PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 115(129) (2024), 33-44

DOI: https://doi.org/10.2298/PIM24290331

THE JACOBI-ORTHOGONALITY IN INDEFINITE SCALAR PRODUCT SPACES

Katarina Lukić

ABSTRACT. We generalize the property of Jacobi-orthogonality to indefinite scalar product spaces. We compare various principles and investigate relations between Osserman, Jacobi-dual, and Jacobi-orthogonal algebraic curvature tensors. We show that every quasi-Clifford tensor is Jacobi-orthogonal. We prove that a Jacobi-diagonalizable Jacobi-orthogonal tensor is Jacobi-dual whenever \mathcal{J}_X has no null eigenvectors for all nonnull X. We show that any algebraic curvature tensor of dimension 3 is Jacobi-orthogonal if and only if it is of constant sectional curvature. We prove that every 4-dimensional Jacobi-diagonalizable algebraic curvature tensor is Jacobi-orthogonal if and only if it is Osserman.

1. Introduction

Recently, Jacobi-orthogonal algebraic curvature tensors have been introduced as a new potential characterization of Riemannian Osserman tensors, and it has been proved that any Jacobi-orthogonal tensor is Osserman, while all known Osserman tensors are Jacobi-orthogonal [3]. We generalize the concept of Jacobiorthogonality to indefinite scalar product spaces and investigate its relations with some important features such as Osserman, quasi-Clifford, and Jacobi-dual tensors.

Let (\mathcal{V}, g) be a scalar product space of dimension n, that is, \mathcal{V} is an n-dimensional vector space over \mathbb{R} , while g is a nondegenerate symmetric bilinear form on \mathcal{V} . The sign of the squared norm, $\varepsilon_X = g(X, X)$, distinguishes all vectors $X \in \mathcal{V} \setminus \{0\}$ into three different types. A vector $X \in \mathcal{V}$ is spacelike if $\varepsilon_X > 0$; timelike if $\varepsilon_X < 0$; null if $\varepsilon_X = 0$ and $X \neq 0$. Especially, a vector $X \in \mathcal{V}$ is nonnull if $\varepsilon_X \neq 0$ and it is unit if $\varepsilon_X \in \{-1, 1\}$. We say that X and Y are mutually orthogonal and write $X \perp Y$ if g(X, Y) = 0. For $X \perp Y$ we have

(1.1)
$$\varepsilon_{\alpha X+\beta Y} = g(\alpha X+\beta Y,\alpha X+\beta Y) = \alpha^2 \varepsilon_X + \beta^2 \varepsilon_Y.$$

2020 Mathematics Subject Classification: Primary 53B30; Secondary 53B20.

Key words and phrases: indefinite metric, Osserman tensor, Jacobi-orthogonality, Jacobiduality, quasi-Clifford tensor.

Supported by the Ministry of Education, Science and Technological Developments of the Republic of Serbia: grant number 451-03-68/2022-14/200104.

Communicated by Zoran Rakić.

LUKIĆ

An important relation between null, timelike, and spacelike vectors is given in the following lemma (see [1, Lemma 1]).

LEMMA 1.1. Every null N from a scalar product space \mathcal{V} can be decomposed as N = S + T, where $S, T \in \mathcal{V}, S \perp T$, and $\varepsilon_S = -\varepsilon_T$.

We say that a subspace W of an indefinite scalar product space (\mathcal{V}, g) is totally isotropic if it consists only of null vectors, which implies that any two vectors from W are mutually orthogonal. In what follows we will use the following well-known statement about an isotropic supplement of W (see [2, Proposition 1]).

LEMMA 1.2. If $\mathcal{W} \leq \mathcal{V}$ is a totally isotropic subspace with a basis (N_1, \ldots, N_k) , then there exists a totally isotropic subspace $\mathcal{U} \leq \mathcal{V}$, disjoint from \mathcal{W} , with a basis (M_1, \ldots, M_k) , such that $g(N_i, M_j) = \delta_{ij}$ holds for $1 \leq i, j \leq k$.

A quadri-linear map $R: \mathcal{V}^4 \to \mathbb{R}$ is said to be an algebraic curvature tensor on (\mathcal{V}, g) if it satisfies the usual \mathbb{Z}_2 symmetries as well as the first Bianchi identity. More concretely, an algebraic curvature tensor $R \in \mathfrak{T}_4^0(\mathcal{V})$ has the properties

- (1.2) R(X, Y, Z, W) = -R(Y, X, Z, W),
- (1.3) R(X, Y, Z, W) = -R(X, Y, W, Z),
- (1.4) R(X, Y, Z, W) = R(Z, W, X, Y),

(1.5)
$$R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0,$$

for all $X, Y, Z, W \in \mathcal{V}$.

The basic example of an algebraic curvature tensor is the tensor R^1 of constant sectional curvature 1, defined by

$$R^1(X, Y, Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W).$$

Furthermore, skew-adjoint endomorphisms J on \mathcal{V} generate new examples by

 $R^J(X,Y,Z,W) = g(JX,Z)g(JY,W) - g(JY,Z)g(JX,W) + 2g(JX,Y)g(JZ,W).$

A quasi-Clifford family of rank m is an anti-commutative family of skew-adjoint endomorphisms J_i , for $1 \leq i \leq m$, such that $J_i^2 = c_i \operatorname{Id}$, for $c_i \in \mathbb{R}$. In other words, a quasi-Clifford family satisfies the Hurwitz-like relations, $J_i J_j + J_j J_i = 2\delta_{ij} c_i \operatorname{Id}$, for $1 \leq i, j \leq m$. We say that an algebraic curvature tensor R is quasi-Clifford if

(1.6)
$$R = \mu_0 R^1 + \sum_{i=1}^m \mu_i R^{J_i},$$

for some $\mu_0, \ldots, \mu_m \in \mathbb{R}$, where J_i , for $1 \leq i \leq m$, is some associated quasi-Clifford family. Especially, R is Clifford if it is quasi-Clifford with $c_i = -1$ for all $1 \leq i \leq m$. Let us remark that Clifford tensors were observed in [10, 12] and quasi-Clifford tensors were considered in [2].

If $E_1, E_2, \ldots, E_n \in \mathcal{V}$ are mutually orthogonal units, we say that (E_1, \ldots, E_n) is an orthonormal basis of \mathcal{V} . The signature of a scalar product space (\mathcal{V}, g) is an ordered pair (p, q), where p is the number of negative ε_{E_i} , while q is the number of positive ε_{E_i} . We say that R is Riemannian if p = 0; Lorentzian if p = 1; Kleinian if p = q.

Raising the index we obtain the algebraic curvature operator $\mathcal{R} = R^{\sharp} \in \mathfrak{T}_{3}^{1}(\mathcal{V})$. The polarized Jacobi operator is the linear map $\mathcal{J} \colon \mathcal{V}^{3} \to \mathcal{V}$ defined by

$$\mathcal{J}(X,Y)Z = \frac{1}{2}(\mathcal{R}(Z,X)Y + \mathcal{R}(Z,Y)X)$$

for all $X, Y, Z \in \mathcal{V}$. For each $X \in \mathcal{V}$ the Jacobi operator \mathcal{J}_X is a linear self-adjoint operator $\mathcal{J}_X : \mathcal{V} \to \mathcal{V}$ defined by $\mathcal{J}_X Y = \mathcal{J}(X, X)Y = \mathcal{R}(Y, X)X$ for all $Y \in \mathcal{V}$. Using the three-linearity of \mathcal{R} , for every $Z \in \mathcal{V}$ we get

- (1.7) $\mathcal{J}_{tX}Z = \mathcal{R}(Z, tX)(tX) = t^2 \mathcal{R}(Z, X)X = t^2 \mathcal{J}_X Z,$
- (1.8) $\mathcal{J}_{X+Y}Z = \mathcal{R}(Z, X+Y)(X+Y) = \mathcal{J}_XZ + 2\mathcal{J}(X,Y)Z + \mathcal{J}_YZ.$

Using (1.4) we get that any two Jacobi operators satisfy the compatibility condition, which means that $g(\mathcal{J}_X Y, Y) = g(\mathcal{J}_Y X, X)$ holds for all $X, Y \in \mathcal{V}$. Since $\mathcal{J}_X X = 0$ and $g(\mathcal{J}_X Y, X) = 0$, we conclude that for any nonnull $X \in \mathcal{V}$ the Jacobi operator \mathcal{J}_X is completely determined by its restriction $\widetilde{\mathcal{J}}_X : X^{\perp} \to X^{\perp}$ called the reduced Jacobi operator.

Let R be an algebraic curvature tensor and $\widetilde{w}_X(\lambda) = \det(\lambda \operatorname{Id} - \widetilde{\mathcal{J}}_X)$. We say that R is timelike Osserman if \widetilde{w}_X is independent of unit timelike $X \in \mathcal{V}$. We say that R is spacelike Osserman if \widetilde{w}_X is independent of unit spacelike $X \in \mathcal{V}$. Naturally, R is called Osserman if it is both timelike and spacelike Osserman. It is known that timelike Osserman and spacelike Osserman conditions are equivalent (see [9]). It is easy to see that every quasi-Clifford tensor is Osserman (see [2]).

We say that R is k-stein if there exist constants $c_1, \ldots, c_k \in \mathbb{R}$ such that

(1.9)
$$\operatorname{tr}((\mathcal{J}_X)^j) = (\varepsilon_X)^j c_j$$

holds for each $1 \leq j \leq k$ and all $X \in \mathcal{V}$. It is known that an algebraic curvature tensor of dimension n is Osserman if and only if it is n-stein (see [11, Lemma 1.7.3]).

We say that R is Jacobi-diagonalizable if \mathcal{J}_X is diagonalizable for any nonnull X. In this case we have

(1.10)
$$\mathcal{V} = \operatorname{Span}\{X\} \oplus \bigoplus_{l=1}^{k} \operatorname{Ker}(\widetilde{\mathcal{J}}_{X} - \varepsilon_{X}\lambda_{l}\operatorname{Id}),$$

where $\varepsilon_X \lambda_1, \ldots, \varepsilon_X \lambda_k$ are all eigenvalues of $\widetilde{\mathcal{J}}_X$ and \oplus denotes the direct orthogonal sum.

The duality principle in the Riemannian setting (g is positive definite) appeared in [14]. Its generalization to a pseudo-Riemannian setting (see [4, 5]) is given by the implication

(1.11)
$$\mathcal{J}_X Y = \varepsilon_X \lambda Y \implies \mathcal{J}_Y X = \varepsilon_Y \lambda X.$$

If (1.11) holds for all mutually orthogonal unit $X, Y \in \mathcal{V}$, then we say that R is weak Jacobi-dual, and if (1.11) holds for all $X, Y \in \mathcal{V}$ with the restriction $\varepsilon_X \neq 0$, we say that R is Jacobi-dual. If R is Jacobi-diagonalizable, it is sufficient to prove that it is weak Jacobi-dual which we see in the following lemma (see [1,4]). LEMMA 1.3. Every Jacobi-diagonalizable algebraic curvature tensor is Jacobidual if and only if it is weak Jacobi-dual.

The condition that R is Jacobi-diagonalizable is strong enough to provide the equivalence between Osserman and Jacobi-dual property in a pseudo-Riemannian setting.

THEOREM 1.1. [13] Every Jacobi-diagonalizable algebraic curvature tensor is Osserman if and only if it is Jacobi-dual.

2. The Jacobi-orthogonality

In [3] we introduced a new concept of Jacobi-orthogonality, and here we generalize it to a pseudo-Riemannian setting. We say that an algebraic curvature tensor is Jacobi-orthogonal if the implication

$$(2.1) X \perp Y \implies \mathcal{J}_X Y \perp \mathcal{J}_Y X$$

holds for all unit $X, Y \in \mathcal{V}$. However, it is easy to extend this for all $X, Y \in \mathcal{V}$, which we see in the following lemma.

LEMMA 2.1. If an algebraic curvature tensor is Jacobi-orthogonal, then (2.1) holds for all $X, Y \in \mathcal{V}$.

PROOF. Suppose R is Jacobi-orthogonal and $X \perp Y$. The assertion is obvious for X = 0 or Y = 0. If X and Y are both nonnull, (2.1) holds after we rescale them using (1.7).

We consider the case $\varepsilon_X \neq 0$ and $\varepsilon_Y = 0$. Since X^{\perp} is nondegenerate and contains null Y, according to Lemma 1.1, there exist $S, T \in X^{\perp}$ such that Y = S + T, $S \perp T$, $\varepsilon_S = -\varepsilon_T > 0$. Since X, S, T are nonnull, $X \perp S$, and $X \perp T$, using (2.1) we get $g(\mathcal{J}_X S, \mathcal{J}_S X) = 0$ and $g(\mathcal{J}_X T, \mathcal{J}_T X) = 0$. Hence, using (1.8) and denoting $K = \mathcal{J}_S X$, $L = 2\mathcal{J}(S, T)X$, $M = \mathcal{J}_T X$, $P = \mathcal{J}_X S$, and $Q = \mathcal{J}_X T$, we calculate

(2.2)
$$g(\mathcal{J}_X(S+\lambda T), \mathcal{J}_{S+\lambda T}X) = g(P+\lambda Q, K+\lambda L+\lambda^2 M)$$
$$= (g(P,M)+g(Q,L))\lambda^2 + (g(Q,K)+g(P,L))\lambda$$

For every $\lambda \neq \pm 1$, using (1.1) we get $\varepsilon_{S+\lambda T} = \varepsilon_S(1-\lambda^2) \neq 0$, so $X \perp S + \lambda T$ implies $g(\mathcal{J}_X(S+\lambda T), \mathcal{J}_{S+\lambda T}X) = 0$, where (2.2) gives g(P, M) + g(Q, L) = 0 and g(Q, K) + g(P, L) = 0. Hence, (2.2) for $\lambda = 1$ implies $g(\mathcal{J}_X(S+T), \mathcal{J}_{S+T}X) = 0$ which proves (2.1) for one nonnull and one null vector.

It remains to prove (2.1) for two null vectors $X = N_1$ and $Y = N_2$. If they are linearly dependent, we have $N_1 = \xi N_2$ for some $\xi \in \mathbb{R}$, so $\mathcal{J}_{N_1}N_2 = 0$ and therefore (2.1) holds. If N_1 and N_2 are linearly independent mutually orthogonal vectors, then they form a basis (N_1, N_2) of the totally isotropic subspace $\operatorname{Span}\{N_1, N_2\} \leq \mathcal{V}$. According to Lemma 1.2 there exists a basis (M_1, M_2) of a totally isotropic subspace of \mathcal{V} that is disjoint from $\operatorname{Span}\{N_1, N_2\}$ and $g(N_i, M_j) = \delta_{ij}$, for $1 \leq i, j \leq 2$. We can decompose $N_2 = S + T$, where $S = (N_2 + M_2)/2$, $T = (N_2 - M_2)/2$, and $S, T \in N_1^{\perp}$. Since $\varepsilon_S = -\varepsilon_T = 1/2$ and $S \perp T$, repeating the same procedure as in

the previous part of the proof, we get (2.2) and using already proved implication (2.1) for nonnull $S + \lambda T$ and null vector N_1 we have (2.1) for null vectors $X = N_1$ and $Y = N_2$.

Sometimes, it is useful to add the tensor of constant sectional curvature to the observed algebraic curvature tensor R.

LEMMA 2.2. If an algebraic curvature tensor R is Jacobi-orthogonal, then for each $\mu \in \mathbb{R}$, the tensor $R + \mu R^1$ is Jacobi-orthogonal.

PROOF. Let \mathcal{J}' be the Jacobi operator associated with the algebraic curvature tensor $R' = R + \mu R^1$, while X and Y are mutually orthogonal unit vectors. Using $\mathcal{J}_X Y \perp X$, $\mathcal{J}_Y X \perp Y$, and the Jacobi-orthogonality of R, we get

$$g(\mathcal{J}'_X Y, \mathcal{J}'_Y X) = g(\mathcal{J}_X Y + \mu \varepsilon_X Y, \mathcal{J}_Y X + \mu \varepsilon_Y X) = g(\mathcal{J}_X Y, \mathcal{J}_Y X) = 0,$$

which means that $R' = R + \mu R^1$ is Jacobi-orthogonal.

In the Riemannian setting we know that every Clifford algebraic curvature tensor is Jacobi-orthogonal (see [3]). We use Lemma 2.2 to give a generalization to a pseudo-Riemannian setting.

THEOREM 2.1. Every quasi-Clifford algebraic curvature tensor is Jacobi-orthogonal.

PROOF. Let J_1, J_2, \ldots, J_m be a quasi-Clifford family associated to a quasi-Clifford algebraic curvature tensor of the form (1.6). Consider $R = \sum_{i=1}^{m} \mu_i R^{J_i}$ and units $X \perp Y$. Since the endomorphism J_i is skew-adjoint, we have $g(J_iX, X) = 0$, which yields

$$\begin{aligned} \mathcal{J}_X Y &= \sum_{i=1}^m \mu_i \mathcal{R}^{J_i}(Y, X) X \\ &= \sum_{i=1}^m \mu_i (g(J_i Y, X) J_i X - g(J_i X, X) J_i Y + 2g(J_i Y, X) J_i X) \\ &= 3 \sum_{i=1}^m \mu_i g(J_i Y, X) J_i X, \end{aligned}$$

and similarly $\mathcal{J}_Y X = 3 \sum_{j=1}^m \mu_j g(J_j X, Y) J_j Y$. For units $X \perp Y$, using that J_i is skew-adjoint for $i \in \{1, 2, ..., m\}$ and the Hurwitz-like relations, we get

$$g(\mathcal{J}_{X}Y, \mathcal{J}_{Y}X) = g\left(3\sum_{i=1}^{m} \mu_{i}g(J_{i}Y, X)J_{i}X, 3\sum_{j=1}^{m} \mu_{j}g(J_{j}X, Y)J_{j}Y\right)$$

= $9\sum_{i,j} \mu_{i}\mu_{j}g(J_{i}Y, X)g(J_{j}X, Y)g(J_{i}X, J_{j}Y)$
= $9\sum_{i,j} \mu_{i}\mu_{j}g(X, J_{i}Y)g(X, J_{j}Y)g(X, J_{i}J_{j}Y)$

LUKIĆ

$$= \frac{9}{2} \sum_{i,j} \mu_i \mu_j g(X, J_i Y) g(X, J_j Y) g(X, (J_i J_j + J_j J_i) Y)$$

$$= \frac{9}{2} \sum_{i,j} 2\delta_{ij} c_i \mu_i \mu_j g(X, J_i Y) g(X, J_j Y) g(X, Y) = 0,$$

which proves that R is Jacobi-orthogonal. According to Lemma 2.2 it follows that the quasi-Clifford $R + \mu_0 R^1$ is Jacobi-orthogonal.

In order to examine the Jacobi-duality of a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor, we give the following two lemmas which give us information about $\mathcal{J}_Y X$, where Y is an eigenvector of \mathcal{J}_X for a nonnull vector $X \in \mathcal{V}$.

LEMMA 2.3. Let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor. If $X \in \mathcal{V}$ is a nonnull vector and $Y \in \mathcal{V}_i(X) = \text{Ker}(\widetilde{\mathcal{J}}_X - \varepsilon_X \lambda_i \text{ Id})$, then $\mathcal{J}_Y X \in \text{Span}\{X\} \oplus \mathcal{V}_i(X)$.

PROOF. If $\widetilde{\mathcal{J}}_X$ has only one eigenvalue $\varepsilon_X \lambda_i$, then $\operatorname{Span}\{X\} \oplus \mathcal{V}_i(X) = \mathcal{V}$, so the statement is obvious. Let $Z \in \mathcal{V}_j(X) = \operatorname{Ker}(\widetilde{\mathcal{J}}_X - \varepsilon_X \lambda_j \operatorname{Id})$ for $\lambda_j \neq \lambda_i$ and L = Y + tZ, where $t \in \mathbb{R}$. Since $Y \in \mathcal{V}_i(X) \leq X^{\perp}$ and $Z \in \mathcal{V}_j(X) \leq X^{\perp}$ we have $L \perp X$, so using the Jacobi-orthogonality of R, Lemma 2.1, and (1.3), we get

$$0 = g(\mathcal{J}_L X, \mathcal{J}_X L) = g(\mathcal{R}(X, Y + tZ)(Y + tZ), \mathcal{J}_X Y + t\mathcal{J}_X Z)$$

= $R(X, Y + tZ, Y + tZ, \varepsilon_X \lambda_i Y + t\varepsilon_X \lambda_j Z)$
= $\varepsilon_X (t\lambda_j - t\lambda_i) R(X, Y + tZ, Y, Z)$
= $\varepsilon_X (\lambda_i - \lambda_j) R(X, Z, Z, Y) t^2 + \varepsilon_X (\lambda_j - \lambda_i) R(X, Y, Y, Z) t$

Since this holds for all $t \in \mathbb{R}$, we conclude that the coefficient of t is zero and because of $\varepsilon_X(\lambda_j - \lambda_i) \neq 0$ we obtain R(X, Y, Y, Z) = 0, and therefore $\mathcal{J}_Y X \perp Z$, which holds for every $Z \in \mathcal{V}_j(X)$, whenever $\lambda_j \neq \lambda_i$. Since R is Jacobi diagonalizable, we have (1.10), where $\varepsilon_X \lambda_1, \ldots, \varepsilon_X \lambda_k$ are all (different) eigenvalues of $\tilde{\mathcal{J}}_X$, so we conclude that $\mathcal{J}_Y X \in \text{Span}\{X\} \oplus \mathcal{V}_i(X)$.

LEMMA 2.4. Let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor. If $X \in \mathcal{V}$ is a nonnull vector and $Y \in \mathcal{V}(X) = \text{Ker}(\widetilde{\mathcal{J}}_X - \varepsilon_X \lambda \text{ Id})$, then $\mathcal{J}_Y X = \varepsilon_Y \lambda X + Z$, where $\varepsilon_Z = 0$.

PROOF. Let $\mathcal{J}_Y X = \alpha X + Z$, where $Z \in X^{\perp}$ and $\alpha \in \mathbb{R}$. The compatibility of Jacobi operators gives $g(\mathcal{J}_Y X, X) = g(\mathcal{J}_X Y, Y)$, so $g(\alpha X + Z, X) = g(\varepsilon_X \lambda Y, Y)$. Hence, $\alpha \varepsilon_X = \lambda \varepsilon_X \varepsilon_Y$ and since $\varepsilon_X \neq 0$, we get $\alpha = \varepsilon_Y \lambda$ and $\mathcal{J}_Y X = \varepsilon_Y \lambda X + Z$. From $Y \in \mathcal{V}(X) \leq X^{\perp}$, we get $g(\varepsilon_X Y - t\varepsilon_Y X, X + tY) = 0$, so using that R is Jacobi-orthogonal, Lemma 2.1, (1.7), (1.8), and the equalities $2\mathcal{J}(X, Y)Y = -\mathcal{J}_Y X$, $2\mathcal{J}(X, Y)X = -\mathcal{J}_X Y$, we obtain

$$0 = g \big(\mathcal{J}_{X+tY}(\varepsilon_X Y - t\varepsilon_Y X), \mathcal{J}_{\varepsilon_X Y - t\varepsilon_Y X}(X + tY) \big) = g \big(\varepsilon_X \mathcal{J}_X Y - t\varepsilon_X \mathcal{J}_Y X + t^2 \varepsilon_Y \mathcal{J}_X Y - t^3 \varepsilon_Y \mathcal{J}_Y X, \varepsilon_X^2 \mathcal{J}_Y X + t\varepsilon_X \varepsilon_Y \mathcal{J}_X Y + t^2 \varepsilon_X \varepsilon_Y \mathcal{J}_Y X + t^3 \varepsilon_Y^2 \mathcal{J}_X Y \big).$$

Since every $t \in \mathbb{R}$ is a root of the polynomial equation

$$g(\mathcal{J}_{X+tY}(\varepsilon_X Y - t\varepsilon_Y X), \mathcal{J}_{\varepsilon_X Y - t\varepsilon_Y X}(X + tY)) = 0,$$

we conclude that all coefficients are zero, and therefore the coefficient of t is $\varepsilon_X^2 \varepsilon_Y g(\mathcal{J}_X Y, \mathcal{J}_X Y) - \varepsilon_X^3 g(\mathcal{J}_Y X, \mathcal{J}_Y X) = 0$, which implies $\varepsilon_Y \varepsilon_{\mathcal{J}_X Y} = \varepsilon_X \varepsilon_{\mathcal{J}_Y X}$ because $\varepsilon_X \neq 0$, and therefore $\varepsilon_Y \varepsilon_{\varepsilon_X \lambda Y} = \varepsilon_X \varepsilon_{\varepsilon_Y \lambda X + Z}$. Since $Z \in X^{\perp}$, using (1.1), we get $\varepsilon_Y \varepsilon_X^2 \lambda^2 \varepsilon_Y = \varepsilon_X (\varepsilon_Y^2 \lambda^2 \varepsilon_X + \varepsilon_Z)$, which gives $\varepsilon_Z = 0$.

As a consequence of the last two lemmas, we easily get the following theorem.

THEOREM 2.2. Every Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor is Jacobi-dual, when \mathcal{J}_X has no null eigenvectors for all nonnull X.

PROOF. Let X and Y be two mutually orthogonal vectors such that $\varepsilon_X \neq 0$ and $\mathcal{J}_X Y = \varepsilon_X \lambda Y$. Using Lemma 2.4 we get $\mathcal{J}_Y X = \varepsilon_Y \lambda X + Z$, where $\varepsilon_Z = 0$, while Lemma 2.3 gives $Z \in \text{Ker}(\tilde{\mathcal{J}}_X - \varepsilon_X \lambda \text{ Id})$. If Z is null, then it is not an eigenvector of \mathcal{J}_X , which implies Z = 0, so $\mathcal{J}_Y X = \varepsilon_Y \lambda X$, which proves that R is Jacobi-dual.

3. Low dimensional cases

In this section we consider the cases of small dimension $n \in \{3, 4\}$. In dimension 3 we obtain the following expected result.

THEOREM 3.1. Every algebraic curvature tensor of dimension 3 is Jacobiorthogonal if and only if it is of constant sectional curvature.

PROOF. Suppose R is a 3-dimensional algebraic curvature tensor of constant sectional curvature μ . Since the zero tensor is Jacobi-orthogonal, Lemma 2.2 implies that $R = 0 + \mu R^1$ is Jacobi-orthogonal.

Conversely, suppose R is a Jacobi-orthogonal algebraic curvature tensor of dimension 3. Let (E_1, E_2, E_3) be an arbitrary orthonormal basis of \mathcal{V} , $\varepsilon_i = \varepsilon_{E_i}$, for $1 \leq i \leq 3$, and $R_{ijkl} = R(E_i, E_j, E_k, E_l)$, for $i, j, k, l \in \{1, 2, 3\}$. Using the formula $\mathcal{R}(E_i, E_j)E_k = \sum_l \varepsilon_l R_{ijkl}E_l$ and (1.3), we obtain $\mathcal{J}_{E_1}E_2 = \varepsilon_2 R_{2112}E_2 + \varepsilon_3 R_{2113}E_3$ and $\mathcal{J}_{E_2}E_1 = \varepsilon_1 R_{1221}E_1 + \varepsilon_3 R_{1223}E_3$. Hence, since $E_1 \perp E_2$ and R is Jacobi-orthogonal, we get $R_{2113}R_{1223} = 0$. Using rescaling we obtain

(3.1)
$$R(B, A, A, C)R(A, B, B, C) = 0$$

for an arbitrary orthogonal basis (A, B, C) which consists of nonnull vectors.

Consider the basis $X = E_1$, $Y = E_2 + tE_3$, $Z = t\varepsilon_3E_2 - \varepsilon_2E_3$, where t > 1. Using (1.1), we get $\varepsilon_X = \varepsilon_1 \neq 0$, $\varepsilon_Y = \varepsilon_2 + t^2\varepsilon_3 \neq 0$, $\varepsilon_Z = t^2\varepsilon_3^2\varepsilon_2 + \varepsilon_2^2\varepsilon_3 \neq 0$, g(X,Y) = 0, g(X,Z) = 0 and $g(Y,Z) = t\varepsilon_3\varepsilon_2 - t\varepsilon_2\varepsilon_3 = 0$, so (X,Y,Z) is an orthogonal basis which consists of nonnull vectors, so applying (3.1) we get

$$0 = R(E_2 + tE_3, E_1, E_1, t\varepsilon_3 E_2 - \varepsilon_2 E_3)R(E_1, E_2 + tE_3, E_2 + tE_3, t\varepsilon_3 E_2 - \varepsilon_2 E_3)$$

$$= (-\varepsilon_2 R_{2113} + (\varepsilon_3 R_{2112} - \varepsilon_2 R_{3113})t + \varepsilon_3 R_{3112}t^2)(R_{1223} + tR_{1323})(-\varepsilon_2 - \varepsilon_3 t^2)$$

Since this holds for every t > 1, we conclude that the coefficient of t in the polynomial is 0. Thus, using (1.3) and $\varepsilon_2 \neq 0$, we get

$$\varepsilon_2 R_{2113} R_{1332} + (\varepsilon_3 R_{2112} - \varepsilon_2 R_{3113}) R_{1223} = 0,$$

so (3.1) for $(A, B, C) = (E_3, E_1, E_2)$ implies $(\varepsilon_3 R_{2112} - \varepsilon_2 R_{3113})R_{1223} = 0$. Rescaling the vectors we obtain

(3.2)
$$(\varepsilon_C R(B, A, A, B) - \varepsilon_B R(C, A, A, C)) R(A, B, B, C) = 0,$$

for an arbitrary orthogonal basis (A, B, C) which consists of nonnull vectors.

Let (E_1, E_2, E_3) be an arbitrary orthonormal basis of \mathcal{V} and (p, q, r) a permutation of the set $\{1, 2, 3\}$. Let $s_1 = R_{2113}$, $s_2 = R_{1223}$, $s_3 = R_{1332}$, $k_1 = \varepsilon_2 \varepsilon_3 R_{3223}$, $k_2 = \varepsilon_1 \varepsilon_3 R_{3113}$, and $k_3 = \varepsilon_1 \varepsilon_2 R_{2112}$. From (3.1) we get for $(A, B, C) = (E_p, E_q, E_r)$ gives $s_p s_q = 0$, and since this holds for an arbitrary permutation (p, q, r) of the set $\{1, 2, 3\}$, we get that at least two of s_1 , s_2 , s_3 are zero. Let $s_p = s_q = 0$ and suppose $s_r \neq 0$. Hence, (3.2) for $(A, B, C) = (E_q, E_r, E_p)$ multiplied by $\varepsilon_p \varepsilon_q \varepsilon_r \neq 0$, gives $(k_p - k_r)s_r = 0$, which implies $k_p = k_r$.

Consider $A = E_1 + tE_3$, $B = E_2$, $C = \varepsilon_3 tE_1 - \varepsilon_1 E_3$, for t > 1. Using (1.1) we get $\varepsilon_A = \varepsilon_1 + t^2 \varepsilon_3 \neq 0$, $\varepsilon_B = \varepsilon_2 \neq 0$, $\varepsilon_C = \varepsilon_3^2 t^2 \varepsilon_1 + \varepsilon_1^2 \varepsilon_3 = t^2 \varepsilon_1 + \varepsilon_3 \neq 0$, g(A, B) = 0, $g(A, C) = \varepsilon_3 t\varepsilon_1 - t\varepsilon_1 \varepsilon_3 = 0$, and g(B, C) = 0, so $(E_1 + tE_3, E_2, \varepsilon_3 tE_1 - \varepsilon_1 E_3)$ is an orthogonal basis which consists of nonnull vectors and applying (3.2), (1.1), (1.2), (1.3), (1.4) we compute

$$\left((t^2 \varepsilon_1 + \varepsilon_3) (R_{2112} + 2R_{1223}t + R_{3223}t^2) - \varepsilon_2 R_{3113} (\varepsilon_1 + \varepsilon_3 t^2)^2 \right) \\ \times \left(-\varepsilon_1 R_{1223} + (\varepsilon_3 R_{2112} - \varepsilon_1 R_{3223})t + \varepsilon_3 R_{1223}t^2 \right) = 0.$$

This holds for every t > 1, so the coefficient of t is zero, and using $\varepsilon_1^2 \varepsilon_2^2 \varepsilon_3^2 = 1$, we obtain

$$-2\varepsilon_1\varepsilon_3R_{1223}^2 + (\varepsilon_1\varepsilon_2R_{2112} - \varepsilon_1\varepsilon_3R_{3113})(\varepsilon_1\varepsilon_2R_{2112} - \varepsilon_2\varepsilon_3R_{3223}) = 0.$$

Hence, $-2\varepsilon_1\varepsilon_3s_2^2 + (k_3 - k_2)(k_3 - k_1) = 0$. Thus, using the basis (E_q, E_r, E_p) instead of (E_1, E_2, E_3) , we get

(3.3)
$$-2\varepsilon_q\varepsilon_p s_r^2 + (k_p - k_r)(k_p - k_q) = 0,$$

which with $k_p = k_r$ and $\varepsilon_q \varepsilon_p \neq 0$ gives $s_r = 0$, which contradicts $s_r \neq 0$. Thus, $s_p = s_q = s_r = 0$, which implies

$$R_{2113} = R_{1223} = R_{1332} = 0.$$

Hence, (3.3) gives $(k_p - k_r)(k_p - k_q) = 0$ for any permutation (p, q, r) of the set $\{1, 2, 3\}$, so at least two of differences $k_3 - k_2$, $k_3 - k_1$, and $k_2 - k_1$ are zero, which implies $k_1 = k_2 = k_3 = \mu$, and therefore

$$R_{2112} = \varepsilon_1 \varepsilon_2 \mu, \quad R_{3113} = \varepsilon_1 \varepsilon_3 \mu, \quad R_{3223} = \varepsilon_2 \varepsilon_3 \mu.$$

Since an algebraic curvature tensor of dimension 3 is uniquely determined by its 6 components of tensor: R_{2113} , R_{1223} , R_{1332} , R_{2112} , R_{3113} , R_{3223} (see [15, pp. 142–144]), the previous equalities imply that R is of constant sectional curvature μ . \Box

Since every 3-dimensional R is 1-stein if and only if it is of constant sectional curvature (see [6, Proposition 1.120]), the previous theorem implies that every 3-dimensional R is Jacobi-orthogonal if and only if it is Osserman. In the following theorem we prove a similar result in dimension 4 using an additional hypothesis that R is Jacobi-diagonalizable.

THEOREM 3.2. Every Jacobi-diagonalizable algebraic curvature tensor of dimension 4 is Osserman if and only if it is Jacobi-orthogonal.

PROOF. Suppose R is a Jacobi-diagonalizable Osserman algebraic curvature tensor of dimension 4. It is well-known that a Lorentzian Osserman algebraic curvature tensor has constant sectional curvature (see [7, 8]), so it is of the form $R = \mu R^1$. Hence, using that 0 is Jacobi-orthogonal and applying Lemma 2.2, we conclude that Lorentzian R is Jacobi-orthogonal. It remains to deal with a Riemannian or Kleinian R. Let X and Y be mutually orthogonal unit vectors in \mathcal{V} . Denote $X = E_1$. Since R is Jacobi-diagonalizable, there exists an orthonormal eigenbasis (E_1, E_2, E_3, E_4) related to \mathcal{J}_{E_1} such that $\mathcal{J}_{E_1}E_i = \varepsilon_1\lambda_i E_i$, for $2 \leq i \leq 4$, where $\varepsilon_j = \varepsilon_{E_j}$, for $1 \leq j \leq 4$. Since R is not Lorentzian, we have $\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_4 = 1$, as well as $\varepsilon_i^2 = 1$, for $1 \leq i \leq 4$. Denoting $R_{ijkl} = R(E_i, E_j, E_k, E_l)$, we get $R_{i11j} = g(\mathcal{J}_{E_1}E_i, E_j) = g(\varepsilon_1\lambda_i E_i, E_j) = \varepsilon_1\lambda_i\delta_{ij}\varepsilon_i$. Hence,

(3.4) $R_{2112} = \varepsilon_1 \varepsilon_2 \lambda_2, \quad R_{3113} = \varepsilon_1 \varepsilon_3 \lambda_3, \quad R_{4114} = \varepsilon_1 \varepsilon_4 \lambda_4,$

$$(3.5) R_{2113} = R_{2114} = R_{3114} = 0.$$

According to Theorem 1.1, a Jacobi-diagonalizable Osserman R is Jacobi-dual. Thus, $\mathcal{J}_{E_1}E_i = \varepsilon_1\lambda_i E_i$, for $2 \leq i \leq 4$, implies $\mathcal{J}_{E_i}E_1 = \varepsilon_i\lambda_i E_1$, so $\mathcal{J}_{E_i}E_1 \perp E_j$ for $2 \leq j \leq 4$, which means $0 = g(\mathcal{J}_{E_i}E_1, E_j) = R_{1iij}$ and therefore

$$(3.6) R_{1223} = R_{1224} = R_{1332} = R_{1334} = R_{1442} = R_{1443} = 0.$$

Since R is 1-stein, (1.9) holds for j = 1 and we get $\sum_i \varepsilon_i \varepsilon_x R_{ixxi} = c_1$, for $x \in \{1, 2, 3, 4\}$ (see [1]). Thus, using (1.4) we obtain

$$\begin{split} \varepsilon_1 \varepsilon_2 R_{2112} + \varepsilon_1 \varepsilon_3 R_{3113} + \varepsilon_1 \varepsilon_4 R_{4114} &= c_1, \\ \varepsilon_1 \varepsilon_2 R_{2112} + \varepsilon_2 \varepsilon_3 R_{3223} + \varepsilon_2 \varepsilon_4 R_{4224} &= c_1, \\ \varepsilon_1 \varepsilon_3 R_{3113} + \varepsilon_2 \varepsilon_3 R_{3223} + \varepsilon_3 \varepsilon_4 R_{4334} &= c_1, \\ \varepsilon_1 \varepsilon_4 R_{4114} + \varepsilon_2 \varepsilon_4 R_{4224} + \varepsilon_3 \varepsilon_4 R_{4334} &= c_1. \end{split}$$

Therefore, subtracting the sum of the two of these equations from the sum of the remaining two equations, we get $\varepsilon_2 \varepsilon_3 R_{3223} = \varepsilon_1 \varepsilon_4 R_{4114}$, $\varepsilon_2 \varepsilon_4 R_{4224} = \varepsilon_1 \varepsilon_3 R_{3113}$, and $\varepsilon_3 \varepsilon_4 R_{4334} = \varepsilon_1 \varepsilon_2 R_{2112}$. Using (3.4), we obtain

(3.7)
$$R_{3223} = \varepsilon_1 \varepsilon_4 \lambda_4, \quad R_{4224} = \varepsilon_1 \varepsilon_3 \lambda_3, \quad R_{4334} = \varepsilon_1 \varepsilon_2 \lambda_2.$$

For a 1-stein R we also have additional equalities $\sum_i \varepsilon_i R_{ixyi} = 0$ for $1 \le x \ne y \le 4$ (see [1]). Using them for $(x, y) \in \{(2, 3), (2, 4), (3, 4)\}$, (1.2), (1.3), and (1.4), we conclude $R_{2443} = -\varepsilon_1\varepsilon_4 R_{2113}$, $R_{2334} = -\varepsilon_1\varepsilon_3 R_{2114}$, and $R_{3224} = -\varepsilon_1\varepsilon_2 R_{3114}$. Thus, using (3.5), we obtain

$$(3.8) R_{2443} = R_{2334} = R_{3224} = 0.$$

Since Osserman R is 2-stein, (1.9) holds for j = 2, so we get $tr(\mathcal{J}_{E_1})^2 = (\varepsilon_{E_1})^2 c_2$, which gives

$$\lambda_2^2 + \lambda_3^2 + \lambda_4^2 = c_2.$$

Since R is 2-stein, for all $1 \le x \ne y \le 4$, we get known 2-stein equations (see [1])

$$2\sum_{1\leqslant i,j\leqslant 4}\varepsilon_i\varepsilon_jR_{ixxj}R_{iyyj} + \sum_{1\leqslant i,j\leqslant 4}\varepsilon_i\varepsilon_j(R_{ixyj} + R_{iyxj})^2 = 2\varepsilon_x\varepsilon_yc_2$$

For (x, y) = (2, 3), using (1.2), (1.3), (1.4), (3.5), (3.6), and (3.8), we get

$$2\varepsilon_1^2 R_{2112} R_{3113} + 2\varepsilon_4^2 R_{4224} R_{4334} + \varepsilon_1 \varepsilon_4 (R_{1234} + R_{1324})^2 + \varepsilon_2 \varepsilon_3 (-R_{3223})^2 + \varepsilon_3 \varepsilon_2 (-R_{3223})^2 + \varepsilon_4 \varepsilon_1 (R_{4231} + R_{4321})^2 = 2\varepsilon_2 \varepsilon_3 c_2$$

Using (3.7), we compute $4\varepsilon_2\varepsilon_3\lambda_2\lambda_3 + 2\varepsilon_2\varepsilon_3(R_{1234} + R_{1324})^2 + 2\varepsilon_2\varepsilon_3\lambda_4^2 = 2\varepsilon_2\varepsilon_3c_2$. Since $2\varepsilon_2\varepsilon_3 \neq 0$, we get $c_2 - \lambda_4^2 - 2\lambda_2\lambda_3 = (R_{1234} + R_{1324})^2$ and using (3.9) we get $(\lambda_3 - \lambda_2)^2 = (R_{1234} + R_{1324})^2$. Similarly, using (1.2), (1.3), (1.4), and (1.5) we obtain

$$(\lambda_2 - \lambda_4)^2 = (R_{1243} + R_{1423})^2 = (R_{1324} - 2R_{1234})^2,$$

$$(\lambda_4 - \lambda_3)^2 = (R_{1432} + R_{1342})^2 = (R_{1234} - 2R_{1324})^2.$$

Hence, we get

(3.10)
$$s_4(\lambda_3 - \lambda_2) = R_{1234} + R_{1324}, \ s_3(\lambda_2 - \lambda_4) = R_{1324} - 2R_{1234}, \\ s_2(\lambda_4 - \lambda_3) = R_{1234} - 2R_{1324},$$

where $s_2, s_3, s_4 \in \{-1, 1\}$. According to the pigeonhole principle, at least two of s_2, s_3, s_4 are the same. First, suppose $s_i = s_j = -s_k$, where (i, j, k) is a permutation of (2, 3, 4). Summing the equations in (3.10) we obtain

$$(s_3 - s_4)\lambda_2 + (s_4 - s_2)\lambda_3 + (s_2 - s_3)\lambda_4 = 0,$$

and we conclude $(s_j - s_k)\lambda_i + (s_k - s_i)\lambda_j = 0$, so $\lambda_i = \lambda_j$. Notice that substituting s_k by $-s_k$ does not change (3.10) and provides $s_2 = s_3 = s_4$.

If $s_2 = s_3 = s_4 = -1$, then substituting eigenvectors E_2 , E_3 and E_4 with $-E_2$, $-E_3$ and $-E_4$, respectively, we conclude that R_{1234} and R_{1324} change the sign, as well as s_2 , s_3 , s_4 . Therefore, without loss of generality we can suppose $s_2 = s_3 = s_4 = 1$, and get

(3.11)
$$R_{1234} - 2R_{1324} = \lambda_4 - \lambda_3,$$
$$R_{1324} - 2R_{1234} = \lambda_2 - \lambda_4,$$
$$R_{1234} + R_{1324} = \lambda_3 - \lambda_2.$$

For an arbitrary $Y \perp X = E_1$ there exist real numbers k_2, k_3, k_4 such that $Y = k_2E_2 + k_3E_3 + k_4E_4$, and therefore

$$\mathcal{J}_X Y = \mathcal{J}_{E_1}(k_2 E_2 + k_3 E_3 + k_4 E_4) = k_2 \varepsilon_1 \lambda_2 E_2 + k_3 \varepsilon_1 \lambda_3 E_3 + k_4 \varepsilon_1 \lambda_4 E_4.$$

Using (1.2)–(1.5), (3.5), (3.6), (3.11), and $\Re(X,Y)Z = \sum_i \varepsilon_i R(X,Y,Z,E_i)E_i$ we calculate

$$\begin{aligned} \mathcal{J}_Y X &= \mathcal{J}_{k_2 E_2 + k_3 E_3 + k_4 E_4} E_1 = \Re(E_1, k_2 E_2 + k_3 E_3 + k_4 E_4) (k_2 E_2 + k_3 E_3 + k_4 E_4) \\ &= k_2^2 \varepsilon_1 R_{2112} E_1 + k_2 k_3 \varepsilon_4 R_{1234} E_4 + k_2 k_4 \varepsilon_3 R_{1243} E_3 \\ &+ k_3 k_2 \varepsilon_4 R_{1324} E_4 + k_3^2 \varepsilon_1 R_{1331} E_1 + k_3 k_4 \varepsilon_2 R_{1342} E_2 \\ &+ k_4 k_2 \varepsilon_3 R_{1423} E_3 + k_4 k_3 \varepsilon_2 R_{1432} E_2 + k_4^2 \varepsilon_1 R_{1441} E_1 \end{aligned}$$

$$= (k_{2}^{2}\varepsilon_{1}R_{2112} + k_{3}^{2}\varepsilon_{1}R_{1331} + k_{4}^{2}\varepsilon_{1}R_{1441})E_{1} + k_{3}k_{4}\varepsilon_{2}(R_{1342} + R_{1432})E_{2} + k_{2}k_{4}\varepsilon_{3}(R_{1243} + R_{1423})E_{3} + k_{2}k_{3}\varepsilon_{4}(R_{1234} + R_{1324})E_{4} = (k_{2}^{2}\varepsilon_{2}\lambda_{2} + k_{3}^{2}\varepsilon_{3}\lambda_{3} + k_{4}^{2}\varepsilon_{4}\lambda_{4})E_{1} + k_{3}k_{4}\varepsilon_{2}(R_{1234} - 2R_{1324})E_{2} + k_{2}k_{4}\varepsilon_{3}(R_{1324} - 2R_{1234})E_{3} + k_{2}k_{3}\varepsilon_{4}(R_{1234} + R_{1324})E_{4} = (k_{2}^{2}\varepsilon_{2}\lambda_{2} + k_{3}^{2}\varepsilon_{3}\lambda_{3} + k_{4}^{2}\varepsilon_{4}\lambda_{4})E_{1} + k_{3}k_{4}\varepsilon_{2}(\lambda_{4} - \lambda_{3})E_{2} + k_{2}k_{4}\varepsilon_{3}(\lambda_{2} - \lambda_{4})E_{3} + k_{2}k_{3}\varepsilon_{4}(\lambda_{3} - \lambda_{2})E_{4}.$$

Thus, using that (E_1, E_2, E_3, E_4) is an orthonormal basis, we compute

$$g(\mathcal{J}_X Y, \mathcal{J}_Y X) = k_2 k_3 k_4 \varepsilon_1 \varepsilon_2 \lambda_2 (\lambda_4 - \lambda_3) g(E_2, E_2) + k_2 k_3 k_4 \varepsilon_1 \varepsilon_3 \lambda_3 (\lambda_2 - \lambda_4) g(E_3, E_3) + k_2 k_3 k_4 \varepsilon_1 \varepsilon_4 \lambda_4 (\lambda_3 - \lambda_2) g(E_4, E_4) = \varepsilon_1 k_2 k_3 k_4 (\lambda_2 (\lambda_4 - \lambda_3) + \lambda_3 (\lambda_2 - \lambda_4) + \lambda_4 (\lambda_3 - \lambda_2)) = 0,$$

which proves that R is Jacobi-orthogonal.

Conversely, let R be a Jacobi-diagonalizable Jacobi-orthogonal algebraic curvature tensor of dimension 4. First, we prove that R is weak Jacobi-dual. Let X and Y be mutually orthogonal unit vectors in \mathcal{V} such that $\mathcal{J}_X Y = \varepsilon_X \lambda Y$. Our aim is to prove $\mathcal{J}_Y X = \varepsilon_Y \lambda X$. Since R is Jacobi-diagonalizable and Jacobi-orthogonal, X is nonnull and $Y \in \mathcal{V}(X) = \operatorname{Ker}(\widetilde{\mathcal{J}}_X - \varepsilon_X \lambda \operatorname{Id})$, using Lemma 2.3 and Lemma 2.4, we get $\mathcal{J}_Y X = \varepsilon_Y \lambda X + Z$, where $\varepsilon_Z = 0$ and $Z \in \mathcal{V}(X) \leq X^{\perp}$. Moreover, since $g(Z, Y) = g(\mathcal{J}_Y X - \varepsilon_Y \lambda X, Y) = g(X, \mathcal{J}_Y Y) - \varepsilon_Y \lambda g(X, Y) = 0$, it follows that $Z \perp Y$, so we conclude $Z \in \operatorname{Span}\{X, Y\}^{\perp}$.

We discuss two cases. The case where $\text{Span}\{X,Y\}^{\perp}$ is a definite subspace of \mathcal{V} is easy since $\varepsilon_Z = 0$ and $Z \in \text{Span}\{X,Y\}^{\perp}$ imply Z = 0.

It remains to deal with the case where $\operatorname{Span}\{X,Y\}^{\perp}$ is indefinite $(\varepsilon_X = \varepsilon_Y)$ for a Lorentzian R, $\varepsilon_X = -\varepsilon_Y$ for a Kleinian R, while for a Riemannian R there is no such case). Since $\mathcal{J}_Y X = \varepsilon_Y \lambda X + Z$, our aim is to prove Z = 0. We assume $Z \neq 0$, where $\varepsilon_Z = 0$ implies Z is null. Since R is Jacobi-diagonalizable, we know $\mathcal{V}(X)$ is nondegenerate such as $\operatorname{Span}\{Y\}^{\perp} \cap \mathcal{V}(X)$ which contains null vector Z, so its dimension is at least 2. Thus, since $Y \in \mathcal{V}(X) \leq X^{\perp}$, we get dim $\mathcal{V}(X) = 3$. Therefore, $\mathcal{V}(X) = X^{\perp}$ and $\widetilde{\mathcal{J}}_X = \varepsilon_X \lambda \operatorname{Id}$. There exists $W \in \operatorname{Span}\{X,Y\}^{\perp}$ such that $\varepsilon_W = -\varepsilon_Y$ and we write Y = (Y - tW) + tW for t > 1. Since Y - tW, $tW \in \mathcal{V}(X)$, we have $\mathcal{J}_X(Y - tW) = \varepsilon_X \lambda(Y - tW)$ and $\mathcal{J}_X(tW) = \varepsilon_X \lambda tW$. Using $W \perp Y$ and (1.1), we get $\varepsilon_{Y-tW} = \varepsilon_Y + t^2 \varepsilon_W = (1 - t^2)\varepsilon_Y$ and $\varepsilon_{tW} = t^2 \varepsilon_W$. Therefore $\operatorname{sgn}(\varepsilon_{Y-tW}) = \operatorname{sgn}(\varepsilon_{tW}) = -\operatorname{sgn}(\varepsilon_Y)$ and we apply the solved case to X, Y - tW and X, tW to obtain $\mathcal{J}_{Y-tW}X = \varepsilon_{Y-tW}\lambda X$ and $\mathcal{J}_{tW}X = \varepsilon_{tW}\lambda X$. Using (1.8) and $\mathcal{J}(tW, tW)X = \mathcal{J}_{tW}X$, we compute

$$\begin{aligned} \mathcal{J}_Y X &= \mathcal{J}_{(Y-tW)+tW} X = \mathcal{J}_{Y-tW} X + 2\mathcal{J}(Y - tW, tW) X + \mathcal{J}_{tW} X \\ &= \varepsilon_{Y-tW} \lambda X + 2t \mathcal{J}(Y, W) X - 2\mathcal{J}_{tW} X + \mathcal{J}_{tW} X \\ &= \varepsilon_{Y-tW} \lambda X + 2t \mathcal{J}(Y, W) X - \varepsilon_{tW} \lambda X = \varepsilon_Y \lambda X + 2t \mathcal{J}(Y, W) X. \end{aligned}$$

Since $\mathcal{J}_Y X = \varepsilon_Y \lambda X + 2t \mathcal{J}(Y, W) X$ holds for all t > 1, we get $2\mathcal{J}(Y, W) X = 0$ and $\mathcal{J}_Y X = \varepsilon_Y \lambda X$, contrary to assumption that $Z \neq 0$, so Z = 0.

LUKIĆ

Therefore, R is weak Jacobi-dual and since R is Jacobi-diagonalizable, using Lemma 1.3, we conclude that R is Jacobi-dual. Finally, Theorem 1.1 implies that R is Osserman.

Especially, since Riemannian curvature tensors are Jacobi-diagonalizable, we get that every algebraic curvature tensor on a positive definite scalar product space of dimension 4 is Osserman if and only if it is Jacobi-orthogonal.

At the end, we conclude that the Jacobi-orthogonal property is very important and useful in characterizing Osserman tensors in pseudo-Riemannian settings.

References

- V. Andrejić, Strong duality principle for four-dimensional Osserman manifolds, Kragujevac J. Math. 33 (2010), 17–28.
- V. Andrejić, K. Lukić, On quasi-Clifford Osserman curvature tensors, Filomat 33 (2019), 1241–1247.
- 3. _____, The orthogonality principle for Osserman manifolds, Acta Math. Hungar., to appear, arXiv:2308.14851 [math.DG]
- V. Andrejić, Z. Rakić, On the duality principle in pseudo-Riemannian Osserman manifolds, J. Geom. Phys. 57 (2007), 2158–2166.
- 5. ____, On some aspects of duality principle, Kyoto J. Math. 55 (2015), 567–577.
- A. Besse, *Einstein Manifolds*, Ergeb. Math. Grenzgeb., 3. Folge 10, Springer-Verlag, Berlin, 1987.
- N. Blažić, N. Bokan, P. Gilkey, A Note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), 227–230.
- E. García-Río, D.N. Kupeli, M.E. Vázquez-Abal, On a problem of Osserman in Lorentzian geometry, Differ. Geom. Appl. 7 (1997), 85–100.
- E. García-Río, D.N. Kupeli, M.E. Vázquez-Abal, R. Vázquez-Lorenzo, Affine Osserman connections and their Riemann extensions, Differ. Geom. Appl. 11 (1999), 145–153.
- P. Gilkey, Manifolds whose curvature operator has constant eigenvalues at the basepoint, J. Geom. Anal. 4 (1994), 155–158.
- 11. _____, Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, 2001.
- P. Gilkey, A. Swann, L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Q. J. Math., Oxf. II. Ser. 46 (1995), 299–320.
- Y. Nikolayevsky, Z. Rakić, The duality principle for Osserman algebraic curvature tensors, Linear Algebra Appl. 504 (2016), 574–580.
- Z. Rakić, On duality principle in Osserman manifolds, Linear Algebra Appl. 296 (1999), 183–189.
- 15. S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity, Wiley, 1972.

Faculty of Mathematics University of Belgrade Belgrade Serbia katarina.lukic@matf.bg.ac.rs (Received 31 08 2023)