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Abstract. We investigate and study on mathematical structures involving
mathematical models and others associated with seismic waves in an earth-
quake. Our first aim is to give some novel formulas and certain finite sums
including the Bernoulli numbers and the Hermite polynomials with the aid of
generating functions, the Riemann integral, and the Volkenborn integral. The
second aim is to examine the seismic wave propagation in different geological
units with the help of special polynomials containing the Hermite polynomials
and their graph fitting of functions. To evaluate the shape of the seismic waves
propagating within the ground (rock and/or soil), we use comparing method
with the graph of the Hermite polynomials and functions and the polynomial
Rocking Bearings. Furthermore, we also define generating function for the
polynomial type Rocking Bearings. We give open problems on this generating
function and earthquake facts. By applying partial derivative operator to the
generating function for the m-parametric Hermite type polynomials, we give
a novel recurrence relation and derivative formulas for these polynomials. We
also give a new general formula for monomials in terms of these polynomials.
Moreover, for the purpose of visualizing curve fitting approach to the seismic
waves, we draw many plots of the Hermite functions with Mathematica (Ver-
sion 12.0.0) with their codes. Finally, with the aid of these graphs, we give
useful evaluation on the shapes of the seismic waves propagated in the ground
(rock and/or soil).

1. Introduction

It is well known that understanding an earthquake and its propagation of seis-
mic waves require long field studies, which include expensive and long applications.
So, it is possible to reduce research costs by spending less time with mathematical
structures involving mathematical models and others. With the aid of these math-
ematical structures, a proper site for engineering projects can be chosen within a
shorter time.

2020 Mathematics Subject Classification: 33C45; 05A15; 86A15; 86A17; 86A60; 11S80.
Key words and phrases: Hermite (type) polynomials, generating function, Volkenborn inte-

gral, rock, soil, polynomial type Rocking Bearing, earthquake.
Communicated by Gradimir Milovanović.

101



102 LEVENTELI, SIMSEK, AND YILMAZER

There are many mathematical structures for modelling the seismic waves prop-
agated in the ground (rock and/or soil). For instance, in the work [8] of Stam-
atovska, there are some mathematical models which coincide with the fact that
seismic waves propagate at frequencies in rock and relatively low frequencies in
soil. While a seismic wave is reduced in the rock, it can travel very long distances
with low energy consumption on the thick ground. During seismic energy transfer
from rock to soil plain, energy increases by 100–1600 times, for details see Fig-
ure 1. The soil plains generally correspond to irrigated agricultural areas due to
very poor geotechnical characteristics with saturated clayey to silty soil. Conse-
quently, mathematical structures and models will help us not only to minimize
natural disasters including earthquakes noticeable throughout the world, but also
to select sites properly.

The other mathematical models are also handled by [7] considering Gaussian
Process Regression. In addition, Buratti [2] gave an interesting approach to the
seismic waves especially by examining seismic waves with the help of the roots of
Hermite polynomials. For other mathematical structures and seismic wave models,
the interested reader may consult to the references cite therein [1]– [22].

Our motivation is to give curve fitting approach to the seismic waves propagated
in the ground (rock and/or soil) with many novel graphs of the Hermite functions.
Moreover, in order to visualize curve fitting of the seismic waves, we also aim
to draw many novel plots of the Hermite functions with Mathematica (Version
12.0.0) by implementing their codes.

Throughout this paper the following notations and definitions are used: N, R,
and C denote the sets of positive integers, real numbers, and complex numbers,
respectively, N0 = N ∪ {0}, and Zp denotes the p-adic integers.

Generating functions for the m-parametric Hermite type polynomials
K(d, z, ~v,m) are given by the following equation:

(1.1) G(z, w,~v,m) = exp

(

zw +
m

∑

k=1

vkw
k

)

=
∞

∑

d=0

K(d, z, ~v,m)
wd

d!
,

where m ∈ {1, 2, 3, . . .}, m-tuples ~v = (v1, v2, . . . , vm), z = a + ib, i2 = −1,
a, b, v1, v2, . . . , vm ∈ R, see for detail [11]. By using (1.1), we give many new
formulas in the next sections.

This paper is structured briefly as follows. In Section 2, we give brief informa-
tion about the seismic waves that propagate, which is through the rock with great
speed, high frequency, low wavelength, and appreciably higher attenuation rate. We
give figures for the seismic waves in soil and rock. Finally, we give some properties
of the seismic waves propagating in the soil; it is just the opposite in the rock. In
Section 3, we give some properties for the m-parametric Hermite type polynomials
with the aid of their generating functions and their graphs. For visualizing curve
fitting approach of the seismic waves, we present some plots of the Hermite func-
tions in Mathematica package (Version 12.0.0) with their corresponding codes.
We also give monomials in terms of the m-parametric Hermite type polynomials.
In Section 4, by applying a partial derivative operator to the generating function
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for the m-parametric Hermite type polynomials, we give a recurrence relation and
a derivative formula for these polynomials. In Section 5, we give generating func-
tions and some relations for the polynomial type Rocking Bearing to the waves of
rock and soil. We give the relation between these polynomials and the Hermite
type polynomials. In Section 6, we give p-adic integral representation and the Rie-
mann integral representation of the Hermite polynomials and the polynomial type
Rocking Bearing. A conclusion is given in Section 7.

2. Seismic wave propagation

Here is a brief introduction to the seismic waves that propagate, which is
through the rock with great speed, high frequency, low wavelength, and appre-
ciably higher attenuation rate. It is known that the propagation of seismic waves
in soil is the opposite of that in rock. The shorter the wavelengths and higher
the corresponding frequency the greater energy consumption during propagation.
These cases can be given by the energy equation E = hv, where h and v denote
Planck’s constant and frequency, respectively. With aid of h, the wavelength, de-
noted by λ, and the speed of light, denoted by c, this equation can also be given in
the form E = λ−1hc (for details see [5]).

Figure 1. (left) Seismic waves in soil and rock; (right) The prin-
ciples of wavelength, frequency, and energy consumption rate in a
respective wave [17]

In the light of the equation E = λ−1hc and briefly explained in Figure 1 (left),
seismic waves propagate with high frequency in rock and comparatively very low
frequency in soil. Thus, seismic waves attenuate rapidly in rock, whereas they can
travel very long distance in thick (at least 20 m) soil via low energy consumption. It
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is known that the velocity rate given by Yilmazer et al. [22] is transmitted very fast
on the ground and causes disaster by magnifying the seismic wave on the ground
considerably. On the other hand, the converse situation is valid in rocks.

As all seismic records and relevant literature present that the velocity and
energy consumption ratios are directly proportional to the frequency of a wave
whereas wave length is inversely proportional to the frequency (see Figure 1 (right)).

Curve fitting consists of steps of function construction that best fits a set of
data points subject to constraints that can be made under favorable conditions [15].
With this approach, we will try to give the curve fitting model of the graphs of the
Hermite functions, which we will explain in the next section, with the graph of the
seismic wave propagation given in Figure 1.

3. Some properties and identities

for the m-parametric Hermite type polynomials

In this section, we give new and some known properties of the Hermite type
polynomials with their generating functions and their graphs. With the aid of
generating function for the m-parametric Hermite type polynomials, we derive a
general formula for monomials in terms of these polynomials. In the next section,
to give applications of these polynomials with these new results, we compare these
graphs with that of Figure 1 with the red and green solid lines.

We now give the symmetry condition for the polynomials K(d, z, ~v,m). In the
m-tuples ~v = (v1, v2, . . . , vm), we choose only an even index entries v2, v4, . . . , v2k

are positive integers and all odd index entries v1 = v3 = · · · = v2k+1 = 0.

Let ~U = (0,−v2, 0,−v4, . . . , 0,−v2k) be 2k-tuples. Then we modified (1.1) as
follows:

exp(zw − v2w
2 − v4w

4 − · · · − v2kw
2k) =

∞
∑

d=0

K(d, z, ~U, 2k)
wd

d!
.

Replacing z by −z in the above equation, after some elementary calculations, we get
the following symmetry condition for the 2k-parametric Hermite type polynomials:

K(d,−z, ~U, 2k) = (−1)dK(d, z, ~U, 2k).

Substituting ~U = (0, v2, 0, 0, . . . , 0, 0) into the above equation, we have symmetry
condition for the classical Hermite type polynomials. The symmetry property is
used not only in mathematics, but also in many social sciences, medical sciences,
and natural sciences. Symmetry property in mathematics, which is seen in geom-
etry, functions, and other branches of mathematics, has many applications. The
most important feature of symmetry is invariance. In other words, looking at the
symmetry property mathematically, an object remains unchanged under many op-
erations or transformations. This means that symmetry is the match that protects
the structure when a structured y object is given from any kind of structure. As
for the 2k-parametric Hermite type polynomials, when d is an even integer, the
2k-parametric Hermite type polynomials are even functions and thus their graphs
are symmetric with respect to the y-axis. This property implies that the graphs
of the 2k-parametric Hermite type polynomials remains unchanged after reflection
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Figure 2. Plots of the polynomials k1(d;x, 2, ~v, 6) and
k2(d;x, 2, ~v, 6) when x ∈ [−30, 30], d ∈ {0, 1, 2, 3, 4, 5} and
~v = (4,−1, 1, 6, 2,−3, 0, 0, . . . , 0)

about the y-axis. On the other hand, if d is an odd integer, the 2k-parametric Her-
mite type polynomials are odd functions and thus their graphs are symmetric with
respect to the origin. This means that the graphs of the 2k-parametric Hermite
type polynomials remain unchanged after rotation of 180 degrees about the origin
(see, for observation, Figure 2). The symmetry feature is very vital in seismic wave
movements. In the next sections, some important facts will be given on this topic.

Using (1.1) and the Euler formula, we have the well-known decomposition for-
mulas for the polynomials K(d, z, ~v,m). These are given by the following generating
functions for the polynomials k1(d;x, y, ~v,m) and k2(d;x, y, ~v,m):

exp((x+ v1)w + v2w
2 + · · · + vmw

m) cos(yt) =

∞
∑

d=0

k1(d;x, y, ~v,m)
wd

d!
,(3.1)

exp((x + v1)w + v2w
2 + · · · + vmw

m) sin(yt) =
∞

∑

d=0

k2(d;x, y, ~v,m)
wd

d!
,(3.2)

respectively [11].
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By using (3.1) and (3.2), we present some plots of the polynomials k1(d;x, y, ~v,m)
and k2(d;x, y, ~v,m). Here we note that the plots of these polynomials with different
values are given in the works of Kilar and Simsek [11,12]. Moreover, Mathemat-

ica codes for these polynomials are similar to those of Kilar’s work [10]. Figure
2 is obtained by m = 6, v1 = 4, v2 = −1, v3 = 1, v4 = 6, v5 = 2, v6 = −3,
v7 = v8 = · · · = vm = 0, y = 2 and d ∈ {0, 1, 2, 3, 4, 5} using (3.1) and (3.2) for
x ∈ [−30, 30].

Note that as the values of the entries of the vector ~v change, symmetric plots
can be obtained according to the appropriate values of x and y. As a result, these
entries have different and applicable implications on the plots of the polynomials,
see the above figure.

Setting z = 0 in (1.1), we get the following generating functions for the gener-
alized Hermite–Kampè de Fèriet polynomials Hn(~v;m):

(3.3) ev1w+v2w2+···+vmwm

=
∞

∑

d=0

Hd(~v;m)
wd

d!

[11, 19]. Substituting v1 = x, v2 = y, v3 = v4 = · · · = vm = 0 into (3.3), we have
the generating function for the two variable Hermite polynomials:

(3.4) exw+yw2

=
∞

∑

d=0

Hd((x, y, 0, 0, . . . , 0); 2)
wd

d!

[4, 19]. The two variable Hermite type polynomials have many representations
with their generating functions written in different notations. Here, we set

Hd((x, y, 0, 0, . . . , 0); 2) = H
(2)
d (x, y).

Using the above equation, the explicit formula for H
(2)
d (x, y) is given by

∞
∑

d=0

xdw
d

d!

∞
∑

d=0

ydw
2d

d!
=

∞
∑

d=0

H
(2)
d (x, y)

wd

d!
.

Therefore
∞

∑

d=0

( [d/2]
∑

k=0

xd−2kyk

(d− 2k)!k!

)

wd =
∞

∑

d=0

H
(2)
d (x, y)

wd

d!
,

where [a] denotes the largest integer 6 a. Comparing the coefficient of wd on
both sides of the above equation, we get the following formula for the polynomials

H
(2)
d (x, y):

(3.5) H
(2)
d (x, y) = d!

[d/2]
∑

k=0

xd−2kyk

(d− 2k)!k!
.

Substituting y = −1/2 into (3.5), we arrive at the explicit formula of the (proba-
bilist) Hermite polynomials Hed(x),

(3.6) Hed(x) = d!

[d/2]
∑

k=0

(−1)kxd−2k

2k(d− 2k)!k!
.
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By using (1.1), we get the following equation:

ezw+v1w = exp(−v2w
2 − v3w

3 − · · · − vmw
m)

∞
∑

d=0

K(d, z, ~v,m)
wd

d!
.

By applying a series product to the above equation, we have

ezw+v1w = exp(−v3w
3 − · · · − vmw

m)
∞

∑

d=0

[d/2]
∑

j1=0

(−v2)j1 K(d− 2j1, z, ~v,m)

(d− 2j1)!j1!
wd.

The left-hand side of the above equation is a Taylor series for ezw+v1w, thus we get

∞
∑

d=0

(z + v1)dw
d

d!
= exp(−v4w

4 − · · · − vmw
m)

∞
∑

d=0

[d/3]
∑

j2=0

(−v3)j2

j2!

×
[(d−3j2)/2]

∑

j1=0

(−v2)j1 K(d − 2j1 − 3j2, z, ~v,m)

(d− 2j1 − 3j2)!j1!
wd.

Therefore,

∞
∑

d=0

(z + v1)dw
d

d!
=

∞
∑

d=0

[ d
m

]
∑

jm−1=0

[

d−mjm−1

m−1

]

∑

jm−2=0

· · ·

[

d−3j2−4j3−···−mjm−1

2

]

∑

j1=0

(−1)j1+j2+···+jm−1

× v
jm−1

m v
jm−2

m−1 . . . v
j1

2 K(d− 2j1 − 3j2 − · · · −mjm−1, z, ~v,m)

(d− 2j1 − 3j2 − · · · −mjm−1)!j1!j2! . . . jm−1!
wd.

Comparing the coefficient of wd on both sides of the above equation, we get mono-
mials in terms of the polynomials K(d, z, ~v,m) by the following theorem:

Theorem 3.1. Let d ∈ N0, z ∈ C, m ∈ N, and ~v = (v1, v2, . . . , vm), where

v1, v2, . . . , vm ∈ R. Then we have

(z + v1)d = d!

[

d
m

]

∑

jm−1=0

[

d−mjm−1

m−1

]

∑

jm−2=0

· · ·

[

d−3j2−4j3−···−mjm−1

2

]

∑

j1=0

(−1)j1+j2+···+jm−1(3.7)

× v
jm−1

m v
jm−2

m−1 . . . v
j1

2 K(d− 2j1 − 3j2 − · · · −mjm−1, z, ~v,m)

(d− 2j1 − 3j2 − · · · −mjm−1)!j1!j2! . . . jm−1!
.

Remark 3.1. Proof of Theorem 3.1 can be also given by the mathematical
induction method. By using the same method Kilar [9] gave many novel and
interesting results on the m-parametric Hermite type polynomials K(d, z, ~v,m).

Substituting m = 2 and v3 = v4 = · · · = vm = 0 into (3.7), we get the following
result:

Corollary 3.1. Let d ∈ N0 and z ∈ C. Then we have

(z + v1)d = d!

[d/2]
∑

j1=0

(−1)j1vj1

2 K(d − 2j1, z, (v1, v2, 0, . . . , 0), 2)

(d− 2j1)!j1!
.
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Substituting m = 2, z = 0, v1 = x, v2 = y and v3 = v4 = · · · = vm = 0 into
(3.7), we get the following known formulas:

H
(2)
d−2j1

(x, y) = K(d− 2j1, 0, (x, y, 0, . . . , 0), 2),

xd = d!

[d/2]
∑

k=0

(−y)kH
(2)
d−2k(x, y)

(d− 2k)!k!
.(3.8)

Substituting y = −1/2 into (3.8), we have the following monomials in terms of
the polynomials Hed(x), which are also known as inverse explicit expression:

(3.9) xd = d!

[d/2]
∑

k=0

Hed−2k(x)

2k(d− 2k)!k!
.

Setting v1 = x, v2 = −1/2, v3 = · · · = vm = 0 and z = 0 in (1.1), we easily
have the following generating function for the Hermite polynomials Hed(x):

exw−
1

2
w2

=

∞
∑

d=0

Hed(x)
wd

d!

(see [11,19] and the references cited therein).
The relation between the polynomials Hed(x) and the physicist’s Hermite poly-

nomials Hd(x) is given by Hd(x) = 2d/2 Hed(x
√

2) (see [19] and the references cited
therein).

Thanks to the above equation, the well-known Hermite functions can also be
written as

(3.10) ψd(x) =
(

d!
√
π

)

−1/2
e−x2/2 Hed

(
√

2x
)

[19]. The function ψd(x) satisfies the following ODE:

d2

dx2 {ψd(x)} + (2d+ 1 − x2)ψd(x) = 0

[16,19]. It is well-known that the above ODE is equivalent to the famous Schröd-
inger equation for a harmonic oscillator in the theory of quantum mechanics. Some
special values of these functions are given by

ψ0(x) = π−
1

4 e−
1

2
x2

,

ψ1(x) =
√

2xψ0(x),

ψ2(x) =
(
√

2
)

−1
(2x2 − 1)ψ0(x),

ψ3(x) =
(
√

3
)

−1
x(2x2 − 3)ψ0(x),

ψ4(x) =
(

2
√

6
)

−1
(4x4 − 12x2 + 3)ψ0(x),

ψ5(x) =
(

2
√

6
)

−1
x(4x4 − 20x+ 15)ψ0(x),

and so on. For details, see also [3,16].
By using (3.10), we present some plots of Hermite Function which visualize the

seismic waves of an earthquake, see below figure.
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Figure 3. Plots of the Hermite functions ψd(x) when d ∈
{0, 50, 100, 150, 200} and x ∈ [−2, 2]

It can be easily observed from the graphs provided in Figure 3 that as the
values of degree d increase, the seismic waves of earthquake can be modelled with
the curves fitted by the graphs of the Hermite functions, which are expressed in
terms of the Hermite polynomials of degree d.

4. Recurrence relation and derivative formula

for the m-parametric Hermite type polynomials

In this section, by applying a partial derivative operator to the generating
function for the m-parametric Hermite type polynomials, we derive the recurrence
relation and derivative formula for these polynomials. Furthermore, recurrence
relation and derivative formulas have very important applications in mathematical
modeling and the calculation of numerical values of polynomials.

By applying the partial derivative operator ∂
∂w to (1.1), we get the following

partial derivative equation:

∂

∂w
{G(z, w,~v,m)} =

(

z +

m
∑

k=1

kvkw
k−1

)

G(z, w,~v,m).

Combining the above equation with (3.3), we get

∂

∂w
{G(z, w,~v,m)} =

(

z +

m
∑

k=1

kvkw
k−1

)

ezw
∞

∑

d=0

Hd(~v;m)
wd

d!
.

After some elementary calculations in the above equation, we get

∞
∑

n=0

(−z)nw
n

n!

∞
∑

d=1

K(d, z, ~v,m)
wd−1

(d− 1)!

= z

∞
∑

d=0

Hd(~v;m)
wd

d!
+

m
∑

k=1

kvk

∞
∑

d=0

Hd(~v;m)
wd+k−1

d!
.
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Therefore,

∞
∑

d=0

d
∑

n=0

(−z)d−nK(n+ 1, z, ~v,m)
wd

d!

=

∞
∑

d=0

(

zHd(~v;m) +

m
∑

k=1

kd(d− 1) . . . (d− k + 2)vkHd−k+1(~v;m)

)

wd

d!
.

Comparing the coefficient of wd/d! on both sides of the above equation, we arrive
at the following theorem:

Theorem 4.1. Let d ∈ N0, z ∈ C, m ∈ N, and ~v = (v1, v2, . . . , vm), where

v1, v2, . . . , vm ∈ R. Then we have

(4.1)

d
∑

n=0

(−z)d−nK(n+ 1, z, ~v,m)

= zHd(~v;m) +
m

∑

k=1

kd(d− 1) . . . (d− k + 2)vkHd−k+1(~v;m).

By applying the partial derivative operator ∂k

∂zk to (1.1), we obtain the following
partial derivative equation:

(4.2)
∂k

∂zk
{G(z, w,~v,m)} = wkG(z, w,~v,m).

Combining (4.2) with (1.1), we get

∞
∑

d=0

∂k

∂zk
{K(d, z, ~v,m)}w

d

d!
=

∞
∑

d=0

K(d, z, ~v,m
wd+k

d!
.

After some elementary calculations in the above equation, we obtain

∞
∑

d=0

∂k

∂zk
{K(d, z, ~v,m)}w

d

d!
=

∞
∑

d=0

d(d− 1) . . . (d− k + 1)K(d− k, z, ~v,m)
wd

d!
.

Comparing the coefficient of wd/d! on both sides of the above equation, we arrive
at the following theorem:

Theorem 4.2. Let d, k ∈ N0 with d > k, z ∈ C, m ∈ N, ~v = (v1, v2, . . . , vm),
v1, v2, . . . , vm ∈ R. Then we have

(4.3)
∂k

∂zk
{K(d, z, ~v,m)} = d(d− 1) . . . (d− k + 1)K(d − k, z, ~v,m).

A special value of (4.3) is given as follows. Substituting k = 1 into (4.3), we
get the following corollary:

Corollary 4.1. Let d ∈ N, z ∈ C, m ∈ N, and ~v = (v1, v2, . . . , vm), where

v1, v2, . . . , vm ∈ R. Then we have ∂
∂z {K(d, z, ~v,m)} = dK(d − 1, z, ~v,m).
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Remark 4.1. Substituting z̄ which is conjugated of z, into (1.1), all polyno-
mials concerning z and z̄ can be modified. These modifications can also affect the
shape of the graph of the polynomials and also seismic waves. By using a compo-
nent of variable z, concerning x and y, derivative formulas for the m-parametric
Hermite type polynomials were given [12,13].

5. Generating functions and some relations for the polynomial type

Rocking Bearing to the waves of rock and soil

The polynomial Rocking Bearing (PRB) related to earthquake waves and their
application by applying polynomial Rocking Bearings, seismic isolation systems
on irregular bridges, and seismic performance of rocking base-isolated structures
related to earthquake loads can be analyzed [17,18].

The PRB is defined by

(5.1) G(x) = a1x
6 + a2x

4 + a3x
2,

where a1, a2, a3 are arbitrary constant [18].
Substituting (3.9) into the polynomials G(x), we give a relation between the

PRB and the Hermite polynomials as follows:

G(x) = 720a1

3
∑

j=0

He6−2j(x)

2jj!(6 − 2j)!
+ 24a2

2
∑

j=0

He4−2j(x)

2jj!(4 − 2j)!
+ 2a3

1
∑

j=0

He2−2j(x)

2jj!(2 − 2j)!
.

A variable of this polynomial has positive even integers; thus, the polynomial G(x)
is an even polynomial. The graph of this type of polynomial is symmetric concerning
the 0y-axis. The shape of this type of polynomial is similar to the shape of the
bearing.

We also observe that graph of the polynomials PRB is also related to the seismic
waves propagating in Figure 1 and Figure 2.

Is it possible to generalize the PRB? That is, we set

(5.2) Pn(x) =
n

∑

j=1

cjx
2j .

Substituting n = 3 into (5.2), we get to arrive at the following well-known PRB,
that is P3(x) = c1x

2 + c2x
4 + c3x

6 = G(x).
Putting (3.9) in (5.2), we get the following result:

Theorem 5.1. Let n ∈ N and x ∈ R. Then we have

(5.3) Pn(x) =
n

∑

j=1

(2j)!cj

j
∑

k=0

He2j−2k(x)

2kk!(2j − 2k)!
.

This gives us the polynomial type Rocking Bearing presented a linear combi-
nation of the Hermite polynomials.

Thus, we pose the following open problem associated with generating function
for the polynomials Pn(x).

How can we construct generating function for Pn(x) polynomials? That is, if
f(t, x) =

∑

∞

n=0 Pn(x)tn, then find f(t, x) =?
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6. Integral representations of the Hermite polynomials

and the polynomial type Rocking Bearing

In this section, we give not only p-adic integral representation but also the
Riemann integral representation of the Hermite polynomials and the polynomial
type Rocking Bearing. The p-adic integral and the Riemann integral have many
applications in many branches of mathematics, physics, engineering, and other
sciences.

6.1. p-adic integral representation of the Hermite polynomials and

the polynomial type Rocking Bearing. Let K be a field with a complete val-
uation and C1(Zp → K) be a set of the uniformly differential function f on Zp.

Let f ∈ (Zp → K). The Volkenborn integral (or the bosonic p-adic integral) of
the uniformly differential function f on Zp is given by

(6.1)

∫

Zp

f(x)dµ1(x) = lim
N→∞

1

pN

pN
−1

∑

x=0

f(x),

where µ1(x) is given by µ1(x) = 1/pN (cf. [14,20,21]).
Schikhof [20] gave the following integral equation for the Volkenborn integral:

(6.2)

∫

Zp

f(x+ 1)dµ1(x) −
∫

Zp

f(x)dµ1(x) = f(0),

where f ′(x) = d
dx{f(x)}. By applying (6.2) to (3.5), we get

∫

Zp

∫

Zp

H
(2)
d (x, y)dµ1(x)dµ1(y) = d!

[d/2]
∑

k=0

Bd−2kBk

(d− 2k)!k!
,

where Bd denote the Bernoulli numbers, which are defined by the following gener-
ating function:

w

ew − 1
=

∞
∑

d=0

Bd
wd

d!

(see [1,21] and the references cited therein).
By applying (6.2) to (3.6), we obtain

(6.3)

∫

Zp

Hed(x)dµ1(x) = d!

[d/2]
∑

k=0

(−1)kBd−2k

2k(d− 2k)!k!
.

By applying the Volkenborn integral to (3.9), we get

(6.4) Bd = d!

[d/2]
∑

k=0

1

2kk!

[(d−2k)/2]
∑

j=0

(−1)jBd−2k−2j

2j(d− 2k − 2j)!j!
.

By applying the Volkenborn integral to (5.1), we have
∫

Zp

G(x)dµ1(x) = a1B6 + a2B4 + a3B2 =
a1

42
− a2

30
+
a3

6
.



CURVE FITTING FOR SEISMIC WAVES OF EARTHQUAKE WITH HERMITE... 113

Remark 6.1. Observe that the coefficients of a1, a2 and a3 of the PRB may
be also calculated with the help of the above equation as well as the field and
laboratory studies.

By applying the Volkenborn integral to (5.2) and (5.3), respectively, we get

∫

Zp

Pn(x)dµ1(x) =

n
∑

j=1

cjB2j ,

∫

Zp

Pn(x)dµ1(x) =
n

∑

j=1

(2j)!cj

j
∑

k=0

1

2kk!(2j − 2k)!

∫

Zp

He2j−2k(x)dµ1(x).(6.5)

Combining the above equation with (6.3), we obtain

(6.6)

∫

Zp

Pn(x)dµ1(x) =

n
∑

j=1

(2j)!cj

j
∑

k=0

1

2kk!

j−k
∑

v=0

(−1)vB2j−2k−2v

2v(2j − 2k − 2v)!v!
.

Combining (6.5) with (6.6), we arrive at the following theorem:

Theorem 6.1. Let n ∈ N. Then we have

(6.7)

n
∑

j=1

cjB2j =

n
∑

j=1

(2j)!cj

j
∑

k=0

1

2kk!

j−k
∑

v=0

(−1)vB2j−2k−2v

2v(2j − 2k − 2v)!v!
.

6.2. Riemann integral representation of the Hermite polynomials

and the polynomial type Rocking Bearing. By applying the Riemann in-
tegral to (5.2) and (5.3), respectively, we have

∫ 1

0
Pn(y)d(y) =

n
∑

j=1

cj

2j + 1
,(6.8)

∫ 1

0
Pn(y)d(y) =

n
∑

j=1

(2j)!cj

j
∑

k=0

1

2kk!(2j − 2k)!

∫ 1

0
He2j−2k(y)d(y).

Thus, we obtain

(6.9)

∫ 1

0
Pn(y)d(y) =

n
∑

j=1

(2j)!cj

j
∑

k=0

1

2kk!

j−k
∑

v=0

(−1)v

2v(2j − 2k − 2v + 1)!v!
.

Combining (6.8) with (6.9), we arrive at the following finite sums:

Theorem 6.2. Let n ∈ N. Then we have

n
∑

j=1

cj

2j + 1
=

n
∑

j=1

(2j)!cj

j
∑

k=0

1

2kk!

j−k
∑

v=0

(−1)v

2v(2j − 2k − 2v + 1)!v!
.
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7. Conclusions

In this paper, by applying generating functions and their functional and deriv-
ative equations, some novel formulas and relations are given. By using generating
functions for the m-parametric Hermite type polynomials, some special values of
these polynomials are also given. By applying a partial derivative operator to the
generating functions for the m-parametric Hermite type polynomials, a novel re-
currence relation and derivative formulas for these polynomials was given. p-adic
integral representation and the Riemann integral representation for the Hermite
polynomials and the polynomial type Rocking Bearing are also given. In order to
visualize curve fitting approach to the seismic waves, many plots of the Hermite
functions with Mathematica (Version 12.0.0) with their codes are drawn. By
using these graphs, some observations with their evaluations on the shapes of the
seismic waves propagated in the ground (rock and/or soil) are also given. These
evaluations give us not only the curve fitting of seismic waves in earthquake to
Hermite polynomials, but also the shape of the seismic waves propagating in the
ground (rock and/or soil) compared with the graphs of the Hermite polynomials.
All of these graphs are given in the figures. These graphs will contribute to the
understanding and interpretation of more in-depth theories about seismic wave
propagation in earthquakes.

Consequently, it can be observed that the red curve and green curve in Figure 1
(left) coincide with the graphs of the Hermite polynomials and functions in Figure 2.
We observe that the curve in the rock and the curve in the soil of Figure 1 (right)
are also represented by the curve of PRB-type polynomials associated with Pn(x)
polynomials.

In our future studies or investigations, we look for the applications of Pn(x)
polynomials to not only the curve in rock, but also the curve in soil; and real-world
problems. We will also investigate the solution to the open problems, which are
given in this paper.

Acknowledgments. The authors dedicate this article to the souls of our cit-
izens who died in the earthquake disaster that occurred in Pazarcık and Elbistan
districts of Kahramanmaraş city and also in Defne and Samandağ districts of Hatay
city of Turkey from February 6 to February 20, 2023.
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