) = g(JY X, X) holds for all X, Y ∈ V. Since
JXX = 0 and g(JXY, X) = 0, we conclude that for any nonnull X ∈ V the Jacobi

operator JX is completely determined by its restriction J̃X : X⊥ → X⊥ called the
reduced Jacobi operator.

Let R be an algebraic curvature tensor and w̃X(λ) = det(λ Id −J̃X). We say
that R is timelike Osserman if w̃X is independent of unit timelike X ∈ V. We
say that R is spacelike Osserman if w̃X is independent of unit spacelike X ∈ V.
Naturally, R is called Osserman if it is both timelike and spacelike Osserman. It is
known that timelike Osserman and spacelike Osserman conditions are equivalent
(see [9]). It is easy to see that every quasi-Clifford tensor is Osserman (see [2]).

We say that R is k-stein if there exist constants c1, . . . , ck ∈ R such that

(1.9) tr((JX)j) = (εX)jcj

holds for each 1 6 j 6 k and all X ∈ V. It is known that an algebraic curvature
tensor of dimension n is Osserman if and only if it is n-stein (see [11, Lemma
1.7.3]).

We say that R is Jacobi-diagonalizable if JX is diagonalizable for any nonnull
X . In this case we have

(1.10) V = Span{X} ⊕

k⊕

l=1

Ker(J̃X − εXλl Id),

where εXλ1, . . . , εXλk are all eigenvalues of J̃X and ⊕ denotes the direct orthogonal
sum.

The duality principle in the Riemannian setting (g is positive definite) appeared
in [14]. Its generalization to a pseudo-Riemannian setting (see [4, 5]) is given by
the implication

(1.11) JXY = εXλY =⇒ JY X = εY λX.

If (1.11) holds for all mutually orthogonal unit X, Y ∈ V, then we say that R is
weak Jacobi-dual, and if (1.11) holds for all X, Y ∈ V with the restriction εX 6= 0,
we say that R is Jacobi-dual. If R is Jacobi-diagonalizable, it is sufficient to prove
that it is weak Jacobi-dual which we see in the following lemma (see [1,4]).
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Lemma 1.3. Every Jacobi-diagonalizable algebraic curvature tensor is Jacobi-

dual if and only if it is weak Jacobi-dual.

The condition that R is Jacobi-diagonalizable is strong enough to provide the
equivalence between Osserman and Jacobi-dual property in a pseudo-Riemannian
setting.

Theorem 1.1. [13] Every Jacobi-diagonalizable algebraic curvature tensor is

Osserman if and only if it is Jacobi-dual.

2. The Jacobi-orthogonality

In [3] we introduced a new concept of Jacobi-orthogonality, and here we gener-
alize it to a pseudo-Riemannian setting. We say that an algebraic curvature tensor
is Jacobi-orthogonal if the implication

(2.1) X ⊥ Y =⇒ JXY ⊥ JY X

holds for all unit X, Y ∈ V. However, it is easy to extend this for all X, Y ∈ V,
which we see in the following lemma.

Lemma 2.1. If an algebraic curvature tensor is Jacobi-orthogonal, then (2.1)
holds for all X, Y ∈ V.

Proof. Suppose R is Jacobi-orthogonal and X ⊥ Y . The assertion is obvious
for X = 0 or Y = 0. If X and Y are both nonnull, (2.1) holds after we rescale them
using (1.7).

We consider the case εX 6= 0 and εY = 0. Since X⊥ is nondegenerate and
contains null Y , according to Lemma 1.1, there exist S, T ∈ X⊥ such that Y =
S + T , S ⊥ T , εS = −εT > 0. Since X, S, T are nonnull, X ⊥ S, and X ⊥ T ,
using (2.1) we get g(JXS, JSX) = 0 and g(JXT, JT X) = 0. Hence, using (1.8) and
denoting K = JSX , L = 2J(S, T )X , M = JT X , P = JXS, and Q = JXT , we
calculate

(2.2) g(JX(S + λT ), JS+λT X) = g(P + λQ, K + λL + λ2M)

= (g(P, M) + g(Q, L))λ2 + (g(Q, K) + g(P, L))λ.

For every λ 6= ±1, using (1.1) we get εS+λT = εS(1 − λ2) 6= 0, so X ⊥ S + λT
implies g(JX(S + λT ), JS+λT X) = 0, where (2.2) gives g(P, M) + g(Q, L) = 0 and
g(Q, K) + g(P, L) = 0. Hence, (2.2) for λ = 1 implies g(JX(S + T ), JS+T X) = 0
which proves (2.1) for one nonnull and one null vector.

It remains to prove (2.1) for two null vectors X = N1 and Y = N2. If they are
linearly dependent, we have N1 = ξN2 for some ξ ∈ R, so JN1

N2 = 0 and therefore
(2.1) holds. If N1 and N2 are linearly independent mutually orthogonal vectors,
then they form a basis (N1, N2) of the totally isotropic subspace Span{N1, N2} 6 V.
According to Lemma 1.2 there exists a basis (M1, M2) of a totally isotropic subspace
of V that is disjoint from Span{N1, N2} and g(Ni, Mj) = δij , for 1 6 i, j 6 2. We
can decompose N2 = S + T , where S = (N2 + M2)/2, T = (N2 − M2)/2, and
S, T ∈ N⊥

1 . Since εS = −εT = 1/2 and S ⊥ T , repeating the same procedure as in
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the previous part of the proof, we get (2.2) and using already proved implication
(2.1) for nonnull S + λT and null vector N1 we have (2.1) for null vectors X = N1

and Y = N2. �

Sometimes, it is useful to add the tensor of constant sectional curvature to the
observed algebraic curvature tensor R.

Lemma 2.2. If an algebraic curvature tensor R is Jacobi-orthogonal, then for

each µ ∈ R, the tensor R + µR1 is Jacobi-orthogonal.

Proof. Let J′ be the Jacobi operator associated with the algebraic curvature
tensor R′ = R + µR1, while X and Y are mutually orthogonal unit vectors. Using
JXY ⊥ X , JY X ⊥ Y , and the Jacobi-orthogonality of R, we get

g(J′

XY, J′

Y X) = g(JXY + µεXY, JY X + µεY X) = g(JXY, JY X) = 0,

which means that R′ = R + µR1 is Jacobi-orthogonal. �

In the Riemannian setting we know that every Clifford algebraic curvature
tensor is Jacobi-orthogonal (see [3]). We use Lemma 2.2 to give a generalization
to a pseudo-Riemannian setting.

Theorem 2.1. Every quasi-Clifford algebraic curvature tensor is Jacobi-or-

thogonal.

Proof. Let J1, J2, . . . , Jm be a quasi-Clifford family associated to a quasi-
Clifford algebraic curvature tensor of the form (1.6). Consider R =

∑m
i=1 µiR

Ji and
units X ⊥ Y . Since the endomorphism Ji is skew-adjoint, we have g(JiX, X) = 0,
which yields

JXY =
m∑

i=1

µiR
Ji(Y, X)X

=

m∑

i=1

µi(g(JiY, X)JiX − g(JiX, X)JiY + 2g(JiY, X)JiX)

= 3
m∑

i=1

µig(JiY, X)JiX,

and similarly JY X = 3
∑m

j=1 µjg(JjX, Y )JjY . For units X ⊥ Y , using that Ji is

skew-adjoint for i ∈ {1, 2, . . . , m} and the Hurwitz-like relations, we get

g(JXY, JY X) = g
(

3

m∑

i=1

µig(JiY, X)JiX, 3

m∑

j=1

µjg(JjX, Y )JjY
)

= 9
∑

i,j

µiµjg(JiY, X)g(JjX, Y )g(JiX, JjY )

= 9
∑

i,j

µiµjg(X, JiY )g(X, JjY )g(X, JiJjY )
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=
9

2

∑

i,j

µiµjg(X, JiY )g(X, JjY )g(X, (JiJj + JjJi)Y )

=
9

2

∑

i,j

2δijciµiµjg(X, JiY )g(X, JjY )g(X, Y ) = 0,

which proves that R is Jacobi-orthogonal. According to Lemma 2.2 it follows that
the quasi-Clifford R + µ0R1 is Jacobi-orthogonal. �

In order to examine the Jacobi-duality of a Jacobi-diagonalizable Jacobi-ortho-
gonal algebraic curvature tensor, we give the following two lemmas which give us
information about JY X , where Y is an eigenvector of JX for a nonnull vector
X ∈ V.

Lemma 2.3. Let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic cur-

vature tensor. If X ∈ V is a nonnull vector and Y ∈ Vi(X) = Ker(J̃X − εXλi Id),
then JY X ∈ Span{X} ⊕ Vi(X).

Proof. If J̃X has only one eigenvalue εXλi, then Span{X} ⊕ Vi(X) = V, so

the statement is obvious. Let Z ∈ Vj(X) = Ker(J̃X − εXλj Id) for λj 6= λi and
L = Y + tZ, where t ∈ R. Since Y ∈ Vi(X) 6 X⊥ and Z ∈ Vj(X) 6 X⊥ we have
L ⊥ X , so using the Jacobi-orthogonality of R, Lemma 2.1, and (1.3), we get

0 = g(JLX, JXL) = g(R(X, Y + tZ)(Y + tZ), JXY + tJXZ)

= R(X, Y + tZ, Y + tZ, εXλiY + tεXλjZ)

= εX(tλj − tλi)R(X, Y + tZ, Y, Z)

= εX(λi − λj)R(X, Z, Z, Y )t2 + εX(λj − λi)R(X, Y, Y, Z)t.

Since this holds for all t ∈ R, we conclude that the coefficient of t is zero and because
of εX(λj − λi) 6= 0 we obtain R(X, Y, Y, Z) = 0, and therefore JY X ⊥ Z, which
holds for every Z ∈ Vj(X), whenever λj 6= λi. Since R is Jacobi diagonalizable,

we have (1.10), where εXλ1, . . . , εXλk are all (different) eigenvalues of J̃X , so we
conclude that JY X ∈ Span{X} ⊕ Vi(X). �

Lemma 2.4. Let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic cur-

vature tensor. If X ∈ V is a nonnull vector and Y ∈ V(X) = Ker(J̃X − εXλ Id),
then JY X = εY λX + Z, where εZ = 0.

Proof. Let JY X = αX + Z, where Z ∈ X⊥ and α ∈ R. The compatibility
of Jacobi operators gives g(JY X, X) = g(JXY, Y ), so g(αX + Z, X) = g(εXλY, Y ).
Hence, αεX = λεXεY and since εX 6= 0, we get α = εY λ and JY X = εY λX + Z.
From Y ∈ V(X) 6 X⊥, we get g(εXY − tεY X, X + tY ) = 0, so using that R is
Jacobi-orthogonal, Lemma 2.1, (1.7), (1.8), and the equalities 2J(X, Y )Y = −JY X ,
2J(X, Y )X = −JXY , we obtain

0 = g
(
JX+tY (εXY − tεY X), JεX Y −tεY X(X + tY )

)

= g
(
εXJXY − tεXJY X + t2εY JXY − t3εY JY X,

ε2
XJY X + tεXεY JXY + t2εXεY JY X + t3ε2

Y JXY
)
.
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Since every t ∈ R is a root of the polynomial equation

g(JX+tY (εXY − tεY X), JεX Y −tεY X(X + tY )) = 0,

we conclude that all coefficients are zero, and therefore the coefficient of t is
ε2

XεY g(JXY, JXY ) − ε3
Xg(JY X, JY X) = 0, which implies εY εJXY = εXεJY X be-

cause εX 6= 0, and therefore εY εεXλY = εXεεY λX+Z . Since Z ∈ X⊥, using (1.1),
we get εY ε2

Xλ2εY = εX(ε2
Y λ2εX + εZ), which gives εZ = 0. �

As a consequence of the last two lemmas, we easily get the following theorem.

Theorem 2.2. Every Jacobi-diagonalizable Jacobi-orthogonal algebraic curva-

ture tensor is Jacobi-dual, when JX has no null eigenvectors for all nonnull X.

Proof. Let X and Y be two mutually orthogonal vectors such that εX 6= 0
and JXY = εXλY . Using Lemma 2.4 we get JY X = εY λX + Z, where εZ = 0,

while Lemma 2.3 gives Z ∈ Ker(J̃X − εXλ Id). If Z is null, then it is not an
eigenvector of JX , which implies Z = 0, so JY X = εY λX , which proves that R is
Jacobi-dual. �

3. Low dimensional cases

In this section we consider the cases of small dimension n ∈ {3, 4}. In dimension
3 we obtain the following expected result.

Theorem 3.1. Every algebraic curvature tensor of dimension 3 is Jacobi-

orthogonal if and only if it is of constant sectional curvature.

Proof. Suppose R is a 3-dimensional algebraic curvature tensor of constant
sectional curvature µ. Since the zero tensor is Jacobi-orthogonal, Lemma 2.2 implies
that R = 0 + µR1 is Jacobi-orthogonal.

Conversely, suppose R is a Jacobi-orthogonal algebraic curvature tensor of di-
mension 3. Let (E1, E2, E3) be an arbitrary orthonormal basis of V, εi = εEi

, for
1 6 i 6 3, and Rijkl = R(Ei, Ej , Ek, El), for i, j, k, l ∈ {1, 2, 3}. Using the formula
R(Ei, Ej)Ek =

∑
l εlRijklEl and (1.3), we obtain JE1

E2 = ε2R2112E2 + ε3R2113E3

and JE2
E1 = ε1R1221E1 + ε3R1223E3. Hence, since E1 ⊥ E2 and R is Jacobi-

orthogonal, we get R2113R1223 = 0. Using rescaling we obtain

(3.1) R(B, A, A, C)R(A, B, B, C) = 0,

for an arbitrary orthogonal basis (A, B, C) which consists of nonnull vectors.
Consider the basis X = E1, Y = E2 + tE3, Z = tε3E2 − ε2E3, where t > 1.

Using (1.1), we get εX = ε1 6= 0, εY = ε2 + t2ε3 6= 0, εZ = t2ε2
3ε2 + ε2

2ε3 6= 0,
g(X, Y ) = 0, g(X, Z) = 0 and g(Y, Z) = tε3ε2 − tε2ε3 = 0, so (X, Y, Z) is an
orthogonal basis which consists of nonnull vectors, so applying (3.1) we get

0 = R(E2 + tE3, E1, E1, tε3E2 − ε2E3)R(E1, E2 + tE3, E2 + tE3, tε3E2 − ε2E3)

= (−ε2R2113 + (ε3R2112 − ε2R3113)t + ε3R3112t2)(R1223 + tR1323)(−ε2 − ε3t2).

Since this holds for every t > 1, we conclude that the coefficient of t in the polyno-
mial is 0. Thus, using (1.3) and ε2 6= 0, we get

ε2R2113R1332 + (ε3R2112 − ε2R3113)R1223 = 0,
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so (3.1) for (A, B, C) = (E3, E1, E2) implies (ε3R2112 − ε2R3113)R1223 = 0. Rescal-
ing the vectors we obtain

(3.2) (εCR(B, A, A, B) − εBR(C, A, A, C))R(A, B, B, C) = 0,

for an arbitrary orthogonal basis (A, B, C) which consists of nonnull vectors.
Let (E1, E2, E3) be an arbitrary orthonormal basis of V and (p, q, r) a permu-

tation of the set {1, 2, 3}. Let s1 = R2113, s2 = R1223, s3 = R1332, k1 = ε2ε3R3223,
k2 = ε1ε3R3113, and k3 = ε1ε2R2112. From (3.1) we get for (A, B, C) = (Ep, Eq, Er)
gives spsq = 0, and since this holds for an arbitrary permutation (p, q, r) of the set
{1, 2, 3}, we get that at least two of s1, s2, s3 are zero. Let sp = sq = 0 and suppose
sr 6= 0. Hence, (3.2) for (A, B, C) = (Eq, Er, Ep) multiplied by εpεqεr 6= 0, gives
(kp − kr)sr = 0, which implies kp = kr.

Consider A = E1 + tE3, B = E2, C = ε3tE1 − ε1E3, for t > 1. Using (1.1) we
get εA = ε1+t2ε3 6= 0, εB = ε2 6= 0, εC = ε2

3t2ε1+ε2
1ε3 = t2ε1+ε3 6= 0, g(A, B) = 0,

g(A, C) = ε3tε1 − tε1ε3 = 0, and g(B, C) = 0, so (E1 + tE3, E2, ε3tE1 − ε1E3) is an
orthogonal basis which consists of nonnull vectors and applying (3.2), (1.1), (1.2),
(1.3), (1.4) we compute

(
(t2ε1 + ε3)(R2112 + 2R1223t + R3223t2) − ε2R3113(ε1 + ε3t2)2)

×
(

− ε1R1223 + (ε3R2112 − ε1R3223)t + ε3R1223t2)
= 0.

This holds for every t > 1, so the coefficient of t is zero, and using ε2
1ε2

2ε2
3 = 1, we

obtain

−2ε1ε3R2
1223 + (ε1ε2R2112 − ε1ε3R3113)(ε1ε2R2112 − ε2ε3R3223) = 0.

Hence, −2ε1ε3s2
2 +(k3 −k2)(k3 −k1) = 0. Thus, using the basis (Eq, Er, Ep) instead

of (E1, E2, E3), we get

(3.3) −2εqεps2
r + (kp − kr)(kp − kq) = 0,

which with kp = kr and εqεp 6= 0 gives sr = 0, which contradicts sr 6= 0. Thus,
sp = sq = sr = 0, which implies

R2113 = R1223 = R1332 = 0.

Hence, (3.3) gives (kp − kr)(kp − kq) = 0 for any permutation (p, q, r) of the set
{1, 2, 3}, so at least two of differences k3 − k2, k3 − k1, and k2 − k1 are zero, which
implies k1 = k2 = k3 = µ, and therefore

R2112 = ε1ε2µ, R3113 = ε1ε3µ, R3223 = ε2ε3µ.

Since an algebraic curvature tensor of dimension 3 is uniquely determined by its 6
components of tensor: R2113, R1223, R1332, R2112, R3113, R3223 (see [15, pp. 142–
144]), the previous equalities imply that R is of constant sectional curvature µ. �

Since every 3-dimensional R is 1-stein if and only if it is of constant sectional
curvature (see [6, Proposition 1.120]), the previous theorem implies that every 3-
dimensional R is Jacobi-orthogonal if and only if it is Osserman. In the following
theorem we prove a similar result in dimension 4 using an additional hypothesis
that R is Jacobi-diagonalizable.



THE JACOBI-ORTHOGONALITY IN INDEFINITE SCALAR PRODUCT SPACES 41

Theorem 3.2. Every Jacobi-diagonalizable algebraic curvature tensor of di-

mension 4 is Osserman if and only if it is Jacobi-orthogonal.

Proof. Suppose R is a Jacobi-diagonalizable Osserman algebraic curvature
tensor of dimension 4. It is well-known that a Lorentzian Osserman algebraic
curvature tensor has constant sectional curvature (see [7, 8]), so it is of the form
R = µR1. Hence, using that 0 is Jacobi-orthogonal and applying Lemma 2.2,
we conclude that Lorentzian R is Jacobi-orthogonal. It remains to deal with a
Riemannian or Kleinian R. Let X and Y be mutually orthogonal unit vectors in V.
Denote X = E1. Since R is Jacobi-diagonalizable, there exists an orthonormal
eigenbasis (E1, E2, E3, E4) related to JE1

such that JE1
Ei = ε1λiEi, for 2 6 i 6 4,

where εj = εEj
, for 1 6 j 6 4. Since R is not Lorentzian, we have ε1ε2ε3ε4 = 1,

as well as ε2
i = 1, for 1 6 i 6 4. Denoting Rijkl = R(Ei, Ej , Ek, El), we get

Ri11j = g(JE1
Ei, Ej) = g(ε1λiEi, Ej) = ε1λiδijεi. Hence,

R2112 = ε1ε2λ2, R3113 = ε1ε3λ3, R4114 = ε1ε4λ4,(3.4)

R2113 = R2114 = R3114 = 0.(3.5)

According to Theorem 1.1, a Jacobi-diagonalizable Osserman R is Jacobi-dual.
Thus, JE1

Ei = ε1λiEi, for 2 6 i 6 4, implies JEi
E1 = εiλiE1, so JEi

E1 ⊥ Ej for
2 6 j 6 4, which means 0 = g(JEi

E1, Ej) = R1iij and therefore

(3.6) R1223 = R1224 = R1332 = R1334 = R1442 = R1443 = 0.

Since R is 1-stein, (1.9) holds for j = 1 and we get
∑

i εiεxRixxi = c1, for x ∈
{1, 2, 3, 4} (see [1]). Thus, using (1.4) we obtain

ε1ε2R2112 + ε1ε3R3113 + ε1ε4R4114 = c1,

ε1ε2R2112 + ε2ε3R3223 + ε2ε4R4224 = c1,

ε1ε3R3113 + ε2ε3R3223 + ε3ε4R4334 = c1,

ε1ε4R4114 + ε2ε4R4224 + ε3ε4R4334 = c1.

Therefore, subtracting the sum of the two of these equations from the sum of the
remaining two equations, we get ε2ε3R3223 = ε1ε4R4114, ε2ε4R4224 = ε1ε3R3113,
and ε3ε4R4334 = ε1ε2R2112. Using (3.4), we obtain

(3.7) R3223 = ε1ε4λ4, R4224 = ε1ε3λ3, R4334 = ε1ε2λ2.

For a 1-stein R we also have additional equalities
∑

i εiRixyi = 0 for 1 6 x 6= y 6 4
(see [1]). Using them for (x, y) ∈ {(2, 3), (2, 4), (3, 4)}, (1.2), (1.3), and (1.4), we
conclude R2443 = −ε1ε4R2113, R2334 = −ε1ε3R2114, and R3224 = −ε1ε2R3114.
Thus, using (3.5), we obtain

(3.8) R2443 = R2334 = R3224 = 0.

Since Osserman R is 2-stein, (1.9) holds for j = 2, so we get tr(JE1
)2 = (εE1

)2c2,
which gives

(3.9) λ2
2 + λ2

3 + λ2
4 = c2.



42 LUKIĆ

Since R is 2-stein, for all 1 6 x 6= y 6 4, we get known 2-stein equations (see [1])

2
∑

16i,j64

εiεjRixxjRiyyj +
∑

16i,j64

εiεj(Rixyj + Riyxj)2 = 2εxεyc2.

For (x, y) = (2, 3), using (1.2), (1.3), (1.4), (3.5), (3.6), and (3.8), we get

2ε2
1R2112R3113 + 2ε2

4R4224R4334 + ε1ε4(R1234 + R1324)2

+ ε2ε3(−R3223)2 + ε3ε2(−R3223)2 + ε4ε1(R4231 + R4321)2 = 2ε2ε3c2.

Using (3.7), we compute 4ε2ε3λ2λ3 + 2ε2ε3(R1234 + R1324)2 + 2ε2ε3λ2
4 = 2ε2ε3c2.

Since 2ε2ε3 6= 0, we get c2 − λ2
4 − 2λ2λ3 = (R1234 + R1324)2 and using (3.9) we

get (λ3 − λ2)2 = (R1234 + R1324)2. Similarly, using (1.2), (1.3), (1.4), and (1.5) we
obtain

(λ2 − λ4)2 = (R1243 + R1423)2 = (R1324 − 2R1234)2,

(λ4 − λ3)2 = (R1432 + R1342)2 = (R1234 − 2R1324)2.

Hence, we get

(3.10)
s4(λ3 − λ2) = R1234 + R1324, s3(λ2 − λ4) = R1324 − 2R1234,

s2(λ4 − λ3) = R1234 − 2R1324,

where s2, s3, s4 ∈ {−1, 1}. According to the pigeonhole principle, at least two of
s2, s3, s4 are the same. First, suppose si = sj = −sk, where (i, j, k) is a permutation
of (2, 3, 4). Summing the equations in (3.10) we obtain

(s3 − s4)λ2 + (s4 − s2)λ3 + (s2 − s3)λ4 = 0,

and we conclude (sj − sk)λi + (sk − si)λj = 0, so λi = λj . Notice that substituting
sk by −sk does not change (3.10) and provides s2 = s3 = s4.

If s2 = s3 = s4 = −1, then substituting eigenvectors E2, E3 and E4 with
−E2, −E3 and −E4, respectively, we conclude that R1234 and R1324 change the
sign, as well as s2, s3, s4. Therefore, without loss of generality we can suppose
s2 = s3 = s4 = 1, and get

R1234 − 2R1324 = λ4 − λ3,

R1324 − 2R1234 = λ2 − λ4,(3.11)

R1234 + R1324 = λ3 − λ2.

For an arbitrary Y ⊥ X = E1 there exist real numbers k2, k3, k4 such that
Y = k2E2 + k3E3 + k4E4, and therefore

JXY = JE1
(k2E2 + k3E3 + k4E4) = k2ε1λ2E2 + k3ε1λ3E3 + k4ε1λ4E4.

Using (1.2)–(1.5), (3.5), (3.6), (3.11), and R(X, Y )Z =
∑

i εiR(X, Y, Z, Ei)Ei we
calculate

JY X = Jk2E2+k3E3+k4E4
E1 = R(E1, k2E2 + k3E3 + k4E4)(k2E2 + k3E3 + k4E4)

= k2
2ε1R2112E1 + k2k3ε4R1234E4 + k2k4ε3R1243E3

+ k3k2ε4R1324E4 + k2
3ε1R1331E1 + k3k4ε2R1342E2

+ k4k2ε3R1423E3 + k4k3ε2R1432E2 + k2
4ε1R1441E1
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= (k2
2ε1R2112 + k2

3ε1R1331 + k2
4ε1R1441)E1 + k3k4ε2(R1342 + R1432)E2

+ k2k4ε3(R1243 + R1423)E3 + k2k3ε4(R1234 + R1324)E4

= (k2
2ε2λ2 + k2

3ε3λ3 + k2
4ε4λ4)E1 + k3k4ε2(R1234 − 2R1324)E2

+ k2k4ε3(R1324 − 2R1234)E3 + k2k3ε4(R1234 + R1324)E4

= (k2
2ε2λ2 + k2

3ε3λ3 + k2
4ε4λ4)E1 + k3k4ε2(λ4 − λ3)E2

+ k2k4ε3(λ2 − λ4)E3 + k2k3ε4(λ3 − λ2)E4.

Thus, using that (E1, E2, E3, E4) is an orthonormal basis, we compute

g(JXY, JY X) = k2k3k4ε1ε2λ2(λ4 − λ3)g(E2, E2)

+ k2k3k4ε1ε3λ3(λ2 − λ4)g(E3, E3) + k2k3k4ε1ε4λ4(λ3 − λ2)g(E4, E4)

= ε1k2k3k4(λ2(λ4 − λ3) + λ3(λ2 − λ4) + λ4(λ3 − λ2)) = 0,

which proves that R is Jacobi-orthogonal.
Conversely, let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic cur-

vature tensor of dimension 4. First, we prove that R is weak Jacobi-dual. Let X
and Y be mutually orthogonal unit vectors in V such that JXY = εXλY . Our aim
is to prove JY X = εY λX . Since R is Jacobi-diagonalizable and Jacobi-orthogonal,

X is nonnull and Y ∈ V(X) = Ker(J̃X − εXλ Id), using Lemma 2.3 and Lemma
2.4, we get JY X = εY λX + Z, where εZ = 0 and Z ∈ V(X) 6 X⊥. Moreover,
since g(Z, Y ) = g(JY X − εY λX, Y ) = g(X, JY Y ) − εY λg(X, Y ) = 0, it follows that
Z ⊥ Y , so we conclude Z ∈ Span{X, Y }⊥.

We discuss two cases. The case where Span{X, Y }⊥ is a definite subspace of
V is easy since εZ = 0 and Z ∈ Span{X, Y }⊥ imply Z = 0.

It remains to deal with the case where Span{X, Y }⊥ is indefinite (εX = εY for
a Lorentzian R, εX = −εY for a Kleinian R, while for a Riemannian R there is
no such case). Since JY X = εY λX + Z, our aim is to prove Z = 0. We assume
Z 6= 0, where εZ = 0 implies Z is null. Since R is Jacobi-diagonalizable, we know
V(X) is nondegenerate such as Span{Y }⊥ ∩V(X) which contains null vector Z, so
its dimension is at least 2. Thus, since Y ∈ V(X) 6 X⊥, we get dimV(X) = 3.

Therefore, V(X) = X⊥ and J̃X = εXλ Id. There exists W ∈ Span{X, Y }⊥ such
that εW = −εY and we write Y = (Y − tW ) + tW for t > 1. Since Y − tW ,
tW ∈ V(X), we have JX(Y − tW ) = εXλ(Y − tW ) and JX(tW ) = εXλtW . Using
W ⊥ Y and (1.1), we get εY −tW = εY + t2εW = (1 − t2)εY and εtW = t2εW .
Therefore sgn(εY −tW ) = sgn(εtW ) = − sgn(εY ) and we apply the solved case to X ,
Y − tW and X , tW to obtain JY −tW X = εY −tW λX and JtW X = εtW λX . Using
(1.8) and J(tW, tW )X = JtW X , we compute

JY X = J(Y −tW )+tW X = JY −tW X + 2J(Y − tW, tW )X + JtW X

= εY −tW λX + 2tJ(Y, W )X − 2JtW X + JtW X

= εY −tW λX + 2tJ(Y, W )X − εtW λX = εY λX + 2tJ(Y, W )X.

Since JY X = εY λX + 2tJ(Y, W )X holds for all t > 1, we get 2J(Y, W )X = 0 and
JY X = εY λX , contrary to assumption that Z 6= 0, so Z = 0.
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Therefore, R is weak Jacobi-dual and since R is Jacobi-diagonalizable, using
Lemma 1.3, we conclude that R is Jacobi-dual. Finally, Theorem 1.1 implies that
R is Osserman. �

Especially, since Riemannian curvature tensors are Jacobi-diagonalizable, we
get that every algebraic curvature tensor on a positive definite scalar product space
of dimension 4 is Osserman if and only if it is Jacobi-orthogonal.

At the end, we conclude that the Jacobi-orthogonal property is very important
and useful in characterizing Osserman tensors in pseudo-Riemannian settings.
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