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EXISTENCE AND UNIQUENESS INTEGRAL EQUATIONS

IN C*-ALGEBRA-VALUED Sb-METRIC SPACES BY SOME

COUPLED FIXED POINT THEOREMS

Seyede Samira Razavi and Hashem Parvaneh Masiha

Abstract. We study some coupled fixed point theorems in C*-algebra-valued
Sb-metric spaces. As applications, existence and uniqueness results for one
type of integral equation

x(t) =

∫

E

(K1(t, s) + K2(t, s))(f(s, x(s)) + g(s, x(s)))ds + h(t), t ∈ E

where E is the Lebesque measurable set and m(E) < +∞, and under some
other conditions are given.

1. Introduction

Metric spaces have very wide applications in mathematics and applied sciences.
Therefore, many authors have tried to introduce the generalizations of metric spaces
in many ways. In 1989, Gahler [2,3], introduced the notion of 2-metric spaces and
Dhage [1] introduced the notion of D-metric spaces. They proved some results
related to 2-metric and D-metric spaces. After this Mustafa and Sims [5] proved
that most of the results of Dhage’s D-metric spaces are not valid. So, they intro-
duced the new concept of generalized metric space called G-metric space. Now,
recently Sedghi et al [9] have introduced the notion of S-metric spaces as the gener-
alization of G-metric and D*-metric spaces. They proved some fixed point results
in S-metric spaces. Some results have been obtained in [9, 10] by Sedghi et al.
The authors in [13] motivated the study of Sb-metric spaces as generalization of
the b-metric space and presented some fixed point results under various natures
of contractions in complete Sb-metric spaces. For more results in Sb-metric spaces
see [7, 8, 11, 12, 14]. In [4], Ma and Jiang introduced the concept of C*-algebra-
valued b-metric spaces. In [6] the authors introduced C*-algebra-valued Sb-metric
space and studied some fixed point results for maps defined in this space.
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In the present paper, we prove some coupled fixed point results in C*-algebra-
valued Sb-metric space and then we apply some results to study of one type of
existence and uniquness Integral equation.

2. Basic definitions

For the reader’s convenience, we recall the following definitions and notations
which will be needed in the sequel. We start by some facts about C∗-algebra.
Suppose that A is an unital C*-algebra with the unit I. Set Ah = {a ∈ A : a = a∗}.
We say a ∈ A is a positive element and denote it by a > 0A if a = a∗ and
σ(a) ⊆ [0, +∞), where 0A is the zero element in A and σ(a) is the spectrum of a.

There is a natural partial ordering on Ah given by a 6 b if and only if b−a > 0A.
From now on, we will denote A+ and A′ for the set {a ∈ A : a > 0A} and the set
{a ∈ A : ab = ba, for all b ∈ A}, respectively.

Now we give some known lemmas which are used to prove our main results.

Lemma 2.1. Suppose that A is a unital C*-algebra with unit 1A.

(1) For any x ∈ A+, we have x 6 1A if and only if ‖x‖ 6 1.

(2) If a ∈ A+ with ‖a‖ < 1
2 , then 1A − a is invertible and ‖a(1A − a)−1‖ < 1.

(3) Suppose that a, b ∈ A with a, b > 0A and ab = ba, then ab > 0A.

(4) Let a ∈ A′, if b, c ∈ A with b > c > 0A, and 1A − a ∈ A′
+ is an invertible

operator, then (1A − a)−1b > (1A − a)−1c.

(5) If 0A 6 a 6 b, then ‖a‖ 6 ‖b‖.

Lemma 2.2. Suppose that A is a unital C*-algebra with unit 1A.

(1) If {bn}+∞
n=1 ⊆ A and limn→+∞ bn = 0A, then for any a ∈ A,

limn→+∞ a∗bna = 0A.

(2) If a, b ∈ Ah and c ∈ A′
+, then a 6 b deduces ca 6 cb, where A′

+ = A+ ∩ A′.
(3) If a, b ∈ A+, then a + b ∈ A+.

The authors in [6] introduced the following notion:

Definition 2.1. Let X be a nonempty set and b ∈ A′ such that b > 1A. Let
the mapping Sb : X × X × X → A satisfies:

(1) Sb(x, y, z) > 0A for all x, y, z ∈ X ;
(2) Sb(x, y, z) = 0 if and only if x = y = z;
(3) Sb(x, y, z) 6 b[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)] for all x, y, z, a ∈ X ,

then Sb is said to be C*-algebra-valued Sb-metric on X and (X, A, Sb) is said to be
a C*-algebra-valued Sb-metric space.

Definition 2.2. A C*-algebra-valued Sb-metric Sb is said to be symmetric if

Sb(x, x, y) = Sb(y, y, x) for all x, y ∈ X.

For the sake of transparency, we list the basic properties of C*-algebra-valued
Sb-metric spaces:

Definition 2.3. Let (X, A, Sb) be a C∗-algebra-valued Sb-metric space and
{xn} be a sequence in X :
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(1) If ‖Sb(xn, xn, x)‖ → 0, (n → +∞) then it is said that {xn} converges to x,
and we denote it by limn→+∞ xn = x.

(2) If for any p ∈ N, ‖Sb(xn+p, xn+p, xn)‖ → 0, (n → +∞), then {xn} is called
a Cauchy sequence in X .

(3) If every Cauchy sequence is convergent in X , then (X, A, Sb) is called a
complete C*-algebra-valued Sb-metric space.

The following examples show that a C*-algebra-valued Sb-metric space is not
necessarily a C*-algebra-valued S-metric space.

Example 2.1. Let X = R and A = M2(R) be all 2 × 2-matrices with the
usual operations of addition, scalar multiplication and matrix multiplication. It is

clear that ‖A‖ =
(

∑2
i,j=1 |aij |2

)1/2
defines a norm on A where A = (aij) ∈ A.

∗ : A → A defines an involution on A where A∗ = A. Then A is a C∗-algebra. For
A = (aij) and B = (bij) in A, a partial order on A can be given as follows:

A 6 B if and only if (aij − bij) 6 0 for all i, j = 1, 2

Let (X, d) be a b-metric space with b > 1 and Sb : X × X × X → M2(R) be
defined by

Sb(x, y, z) =

[

d(x, z) + d(y, z) 0
0 d(x, z) + d(y, z)

]

then it is a C∗-algebra-valued Sb-metric space for all x, y, z ∈ X . So (X, A, Sb) is
a C∗-algebra-valued Sb-metric space.

Example 2.2. Let X = R and A = M2(R) and (X, d) be a metric space. Let
the function Sb : X × X × X → A be defined as:

Sb(x, y, z) =

[

(d(x, y) + d(y, z) + d(x, z))p 0
0 (d(x, y) + d(y, z) + d(x, z))p

]

where p > 1 and x, y, z ∈ X . For A = (aij) and B = (bij) in A, a partial order on
A can be given by A 6 B if and only if (aij − bij) 6 0 for all i, j = 1, 2 It can

be shown that (X, A, Sb) is an C∗-algebra-valued Sb-metric with b = 23(p−1), but
(X, A, Sb) is not necessarily a C∗-algebra-valued S-metric.

Definition 2.4. Let (X, A, Sb) be a C∗-algebra-valued Sb-metric space and
{xn} be a sequence in X :

(1) If ‖Sb(xn, xn, x)‖ → 0, (n → +∞) then it is said that {xn} converges to x,
and we denote it by limn→+∞ xn = x.

(2) If for any p ∈ N, ‖Sb(xn+p, xn+p, xn)‖ → 0, (n → +∞), then {xn} is called
a Cauchy sequence in X .

(3) If every Cauchy sequence is convergent in X , then (X, A, Sb) is called a
complete C*-algebra-valued Sb-metric space.

Some concepts of this space are listed in the next definition:

Definition 2.5. Let (X, A, Sb) and (X1, A1, Sb1
) be C∗-algebra-valued Sb-

metric spaces, and let f : (X, A, Sb) → (X1, A1, Sb1
) be a function, then f is said

to be continuous at a point x ∈ X if and only if for every sequence {xn} in X ,
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Sb(xn, xn, x) → 0A, (n → +∞) implies Sb1
(f(xn), f(xn), f(x)) → 0A, (n → +∞).

A function f is continuous at X if and only if it is continuous at all x ∈ X .

Lemma 2.3. Let (X, A, Sb) be a symmetric C∗-algebra-valued Sb-metric space
and {xn} be a sequence in X. If {xn} converges to x and y, respectively, then

x = y.

Consider the coupled fixed point definition.

Definition 2.6. Let (X, A, Sb) be a C∗-algebra-valued Sb-metric space. An
element (x, y) ∈ X ×X is said to be a coupled fixed point of the mapping F : X ×X
→ X if F (x, y) = x and F (y, x) = y.

3. Main results

By using the above results, we are now ready to prove some of our main theo-
rems.

Theorem 3.1. Let (X, A, Sb) be a complete C*-algebra-valued Sb-metric space.

Suppose that the mapping F : X × X → X satisfies the condition

(3.1) Sb(F (x, y), F (x, y), F (u, v)) 6 a∗Sb(x, x, u)a + a∗Sb(y, y, v)a,

for every x, y, u, v ∈ X where a ∈ A with ‖a‖ < 1/
√

2. Then F has a unique

coupled fixed point. Moreover, F has a unique fixed point in X.

Proof. Let x0, y0 be two arbitrary points in X . Set x1 = F (x0, y0) and
y1 = F (y0, x0). Continuing this process, we obtain two sequences {xn} and {yn}
in X such that xn+1 = F (xn, yn) and yn+1 = F (yn, xn). From (3.1), we get

Sb(xn, xn, xn+1) = Sb(F (xn−1, yn−1), F (xn−1, yn−1), F (xn, yn))

6 a∗Sb(xn−1, xn−1, xn)a + a∗Sb(yn−1, yn−1, yn)a

6 a∗(Sb(xn−1, xn−1, xn) + Sb(yn−1, yn−1, yn))a.

Similarly,

Sb(yn, yn, yn+1) = Sb(F (yn−1, xn−1), F (yn−1, xn−1), F (yn, xn))

6 a∗Sb(yn−1, yn−1, yn)a + a∗Sb(xn−1, xn−1, xn)a

6 a∗(Sb(yn−1, yn−1, yn) + Sb(xn−1, xn−1, xn))a.

Let δn = Sb(xn, xn, xn+1) + Sb(yn, yn, yn+1), and now from the above ralations, we
have

δn = Sb(xn, xn, xn+1) + Sb(yn, yn, yn+1)

6 a∗(Sb(xn−1, xn−1, xn) + Sb(yn−1, yn−1, yn))a

+ a∗Sb(yn−1, yn−1, yn)a + a∗Sb(xn−1, xn−1, xn)a

6 (
√

2a)∗(Sb(xn−1, xn−1, xn) + Sb(yn−1, yn−1, yn))(
√

2a)

6 (
√

2a)∗δn−1(
√

2a).
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Due to the following property: (if b, c ∈ Ah, then b 6 c implies a∗ba 6 a∗ca), we
can obtain for any n ∈ N,

0A 6 δn 6 (
√

2a)∗δn−1(
√

2a) 6 · · · 6 ((
√

2a)∗)nδ0(
√

2a)n

If δ0 = 0A, then from 2 of Definition 2.1, we know that (x0, y0) is a coupled fixed
point of the mapping F . Now, letting 0A 6 δ0, we can obtain for n ∈ N and any
p ∈ N,

Sb(xn+p, xn+p, xn) 6 b[Sb(xn+p, xn+p, xn+p−1) + Sb(xn+p, xn+p, xn+p−1)

+ Sb(xn, xn, xn+p−1)]

6 2bSb(xn+p, xn+p, xn+p−1) + bSb(xn, xn, xn+p−1)

6 2bSb(xn+p, xn+p, xn+p−1) + 2b
2
Sb(xn+p−1, xn+p−1, xn+p−2)

+ b
2
Sb(xn+p−2, xn+p−2, xn)

6 2bSb(xn+p, xn+p, xn+p−1) + 2b
2
Sb(xn+p−1, xn+p−1, xn+p−2)

+ 2b
3
Sb(xn+p−2, xn+p−2, xn+p−3) + · · · + 2b

p
Sb(xn+1, xn+1, xn)

Similarly,

Sb(yn+p, yn+p, yn) 6 2bSb(yn+p, yn+p, yn+p−1) + 2b
2
Sb(yn+p−1, yn+p−1, yn+p−2)

+ 2b
3
Sb(yn+p−2, yn+p−2, yn+p−3) + · · · + 2b

p
Sb(yn+1, yn+1, yn).

Therefore,

Sb(xn+p, xn+p, xn) + Sb(yn+p, yn+p, yn) 6 2bδn+p−1 + 2b2δn+p−2 + · · · + 2bpδn

6 2

n+p−1
∑

k=n

bn+p−k((
√

2a)∗)kδ0(
√

2a)k,

and then

‖Sb(xn+p, xn+p, xn) + Sb(yn+p, yn+p, yn)‖ 6 2

n+p−1
∑

k=n

‖b‖n+p−k‖
√

2a‖2kδ0

6 2

+∞
∑

k=n

‖b‖n+p−k‖
√

2a‖2kδ0

= 2
‖b‖p

1 − ‖b‖−1‖
√

2a‖2
‖
√

2a‖2nδ0

Since ‖a‖ < 1√
2
, we have

‖Sb(xn+p, xn+p, xn) + Sb(yn+p, yn+p, yn)‖ 6 2
‖b‖p

1 − ‖b‖−1‖
√

2a‖2
‖
√

2a‖2nδ0 → 0,

which together with

Sb(xn+p, xn+p, xn) 6 Sb(xn+p, xn+p, xn) + Sb(yn+p, yn+p, yn),

Sb(yn+p, yn+p, yn) 6 Sb(xn+p, xn+p, xn) + Sb(yn+p, yn+p, yn)
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yields that {xn} and {yn} are Cauchy sequence in X , so there exist x, y ∈ X such
that limn→+∞ xn = x and limn→+∞ yn = y. Now we prove that F (x, y) = x and
F (y, x) = y. For that we have

Sb(F (x, y), F (x, y), x)

6 b[Sb(F (x, y), F (x, y), xn+1) + Sb(F (x, y), F (x, y), xn+1) + Sb(x, x, xn+1)]

6 b[2Sb(F (x, y), F (x, y), xn+1) + Sb(xn+1, xn+1, x)]

6 b[2Sb(F (x, y), F (x, y), F (xn, yn)) + Sb(xn+1, xn+1, x)]

6 b[2a∗Sb(x, x, xn)a + 2a∗Sb(y, y, yn)a + Sb(xn+1, xn+1, x)]

6 b[2a∗Sb(xn, xn, x)a + 2a∗Sb(yn, yn, y)a + Sb(xn+1, xn+1, x)].

Taking the limit as n → +∞ in the above relation, we get Sb(F (x, y), F (x, y), x) =
0A and hence F (x, y) = x. Similarly, F (y, x) = y. Therefore, (x, y) is a coupled
fixed point of F .

Now if (x′, y′) is another coupled fixed point of F , then

Sb(x, x, x′) = Sb(F (x, y), F (x, y), F (x′, y′)) 6 a∗Sb(x, x, x′)a + a∗Sb(y, y, y′)a,

Sb(y, y, y′) = Sb(F (y, x), F (y, x), F (y′, x′)) 6 a∗Sb(y, y, y′)a + a∗Sb(x, x, x′)a,

and hence

Sb(x, x, x′) + Sb(y, y, y′) 6 (
√

2a)∗(Sb(x, x, x′) + Sb(y, y, y′))(
√

2a),

which further induces that

‖Sb(x, x, x′) + Sb(y, y, y′)‖ 6 ‖
√

2a‖2‖Sb(x, x, x′) + Sb(y, y, y′)‖.

Since ‖
√

2a‖ < 1, then ‖Sb(x, x, x′) + Sb(y, y, y′)‖ = 0. Hence we get (x′, y′) =
(x, y), which means the coupled fixed point is unique.

In order to show that F has a unique fixed point, we only have to show that
x = y. Notice that

Sb(x, x, y) = Sb(F (x, y), F (x, y), F (y, x)) 6 a∗Sb(x, x, y)a + a∗Sb(y, y, x)a

and then

‖Sb(x, x, y)‖ 6 ‖a‖2‖Sb(x, x, y)‖ + ‖a‖2‖Sb(y, y, x)‖ 6 2‖a‖2‖Sb(x, x, y)‖.

It follows from the fact that ‖a‖ < 1√
2

that ‖Sb(x, x, y)‖ = 0, thus x = y. �

Theorem 3.2. Let (X, A, Sb) be a complete C*-algebra-valued Sb-metric space.
Suppose the mapping F : X × X → X satisfies the following condition

(3.2) Sb(F (x, y), F (x, y), F (u, v)) 6 a1Sb(F (x, y), F (x, y), x) + a2Sb(F (u, v), F (u, v), u),

For every x, y, u, v ∈ X where a1, a2 ∈ A′
+ with (‖a1‖ + ‖a2‖)‖b‖ < 1. Then F has

a unique coupled fixed point. Moreover, F has a unique fixed point in X.

Proof. Since a1, a2 ∈ A′
+, then we have

a1Sb(F (x, y), F (x, y), x) + a2Sb(F (u, v), F (u, v), u)
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is a positive element. Choose x0, y0 ∈ X . Set xn+1 = F (xn, yn) and yn+1 =
F (yn, xn) for n = 0, 1, . . . . Applying (3.2), we have

Sb(xn, xn, xn+1) = Sb(F (xn−1, yn−1), F (xn−1, yn−1), F (xn, yn))

6 a1Sb(F (xn−1, yn−1), F (xn−1, yn−1), xn−1)

+ a2Sb(F (xn, yn), F (xn, yn), xn)

6 a1Sb(xn, xn, xn−1) + a2Sb(xn+1, xn+1, xn)

6 a1Sb(xn, xn, xn−1) + a2Sb(xn, xn, xn+1).

So (1A − a2)Sb(xn, xn, xn+1) 6 a1Sb(xn, xn, xn−1). Since a1, a2 ∈ A′
+ with ‖a1‖ +

‖a2‖ < 1
‖b‖ 6 1, we have 1A − a2 is invertible and (1A − a2)−1a1 ∈ A′

+. Hence

Sb(xn, xn, xn+1) 6 (1A − a2)−1a1Sb(xn, xn, xn−1). Inductively, for all n ∈ N, we
have

(3.3) Sb(xn, xn, xn+1)v 6 knδ0,

where k = (1A − a2)−1a1 and δ0 = Sb(x1, x1, x0). Since ‖a1‖‖b‖ + ‖a2‖ 6 (‖a1‖ +
‖a2‖)‖b‖ < 1, we have

‖bk‖ = ‖(1A − a2)−1a1b‖ 6 ‖(1A − a2)−1‖‖a1‖‖b‖

=

+∞
∑

i=0

‖a2‖i‖a1‖‖b‖ =
‖a1‖‖b‖
1 − ‖a2‖ < 1.

and ‖k‖ 6 ‖bk‖ < 1 by Lemma 2.1(5).
Let m, n ∈ N with m > n by using Definition 2.1, (3.2), (3.3), we have

Sb(xn, xn, xm) 6 Sb(xn, xn, xn+1) + Sb(xn, xn, xn+1) + Sb(xm, xmxn+1)

6 2bSb(xn, xn, xn+1) + b[2bSb(xn+1, xn+1, xn+2)

+ bSb(xn+2, xn+2, xm)]

6 2bSb(xn, xn, xn+1) + 2b2Sb(xn+1, xn+1, xn+2)

+ 2b3Sb(xn+2, xn+2, xn+3) + b3Sb(xn+3, xn+3, xm)

6 2bSb(xn, xn, xn+1) + 2b2Sb(xn+1, xn+1, xn+2)

+ 2b3Sb(xn+2, xn+2, xn+3) + · · · + bm−n−1Sb(xm−1, xm−1, xm)

6 2bknδ0 + 2b2kn+1δ0 + 2b3kn+2δ0 + . . .

+ 2bm−n−1km−2δ0 + bm−n−1km−1δ0

= 2

m−n−1
∑

i=1

bikn+i−1δ0 + bm−n−1km−1δ0

= 2

m−n−1
∑

i=1

|δ0
1
2 k

n+i−1

2 b
i
2 |2 + |δ0

1
2 k

m−1

2 b
m−n−1

2 |2

6 2

m−n−1
∑

i=1

‖δ0
1
2 k

n+i−1

2 b
i
2 ‖21A + ‖δ0

1
2 k

m−1

2 b
m−n−1

2 ‖21A
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6 2‖δ0‖
m−n−1

∑

i=1

‖(bk)
i
2 ‖2‖k

n−1

2 ‖21A + ‖δ0‖‖(bk)
m−n−1

2 ‖2‖k
n
2 ‖21A

= 2‖δ0‖‖k‖n−1
m−n−1

∑

i=1

‖bk‖i1A + ‖δ0‖‖bk‖m−n−1‖k‖n1A

= 2‖δ0‖‖k‖n−1 ‖bk‖ − ‖bk‖m−n

1 − ‖bk‖ 1A + ‖δ0‖‖bk‖m−n−1‖k‖n1A

6
2‖δ0‖‖bk‖
1 − ‖bk‖ ‖k‖n−11A + ‖δ0‖‖bk‖m−n−1‖k‖n1A

→ 0A (m, n → +∞)

Hence {xn} is a Cauchy sequence. Similarly, we can prove that {yn} is also a Cauchy
sequence. Since (X, A, Sb) is complete, there are x, y ∈ X such that xn → x
and yn → y as n → +∞. In the following, we will show that F (x, y) = x and
F (y, x) = y. From 3.2, we get

Sb(F (x, y), F (x, y), x) 6 b[Sb(F (x, y), F (x, y), xn+1) + Sb(F (x, y), F (x, y), xn+1)

+ Sb(x, x, xn+1)]

= 2bSb(xn+1, xn+1, F (x, y)) + bSb(xn+1, xn+1, x)

= 2bSb(F (xn, yn), F (xn, yn), F (x, y)) + bSb(xn+1, xn+1, x)

6 2ba1Sb(F (xn, yn), F (xn, yn), xn)

+ 2ba2Sb(F (x, y), F (x, y), x) + bSb(xn+1, xn+1, x)

= 2ba1Sb(xn+1, xn+1, xn) + 2ba2Sb(F (x, y), F (x, y)x)

+ bSb(xn+1, xn+1, x),

which implies that

Sb(F (x, y), F (x, y), x) 6 (1A − 2ba2)−12ba1Sb(xn+1, xn+1, xn)

+ (1A − 2ba2)−12ba1Sb(xn+1, xn+1, x).

Then Sb(F (x, y), F (x, y), x) = 0A or equivalently F (x, y) = x. Similarly, one can
obtain F (y, x) = y. Now if (x′, y′) is another coupled fixed point of F , then
according to 3.2, we obtain

0A 6 Sb(x
′, x′, x) = Sb(F (x′, y′), F (x′, y′), F (x, y))

6 a1Sb(F (x′, y′), F (x′, y′), x′) + a2Sb(F (x, y), F (x, y), x) = 0A.

Then Sb(x′, x′, x) = 0A, which implies that x′ = x. s Similarly, we obtain that
y′ = y. That is, (x, y) is the unique coupled fixed point of F . In the following we
will show the uniqueness of fixed points of F . From (3.2), we can obtain

Sb(x, x, y) = Sb(F (x, y), F (x, y), F (y, x))

6 a1Sb(F (x, y), F (x, y), x) + a2Sb(F (y, x), F (y, x), y)

= a1Sb(x, x, x) + a2Sb(y, y, y) = 0A,

which yields that x = y. �
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It is worth noting that when the contractive elements in Theorem 3.2 are equal,
we have the following corollary.

Corollary 3.1. Let (X, A, Sb) be a complete C*-algebra-valued Sb-metric
space. Suppose the mapping F : X × X → X satisfies the following condition

Sb(F (x, y), F (x, y), F (u, v)) 6 aSb(F (x, y), F (x, y), x) + aSb(F (u, v), F (u, v), u),

for every x, y, u, v ∈ X where a ∈ A′
+ with ‖a‖‖b‖ < 1

2 . Then F has a unique fixed

point in X.

Theorem 3.3. Let (X, A, Sb) be a complete C*-algebra-valued Sb-metric space.
Suppose the mapping F : X × X → X satisfies the following condition

(3.4) Sb(F (x, y), F (x, y), F (u, v)) 6 a1Sb(F (x, y), F (x, y), u) + a2Sb(F (u, v), F (u, v), x),

For every x, y, u, v ∈ X where a1, a2 ∈ A′
+ with ‖a1 + a2‖‖b‖ < 1

2 . Then F has a
unique coupled fixed point. Moreover, F has a unique fixed point in X.

Proof. From a1, a2 ∈ A′
+ and Lemma 2.2(3), we see that

a1Sb(F (x, y), F (x, y), u) + a2Sb(F (u, v), F (u, v), x) ∈ A′
+

Choose x0, y0 ∈ X . Set xn+1 = F (xn, yn) and yn+1 = F (yn, xn) for n = 0, 1, . . . .
Applying (3.4), we have

Sb(xn, xn, xn+1) = Sb(F (xn−1, yn−1), F (xn−1, yn−1), F (xn, yn))

6 a1Sb(F (xn−1, yn−1), F (xn−1, yn−1), xn)

+ a2Sb(F (xn, yn), F (xn, yn), xn−1)

= a2Sb(xn+1, xn+1, xn−1)

6 a2b[Sb(xn+1, xn+1, xn) + Sb(xn+1, xn+1, xn)

+ Sb(xn−1, xn−1, xn)]

= 2a2bSb(xn, xn, xn+1) + a2bSb(xn, xn, xn−1),

which implies that

(3.5) (1A − 2a2b)Sb(xn, xn, xn+1) 6 a2bSb(xn, xn, xn−1)

Because of the symmetry in (3.4),

Sb(xn+1, xn+1, xn) = Sb(F (xn, yn), F (xn, yn), F (xn−1, yn−1))

6 a1Sb(F (xn, yn), F (xn, yn), xn−1)

+ a2Sb(F (xn−1, yn−1), F (xn−1, yn−1), xn)

= a1Sb(xn+1, xn+1, xn−1)

6 a1b[Sb(xn+1, xn+1, xn) + Sb(xn+1, xn+1, xn)

+ Sb(xn−1, xn−1, xn)]

= 2a1bSb(xn+1, xn+1, xn) + a1bSb(xn, xn, xn−1),

that is

(3.6) (1A − 2a1b)Sb(xn+1, xn+1, xn) 6 a1bSb(xn, xn, xn−1)
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Now, from (3.5) and (3.6) we obtain

(3.7) (1A − (a1 + a2)b)Sb(xn, xn, xn+1) 6
(a1 + a2)b

2
Sb(xn, xn, xn−1).

Since a1, a2, b ∈ A′
+, we have (a1 + a2)b ∈ A′

+ and (a1+a2)b
2 ∈ A′

+. Moreover, from
the condition ‖a1 + a2‖‖b‖ < 1, we get

∥

∥

∥

(a1 + a2)b

2

∥

∥

∥
6

1

2
‖a1 + a2‖‖b‖ <

1

2
and ‖(a1 + a2)b‖ 6 ‖a1 + a2‖‖b‖ < 1

which implies that
(

1A − (a1+a2)b
2

)−1 ∈ A′
+ and (1A − (a1 + a2)b)−1 ∈ A′

+ with

(3.8) ‖(1A − (a1 + a2)b)−1 (a1 + a2)b

2
‖ < 1

by Lemma 2.1(2). By (3.7) we have Sb(xn+1, xn+1, xn) 6 tSb(xn, xn, xn−1), where

t = (1A − (a1 + a2)b)−1 (a1+a2)b
2 with ‖t‖ 6 ‖tb‖ < 1 by (3.8). Inductively, for all

n ∈ N, we have

(3.9) Sb(xn+1, xn+1, xn) 6 tnSb(x1, x1, x0) = tnδ0,

where δ0 = Sb(x1, x1, x0). Let m, n ∈ N with m > n, by using Definition 2.1 and
relations (3.8)–(3.9), we have

Sb(xn, xn, xm) 6 b[Sb(xn, xn, xn+1) + Sb(xn, xn, xn+1) + Sb(xm, xm, xn+1)]

= 2bSb(xn, xn, xn+1) + Sb(xm, xm, xn+1)

6 2bSb(xn, xn, xn+1) + b[2bSb(xn+1, xn+1, xn+2)

+ bSb(xn+2, xn+2, xm)]

6 2bSb(xn, xn, xn+1) + 2b2Sb(xn+1, xn+1, xn+2)

+ 2b3Sb(xn+2, xn+2, xn+3) + b3Sb(xn+3, xn+3, xm)

6 2bSb(xn, xn, xn+1) + 2b2Sb(xn+1, xn+1, xn+2)

+ 2b3Sb(xn+2, xn+2, xn+3) + · · · + bm−n−1Sb(xm−1, xm−1, xm)

6 2btnδ0 + 2b2tn+1δ0 + 2b3tn+2δ0 + · · · + bm−n−1tm−1δ0

= 2

m−n−1
∑

i=1

bitn+i−1δ0 + bm−n−1tm−1δ0

= 2

m−n−1
∑

i=1

|δ0
1
2 t

n+i−1

2 b
i
2 |2 + |δ0

1
2 t

m−1

2 b
m−n−1

2 |2

6 2

m−n−1
∑

i=1

‖δ0
1
2 t

n+i−1

2 b
i
2 ‖21A + ‖δ0

1
2 t

m−1

2 b
m−n−1

2 ‖21A

6 2‖δ0‖
m−n−1

∑

i=1

‖(bt)
i
2 ‖2‖t

n−1

2 ‖21A + ‖δ0‖‖(bt)
m−n−1

2 ‖2‖t
n
2 ‖21A
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= 2‖δ0‖‖t‖n−1
m−n−1

∑

i=1

‖bt‖i1A + ‖δ0‖‖bt‖m−n−1‖t‖n1A

= 2‖δ0‖‖t‖n−1 ‖bt‖ − ‖bt‖m−n

1 − ‖bt‖ 1A + ‖δ0‖‖bt‖m−n−1‖t‖n1A

6
2‖δ0‖‖bt‖
1 − ‖bt‖ ‖t‖n−11A + ‖δ0‖‖bt‖m−n−1‖t‖n1A

→ 0A (m, n → +∞)

Hence {xn} is a Cauchy sequence. Similarly, we can prove that {yn} is also a Cauchy
sequence. Since (X, A, Sb) is complete, there are x, y ∈ X such that xn → x
and yn → y as n → +∞. In the following, we will show that F (x, y) = x and
F (y, x) = y. From 3.4, we get

Sb(F (x, y), F (x, y), x) 6 b[Sb(F (x, y), F (x, y), xn+1)

+ Sb(F (x, y), F (x, y), xn+1) + Sb(x, x, xn+1)]

= 2bSb(xn+1, xn+1, F (x, y)) + bSb(xn+1, xn+1, x)

= 2Sb(F (xn, yn), F (xn, yn), F (x, y)) + bSb(xn+1, xn+1, x)

6 2ba1Sb(F (xn, yn), F (xn, yn), x)

+ 2ba2Sb(F (x, y), F (x, y), xn) + bSb(xn+1, xn+1, x)

= 2ba1Sb(xn+1, xn+1, x) + 2ba2Sb(F (x, y), F (x, y), xn)

+ bSb(xn+1, xn+1, x)

and then

‖Sb(F (x, y), F (x, y), x)‖ 6 ‖2ba1‖‖Sb(xn+1, xn+1, x)‖
+ ‖2ba2‖‖Sb(F (x, y), F (x, y), xn)‖ + ‖b‖‖Sb(xn+1, xn+1, x)‖

by the continuity of the Sb-metric and the norm, we get

‖Sb(F (x, y), F (x, y), x)‖ 6 ‖2ba2‖‖Sb(F (x, y), F (x, y), x)‖
Since 0A 6 2ba2 6 2(a1 + a2)b, we have ‖2ba2‖ 6 ‖2(a1 + a2)b‖ < 2‖a1 + a2‖b < 1,
thus ‖Sb(F (x, y), F (x, y), x)‖ = 0, thus F (x, y) = x. Similarly F (y, x) = y. Hence
(x, y) is a coupled fixed point of F . Now if (x′, y′) ia another coupled fixed point
of F , then

0A 6 Sb(x
′, x′, x) = Sb(F (x′, y′), F (x′, y′), F (x, y))

6 a1Sb(F (x′, y′), F (x′, y′), x) + a2Sb(F (x, y), F (x, y), x′)

= a1Sb(x
′, x′, x) + a2Sb(x, x, x′)

= a1Sb(x
′, x′, x) + a2Sb(x

′, x′, x) = (a1 + a2)Sb(x
′, x′, x),

So, we get

0 6 ‖Sb(x
′, x′, x)‖ 6 ‖a1 + a2‖‖Sb(x

′, x′, x)‖

<
1

2‖b‖‖Sb(x
′, x′, x)‖ 6 ‖Sb(x

′, x′, x)‖,
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which implies that ‖Sb(x
′, x′, x)‖ = 0, then we have x = x′. Similarly, we can get

y = y′. Hence, the coupled fixed point is unique. In the following we will prove the
uniqueness of fixed points of F . By (3.4), we can obtain,

Sb(x, x, y) 6 Sb(F (x, y), F (x, y), F (y, x))

6 a1Sb(F (x, y), F (x, y), y) + a2Sb(F (y, x), F (y, x), x)

= a1Sb(x, x, y) + a2Sb(y, y, x)

= a1Sb(x, x, y) + a2Sb(x, x, y)

= (a1 + a2)Sb(x, x, y).

Then

‖Sb(x, x, y)‖ 6 ‖a1 + a2‖‖Sb(x, x, y)‖ <
1

2‖b‖‖Sb(x, x, y)‖ 6 ‖Sb(x, x, y)‖

which yields, ‖Sb(x, x, y)‖ = 0, then x = y. �

The following corollary can be easily deduced from Theorem 3.3.

Corollary 3.2. Let (X, A, Sb) be a complete C*-algebra-valued Sb-metric

space. Suppose the mapping F : X × X → X satisfies the following condition

Sb(F (x, y), F (x, y), F (u, v)) 6 aSb(F (x, y), F (x, y), u) + aSb(F (u, v), F (u, v), x),

For every x, y, u, v ∈ X where a ∈ A′
+ with ‖a‖‖b‖ < 1

4 . Then F has a unique fixed

poin in X.

4. Application

As application of contractive mapping theorem on complete C∗-algebra-valued
Sb-metric space, existence and uniqueness results for a type of integral equation
and operator equation are given.

Theorem 4.1. Consider the integral equation

(4.1) x(t) =

∫

E

(K1(t, s) + K2(t, s))(f(s, x(s)) + g(s, x(s)))ds + h(t), t ∈ E

where E is the Lebesque measurable set and m(E) < +∞.
In what follows, we always let X = L∞(E) denote the class of essentially

bounded measurable functions on E, where E is a Lebesgue measurable set such
that m(E) < +∞

Now, we consider the functions K1, K2, f, g fulfill the following assumptions:

(1) K1 : E × E× → [0, +∞), K2 : E × E× → (−∞, 0], f, g : E × R → R are
integrable, and h ∈ L∞(E).

(2) there exists l ∈ (0, 1
2 ) such that

0 6 f(t, x) − f(t, y) 6 l(x − y) and − l(x − y) 6 g(t, x) − g(t, y) 6 0

for t ∈ E and x, y ∈ R;

(3) supt∈E

∫

E(K1(t, s) − K2(t, s))ds 6 1.

Then the integral equation (4.1) has a unique solution in L∞(E).
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Proof. Let X = L∞(E) and B(L2(E)) be the set of bounded linear operators
on a Hilbert space L2(E). We endow X with the Sb-metric Sb : X × X × X →
B(L2(E)) defined by Sb(f, g, h) = π(|f−h|+|g−h|)p for all f, g, h ∈ X , where πh : H →
H is multiplication operator, πh(φ) = h · φ for φ ∈ H , and p > 1. It is clear that
(X, B(L2(E)), Sb) is a complete C∗-algebra-valued Sb-metric space. Define the
self-mapping F : X × X → X by

F (x, y)(t) =

∫

E

K1(t, s)(f(s, x(s)) + g(s, y(s)))ds

+ K2(t, s)(f(s, y(s)) + g(s, x(s)))ds + h(t),

for all t ∈ E. Now, we have

Sb(F (x, y), F (x, y), F (u, v)) = π(|F (x,y)−F (u,v)|+|F (x,y)−F (u,v)|)p

= π(2|F (x,y)−F (u,v)|)p .

We first evaluate the following expression:

(2|F (x, y) − F (u, v)|)p = 2p
(
∣

∣K1(t, s)(f(s, x(s)) + g(s, y(s)))ds

+ K2(t, s)(f(s, y(s)) + g(s, x(s)))ds

− K1(t, s)(f(s, u(s)) + g(s, v(s)))ds

− K2(t, s)(f(s, v(s)) + g(s, u(s)))ds
∣

∣

)p

= 2p
( ∣

∣

∣

∫

E

K1(t, s)(f(s, x(s)) − f(s, u(s))

+ g(s, y(s)) − g(s, v(s)))ds
∣

∣

∣

+
∣

∣

∣

∫

E

K2(t, s)(f(s, y(s)) − f(s, v(s))

+ g(s, x(s)) − g(s, u(s)))ds
∣

∣

∣

)p

6 2p(sup
s∈E

[l|x(s) − u(s)| + l|y(s) − v(s)|]

.

∫

E

(K1(t, s) − K2(t, s))ds)p

6 2p(l‖x − u‖∞ + l‖y − v‖∞)p

· sup
t∈E

∫

E

((K1(t, s) − K2(t, s))ds)p

6 2p(l‖x − u‖∞ + l‖y − v‖∞)p

6 2plp(‖x − u‖∞ + ‖y − v‖∞)p

6 l(2‖x − u‖∞ + 2‖y − v‖∞)p

Therefore, we have

‖Sb(F (x, y), F (x, y), F (u, v))‖ = ‖π(2|F (x,y)−F (u,v)|)p‖
= sup

‖φ‖=1
〈π(2|F (x,y)−F (u,v)|)pφ, φ〉
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= sup
‖φ‖=1

〈2p|F (x, y) − F (u, v)|pφ, φ〉

= sup
‖φ‖=1

∫

E

2p|(F (x, y) − F (u, v))(t)|pφ(t)φ(t)dt

= sup
‖φ‖=1

∫

|φ(t)|2dt · (l‖2(x − u)‖∞ + l‖2(y − v)‖∞)p

6 (l‖2(x − u)‖∞ + l‖2(y − v)‖∞)p

6 l(‖2(x − u)‖∞ + ‖2(y − v)‖∞)p

= l‖π(2|x−u|)p‖ + l‖π(2|y−v|)p‖
= a∗Sb(x, x, u)a + a∗Sb(y, y, v)a.

Set a =
√

l1B(L2(E)), then a ∈ B(L2(E)) and ‖a‖ = |
√

l| < 1√
2
. Hence, applying

Theorem 3.1, we get the desired result. �
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