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PRIMITIVE DIAMETER 2-CRITICAL GRAPHS

Jovan Radosavljević, Zoran Stanić, and
Miodrag Živković

Abstract. We study diameter 2-critical graphs (for short, D2C graphs),
i.e. graphs of diameter 2 whose diameter increases after removing any edge.
Our results include structural considerations, new examples and a particu-
lar relationship with minimal 2-self-centered graphs stating that these graph
classes are almost identical. We pay an attention to primitive D2C graphs
(PD2C graphs) which, by definition, have no two vertices with the same set of
neighbours. It is known that a graph of diameter 2 and order n, which has no
dominating vertex, has at least 2n − 5 edges, and the graphs that attain this
bound are also known. It occurs that exactly three of them are PD2C. The
next natural step is to consider PD2C graphs with 2n − 4 edges. In this con-
text, we determine an infinite family of PD2C graphs which, for every n > 6,
contains exactly one graph with 2n − 4 edges. We also prove that there are
exactly seven Hamiltonian PD2C graphs with the required number of edges.
We show that for n 6 13, there exists a unique PD2C graph with 2n − 4
edges that does not belong to the obtained family nor is Hamiltonian. It is
conjectured that this is a unique example of such a graph.

1. Introduction

For a finite simple undirected graph G ∼= G(V, E), we use n and m to denote
its order (that is, the number of vertices |V |) and size (that is, the number of
edges |E|).

We consider a particular family of graphs with diameter 2 that are minimal
in the sense that removal of any edge increases the diameter. Such graphs are
called diameter 2-critical (for short, D2C graphs). For example, the cycle on 5
vertices and every complete bipartite graph of diameter 2 are D2C. A study of these
graphs dates back to 1960s, and many results can be found in [3, 5, 7–10, 14, 16]
(characterizations, conjectures, constructions), [11–13, 18] (particular cases) and
references therein.

In this paper we give some structural properties of D2C graphs, construct an
infinite family of such graphs and give a relationship between D2C graphs and the
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so-called minimal 2-self-centered graphs leading to the conclusion that these graph
classes are almost identical. Definition of a 2-self-centered graph is given upon
the forthcoming Proposition 3.2, and these graphs are studied in [4, 15, 20] and
other references not listed here. According to our result, a study on D2C graphs is
equivalent to a study on minimal 2-self-centered graphs.

A duplication of a vertex v in a graph is the procedure of adding a new vertex
and joining it with all neighbours of v. Clearly, a graph obtained by duplication of
any vertex of a D2C graph is also a D2C graph. Therefore, an essential part of the
family of D2C graphs are those that do not contain duplicated vertices (since every
other D2C graph is obtained by duplicating vertices in some of these graphs). We
call these graphs primitive diameter 2-critical graphs (for short, PD2C graphs). An
alternative name that can be found in the literature is twin-free diameter 2-critical
graphs.

We know from the Erdős–Rényi theorem [8] that the size of a graph of diameter
2 with no dominating vertex (i.e. a vertex joined to all remaining vertices) is not less
than 2n − 5. Moreover, Henning and Southey [14] have determined all graphs that
attain the equality in this lower bound. These graphs are listed in the next section.
Exactly three of them are PD2C, and as the next step we consider PD2C graphs
with 2n − 4 edges. It occurs that determination of such graphs is a rather difficult
problem, and our contribution consists of the following results. We determined
an infinite family of such graphs, such that for every order n > 6 there is exactly
one member of this family. We also determined all Hamiltonian PD2C graphs with
2n−4 edges, and found one graph with the required properties that does not belong
to the mentioned family and is not Hamiltonian. Our computational experiments
suggest that this might be a unique PD2C graph with 2n − 4 edges that do not
belong to the union of the obtained families, so we formulate this in the form of a
conjecture.

Our results are closely related to the following two conjectures. The first
one is a longstanding problem considered by many mathematicians, known as the
Murty–Simon conjecture (cf. [5,9]). It states that every D2C graph of order n has

at most ⌊ n2

4 ⌋ edges, with equality if and only if G is a complete bipartite graph
whose colour classes differ in size by at most one. There are many results about
this conjecture; in particular, it holds for graphs having sufficiently large order and
for all graphs with a dominating edge, where an edge is dominating if joins a pair
of vertices without common non-neighbour [7].

For the second conjecture, following [2], we denote by C
+
5 the family of graphs

obtained by replacing three vertices x1, x2, x3 of the cycle C5 by three independent
sets X1, X2, X3 of vertices, under the following conditions: (a) x1, x2 and x3 are
consecutive on the cycle and (b) |X2| ∈ {⌊ n−2

3 ⌋, ⌈ n−2
3 ⌉}, where n is the order of

the obtained graph. Dailly et al. [7] conjectured that a non-bipartite D2C graph G

of order n is either H5 of [7, Figure 2] or has at most ⌊ (n−1)2

4 ⌋ + 1 edges, with the

equality if and only if G belongs to C
+
5 or it is one of the 13 graphs listed in the same

reference. Obviously, this conjecture strengthens the previous one by excluding the
complete bipartite graphs and H5. It is interesting that Radosavljević [17] has
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Figure 1. A new exception to the conjecture of [7]. In this and
the forthcoming figures, the purpose of a dashed line is to empha-
size a particular edge.

found another graph that should be excluded. We illustrate it in Fig. 1; its order

and size are 12 and 32, which leads to 32 > ⌊ (n−1)2

4 ⌋ + 1 = 31. This graph contains
a dominating edge, highlighted in the figure, so in the context of the Murty–Simon
conjecture it belongs to a resolved class.

Additional terminology, notation and necessary results are given in Section 2.
For basic notions and notation on graphs not given in this paper, we refer the
reader to any of [6, 19]. D2C graphs are considered in Section 3. PD2C graphs
with 2n − 4 edges are considered in Section 4.

2. Preliminaries

We write dist(u, v) to denote the distance between the vertices u, v ∈ V (G).
The eccentricity ecc(u) of u is the maximum distance between u and all other
vertices. The diameter diam(G) of G is the maximum eccentricity of its vertices.

The degree and the set of neighbours of a vertex u are denoted by d(u) and
N(u), respectively. The closed neighbourhood {u} ∪ N(u) is denoted by N [u]. The
graph obtained by removal of a vertex v or an edge uv is denoted by G − u and
G − uv. A cycle and a star on n vertices are denoted by Cn and Sn, respectively.
The double star Sn1,n2

is obtained by inserting an edge between the centers of stars
Sn1

and Sn2
. A generalized star is a tree with exactly one vertex of degree greater

than 2. For the graphs G and H , the join G∇H is obtained by inserting an edge
between every vertex of G and every vertex of H . In particular, if G consists of a
single vertex, the join reduces to the cone over H ; if V (G) = {v}, we also use the
term v-cone. Accordingly, a star can be seen as a cone over a graph without edges.

Erdős and Rényi [8] proved the following classical result on the minimum size
of a graph of diameter 2 with no dominating vertex.
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Figure 2. PD2C graphs from the G family with 2n − 5 edges.

Theorem 2.1 (Erdős-Rényi theorem). If G is a graph of diameter 2, order n
and size m with no dominating vertex, then m > 2n − 5.

The degree-2 duplication of a vertex is the duplication of a vertex of degree 2.
Let G be the family of graphs that (i) contains three graphs of Fig. 2, and (ii) is
closed under degree-2 vertex duplication. Henning and Southey [14] showed that
the equality in the previous theorem holds exactly for graphs of G.

3. Diameter 2-critical graphs

In this section we give some theoretical results on D2C graphs, a relationship
between D2C graphs and the so-called minimal self-centered graphs, and some
constructions of D2C graphs. In the introductory section we have said that D2C
graphs have received a great deal of attention in the period of almost 60 years.
Therefore, there is a possibility that the first two results are already met in the
literature. For the sake of completeness, we give short proofs. The corollary is used
in the next section.

Proposition 3.1. The join G∇H is D2C if and only if G and H are empty
graphs and at least one of them has more than one vertex.

Proof. If G, H are empty graphs and G has at least 2 vertices, then we ob-
viously have diam(G∇H) = 2. Moreover, by removing an edge uv ∈ E(G∇H), we
get distG∇H−uv(u, v) > 2, which means that G∇H is D2C.

Suppose now that G∇H is D2C. Clearly, diam(G∇H) = 2 yields that at least
one of G, H has more than one vertex. By way of contradiction, assume that G
contains an edge, say uv. We have

distG∇H−uv(a, b)

{

= 1 if exactly one of a, b belongs to V (G),
6 2 otherwise,

which means that G∇H is not D2C, a contradiction. �

Corollary 3.1. The following statements hold true.

(i) A cone is D2C if and only if it is a star with at least 3 vertices.
(ii) A tree is D2C if and only if it is a star with at least 3 vertices.
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Proof. Item (i) is a direct consequence of Proposition 3.1. For (ii), it is well-
known that the diameter of a tree is 2 if and only if it is a star with at least 3
vertices. In addition, such a star is D2C by Proposition 3.1. �

Observe that the Erdős-Rényi theorem excludes graphs with a dominating ver-
tex, i.e. cones. The previous corollary gives all cones that are D2C.

We say that a graph G is self-centered if all its vertices have the same eccen-
tricity. Equivalently, G is self-centered if its diameter is equal to its radius r(G),
where the radius is defined by r(G) = min{ecc(i) : i ∈ V (G)}. A graph is minimal
d-self-centered if it is self-centered with diameter d and every its edge-deleted sub-
graph is not self-centered. In other words, by removing any edge the graph loses
the property of being self-centered.

Proposition 3.2. Every minimal 2-self-centered graph is D2C. Conversely,
every D2C graph distinct from a star is minimal 2-self-centered.

Proof. Assume that G is minimal 2-self-centered. Then we have diam(G) = 2
by definition. Moreover, the minimality of G leads to the conclusion that removal
of any edge results in a graph whose diameter is greater than 2. In other words G
is D2C.

Assume now that G is D2C. If G is a star, then r(G) = 1 which means that G
is not minimal 2-self-centered. If G is not a star then by Corollary 3.1, G is not a
cone, which means that r(G) 6= 1. Since r(G) 6 diam(G) = 2, we necessarily have
r(G) = diam(G), and so G is self-centered with diameter 2. By assuming that G is
not minimal 2-self-centered, we get that there exists an edge e such that G − e is
self-centered, necessarily with diameter 2. But diam(G) = diam(G − e) contradicts
our initial assumption that G is D2C. Hence, G is minimal 2-self-centered, and we
are done. �

We proceed with a particular construction. For a graph G with vertex set
V (G) = {u1, u2, . . . , un} and s ∈ N, we consider the graph G s© with vertex set
V (G s©) = {(up, v) : 1 6 p 6 n, 1 6 v 6 s}, such that two vertices (a, b) and
(c, d) are adjacent if and only if a is adjacent to c in G. The graph G s© can be
seen as the strong product (defined in [6, p. 66]) of G and the complete graph with
s vertices from which the edges between the vertices (a, b) and (a, c) are removed
for all b 6= c. Evidently, G ∼= G 1©. An example in which G is a 4-vertex cycle is
illustrated in Fig. 3.

Proposition 3.3. If G is a triangle-free D2C graph, so is G s©, for every
s ∈ N.

Proof. We first prove that G s© is triangle-free. Assume, by way of contradic-
tion, that it contains a triangle with vertices (a, b), (c, d) and (e, f). By definition,
this means that the vertices a, c, e are adjacent in G, which is a contradiction since
G is triangle-free.

We now prove that diameter of G s© is 2. If diam(G s©) > 2, then there are
non-adjacent vertices (a, b) and (c, d) such that they have no common neighbours.
In other words, every vertex (e, f) /∈ {(a, b), (c, d)} is adjacent to at most one of
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Figure 3. The graph C
2©

4 .

these vertices. This means that the vertex e is adjacent to at most one of a, c in G,
but this leads to distG(a, c) > 2, a contradiction.

We finally prove that G s© is D2C. Assume contrary to the statement that by
removing an edge located between a pair of vertices, say again (a, b) and (c, d), we
obtain a graph with diameter 2. This, in particular, means that

dist
G s©−{(a,b),(c,d)}((a, b), (c, d)) = 2.

In other words, these two vertices have a common neighbour in G s© − (a, b)(c, d)
and consequently in G s©, but the latter is impossible since, together with this
neighbour, they form a triangle in G s© (we have already shown that G s© is triangle-
free). �

Figure 4. The graph for Remark 3.1.

Remark 3.1. It is worth mentioning that the assumption that G is triangle-
free is essential in the previous proposition. For example, it is not difficult to verify
that if G is the D2C graph illustrated in Fig. 4 and s > 2, then removing the edge
between the vertices (a, b) and (c, b) where a, c are the vertices of the triangle in G,
results in the graph with diameter 2 (meaning that G s© is not D2C).

Proposition 3.3 gives constructions of infinite families of D2C graphs. Namely,
it is sufficient to select a single triangle-free D2C graph G, and then different choices
for s ∈ N give different D2C graphs G s©. All of them are triangle-free, as well.
This construction is essentially equivalent to the following one.
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Corollary 3.2. Let G be a triangle-free D2C graph. For k > 0, the graph
obtained by the following iterative procedure

{

G0
∼= G,

Gk+1
∼= G

s©
k , for s > 2,

is triangle free and D2C.

Proof. This result is a direct consequence of Proposition 3.3 stating that if
Gk is triangle-free and D2C, so is Gk+1

∼= G
s©

k . �

4. PD2C graphs of size 2n − 4

An obvious consequence of the Erdős-Rényi theorem is that there are only
three PD2C graphs of order n 6 13 and size 2n − 5, see Fig. 2; these are the only
primitive graphs in G. The next natural step is to consider PD2C graphs of the
second smallest size, i.e. of size 2n − 4. In the previous work [17], the first author
of this paper has obtained the list of all PD2C graphs of order n 6 13. Starting
from this list, we obtained the sub-list of all PD2C graphs of size m 6 2n − 4. In
this section we give some theoretical results concerning these graphs, construct an
infinite family, and determine all Hamiltonian PD2C graphs.

We start by looking at PD2C graphs of order n 6 13 and size 2n − 4 divided
into three sets, see Figs. 5–7.

Let the graph Zn, for n > 6, be defined as follows. Let x be the remainder
when dividing n by 2, and set y = (n − 2 − x)/2. Let T be a generalized star with
center c, x paths of length 1 attached at c and y paths of length 2 attached at c.
The graph Zn is obtained from T by adding a new vertex v and joining v to all
vertices in V (T )r{c}. Let Z = {Zn : n > 6}. Fig. 5 illustrates Zn, for 6 6 n 6 13,
as the first set of PD2C graphs of order 6 6 n 6 13 and size 2n − 4.

In [7], D2C graphs of order n with maximum degree n − 2 are characterized.
It turns out that they are exactly the graphs of the family Z, with a dominating
edge and 2n − 4 edges.

Let T ⊃ Z be the family of graphs having a vertex whose removal results in a
tree. In the next subsection we determine all PD2C graphs in T of size 2n−4. Fig. 6
illustrates the seven Hamiltonian PD2C graphs of size 2n − 4. In Subsection 4.2,
we prove that there is no other Hamiltonian PD2C graphs of given size. Finally,
Fig. 7 illustrates a unique PD2C graph of order n 6 13 and size 2n − 4 which is
not Hamiltonian and which does not belong to Z.

4.1. The family Z. Here we prove that a graph of T is PD2C of size 2n−4 if
and only if it belongs to Z∪ {C5}. Since every graph of Z∪ {C5} is PD2C with the
required number of edges, one implication follows immediately. For the opposite
one, we need the following lemma concerning a general setting.

Lemma 4.1. Let G ∈ T be a D2C graph and let v ∈ V (G) be a vertex such that
T ∼= G − v is a tree. Then diam(T ) 6 4.

Proof. Assume that diam(T ) > 4. There are two cases, depending on parity
of diam(T ). We show first that in both cases G is a v-cone over T .
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Figure 5. Graphs Zn of order n (6 6 n 6 13) and size 2n − 4.

Figure 6. Hamiltonian PD2C graphs of order n 6 13 and size
2n − 4.
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Figure 7. A unique PD2C graph of order n 6 13 and size 2n − 4,
which is not Hamiltonian and not in Z.

diam(T ) = 2k + 1, k > 2: Then T has exactly two central vertices. Denote these
vertices by r1 and r2. Let R1, R2 be the trees that are the connected components
of T − r1r2, and let ri ∈ V (Ri), i = 1, 2.
• Let ui ∈ V (Ri), i = 1, 2, denote any two vertices, u1 6= r1, u2 6= r2; then

distT (u1, u2) > 3. From distG(u1, u2) 6 2 it follows vu1, vu2 ∈ E(G).
• There is at least one vertex u2 ∈ R2, such that distT (r1, u2) > 3. From

distG(r1, u2) 6 2 it follows vr1 ∈ E(G). Similarly, vr2 ∈ E(G).

diam(T ) = 2k, k > 3: Denote by r the center of T . Let N(r) = {u1, u2, . . . , uk},
k > 2, and let Ri be a sub-tree of T with root r, such that uir ∈ Ri, 1 6 i 6 k.
Since r is the center of T , at least two of these sub-trees have depth > 3.
Without the loss of generality, suppose that R1 and R2 are such sub-trees. Let
vi ∈ Ri, i ∈ {1, 2}, be two vertices such that distT (r, vi) > 3.
• From distG(r, u1) 6 2 it follows vr ∈ E(G).
• Let w1 ∈ T − R1 be any vertex not in R1. From distT (w1, u1) > 3 and

distG(w1, u1) 6 2 it follows vw1 ∈ E(G).
• Symmetrically, let w2 ∈ T −R2 be any vertex not in R2. From distT (w2, u2) >

3 and distG(w2, u2) 6 2 it follows vw2 ∈ E(G).

Therefore, in both cases G is a v-cone over T . However, such a cone is not a
D2C graph, by Corollary 3.1. Thus, diam(T ) 6 4. �

We formulate the announced result.

Theorem 4.1. Let G ∈ T be a PD2C graph and let v be a vertex of G such
that T ∼= G − v is a tree. Then G ∈ {C5} ∪ Z.

Proof. From Lemma 4.1, we have diam(T ) 6 4. The proof is performed
considering the following cases.

diam(T ) = 0: Then T ∼= K1 and G ∼= P1, which is a diameter 1 graph.
diam(T ) = 1: Then T ∼= K2 and G ∼= C3 or G ∼= P3. None of these is a PD2C

graph, since diam(C3) = 1 and P3 is not primitive.
diam(T ) = 2: Then T ∼= Sn, a star with n > 3 vertices. Let V (T ) = {c, u1, u2, . . . ,

un−1}, where c is the center of T .
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• If n = 3, i.e. T ∼= P3, then by adding a vertex v, the five different connected
graphs can be obtained. None of them is a PD2C graph, which is confirmed
by hand.

• If n > 3, then due to diam(G) = 2, v must be either
– adjacent to c, or
– adjacent to u1, u2, . . . , un−1, or
– adjacent to all vertices in V (T ).
In each of these cases G is not primitive, because e.g. u1 and u2 have the
same set of neighbours.

diam(T ) = 3: In this case T consists of two stars whose centers, say a and b, are
joined by an edge, i.e. T ∼= Si,j , i, j > 2. Assume that d(a) = i, d(b) = j.
Because diam(G) = 2, v must be adjacent to all vertices in N(a)∪N(b)r{a, b}.
Since we already have diam(G) = 2, by adding the edge va and/or vb, the graph
becomes not critical. Hence, a PD2C graph G can be obtained by adding v to
T in exactly one way.

If i > 3, then every two vertices in N(a) r {b} have the same set of neigh-
bours, and G is not primitive; therefore, i = 2. Similarly, it must be j = 2.
Hence, if diam(T ) = 3, then the only PD2C graph obtainable from T by adding
vertex v and some edges from v is C5.

diam(T ) = 4: Let c be the center of T and let N(c) = {v1, v2, . . . , vk}. Then each
vertex vi is the root of a tree of depth 6 1, 1 6 i 6 k. Since diam(T ) = 4, the
number of trees of depth 1 is at least two.

From diam(G) = 2, it follows (similarly as in the proof of the previous
lemma) that v must be adjacent to all vertices in V (T )r {c}. Since we already
have diam(G) = 2, after the addition of vc the graph becomes not critical.
Thus, by adding a vertex v to T , T can be extended into G in a unique way.

If the tree with the root vi has two children w′ and w′′, then N(w′) = N(w′′)
holds and so G is not primitive. Therefore, T is a generalized star of diameter 4.

Let T have y paths cu′
i, u′

iu
′′
i from c of length 2, 1 6 i 6 y, and x paths cwi

from c of length 1, 1 6 i 6 x. Since diam(T ) = 4, we have y > 2. If x > 2,
then NG(w1) = NG(w2), and G is not primitive; hence, x 6 1. The graph G
therefore belongs to Z and G ∼= Zn, where n = 2y + x + 2 > 6.

Since diam(G) = 2, and the diameter of each graph obtained from G by
removing any edge (vwi, vu′

i, vu′′
i , cwi, cu′

i, u′
iu

′′
i ) is greater than 2, G is a D2C

graph. In addition, the graph G is primitive since:
• there are no two neighbours of c with the same set of neighbours, and
• there are no two neighbours of v with the same set of neighbours.

Therefore, the only PD2C graphs that can be obtained for diam(T ) 6 4 are the
graphs Zn, n > 6. �

4.2. Hamiltonian PD2C graphs of size 2n − 4. Fig. 6 illustrates all the
graphs in question having at most 13 vertices; in fact, all of them have at most 9
vertices. To show that they comprise the set of all graphs described in the last title
it is sufficient to prove the following result.

Theorem 4.2. If the size of a Hamiltonian graph G of order n is equal to
2n − 4, then n 6 11.
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Proof. Consider a fixed Hamiltonian cycle of G. If v ∈ V , then let n(v) =
d(v) − 2 denote the number of diagonals from v in the Hamiltonian cycle. Let v′

and v′′ be the neighbours of v ∈ V in the same cycle. The number of vertices at
distance at most 2 from v (including v) satisfies

|N2[v]| 6 3n(v) + n(v′) + n(v′′) + 5.

Since diam(G) = 2, the equality |N2[v]| = n holds. Summing 3n(v) + n(v′) +
n(v′′) + 5 > n over all v ∈ V , we obtain

5
∑

v∈V

n(v) > n(n − 5).

The total number of diagonals relative to the Hamiltonian cycle is |E| − n = n − 4,
hence

∑

v∈V n(v) = 2(n − 4). Therefore, n must satisfy the inequality 10(n − 4) >

n(n − 5), i.e. n2 − 15n + 40 6 0. Since the larger root of the left hand side is

(15 +
√

65)/2 ≈ 11.53, if the inequality is satisfied, then n 6 11. �

Consequently, graphs of Fig. 6 are the only Hamiltonian PD2C graphs of order
n and size 2n − 4. On the basis of this result and Theorem 4.1, we formulate the
following conjecture.

Conjecture 4.1. All PD2C graphs of order n > 10 and size 2n − 4 belong
to Z.

By [17], the conjecture holds true for n 6 13. By employing a sequence of
computational experiments on graphs with more than 13 vertices, we did not find
any counterexample. It is worth mentioning that this conjecture is closely related
to [7, Theorem 25], with the condition of having 2n − 4 edges replaced by non-
bipartiteness and maximum vertex degree n − 2.

From [12, Theorem 3] it follows that, apart from the cycle C5, every PD2C
graph contains P5 as an induced subgraph. This fact is illustrated by highlighting
P5 in PD2C graphs shown in Figs. 5–7. It also makes a step toward proving
Conjecture 4.1.

A spanning tree of a graph with no vertex of degree 2 is called a homeomor-
phically irreducible spanning tree (HIST). Let As

k be a generalized star with center
c and k paths of length 2 attached at c. Recently, Ando [1] (see also [18]) has
characterized primitive (twin-free) graphs with diameter 2 that contain a HIST in
the following way. Let G be a primitive graph of order n > 10 with diameter 2.
Then G has a HIST if and only if G is not isomorphic to As

k for any k > 1. From
this characterization it follows that all PD2C graphs of size 2n − 4 have a HIST,
which is another step in proving Conjecture 4.1.
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