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ON EMBEDDING OF F-HEDGEHOGS
IN FUNCTION SPACES

Alexander V. Osipov

ABSTRACT. For a filter F, S = {oo}U{(n,m) : n,m € N} be the F-hedgehog
(F-fan) of spininess w where each (n,m) is isolated in Sy and a basic open
neighborhood of oo is of the form N(¢) = {co} U {(n,m) :n € Nym € p(n)}
for function ¢: N — F. We study some connections among the F*-Menger
property and an embedding of F-hedgehog S5 into function spaces for any
P-filter F.

1. Introduction

A space X is said to be Menger [9] if for every sequence (U, : n € N) of open
covers of X, there are finite subfamilies V,, C U, such that |J{V,, : n € N} is a
cover X. A space X is said to have countable fan-tightness [1] if whenever A, C X
and z € A, (n € N), there are finite sets F,, C A,, such that = € | J{F, : n € N}.

Let Sy, = {oo}U{(n,m) : n,m € N} be the sequential hedgehog (sequential fan)
of spininess w, where each (n,m) is isolated in S, and a basic open neighborhood
of oo is of the form N(p) = {oo} U {(n,m) : n € N;m = ¢(n)} for a function
¢: N — N. Obviously S, does not have countable fan-tightness.

Archangel’skil [1] proved that every finite power of X is Menger if, and only
if, Cp(X) has countable fan-tightness. Hence, if every finite power of X is Menger,
S., cannot be embedded into C,(X). A. V. Archangel’skii raised following natural
question [2 Problem II.2.7]: Can S, be embedded into C,(X) for some Menger
space X7

Sakai proved (under CH) that there is a Lusin set X (hence X is Menger) such
that S, be embedded into C,(X) [10].

In this paper we study some connections among the F*-Menger property and
an embedding of F-hedgehog Sy into function spaces for any P-filter &F.
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2. Main definitions and notation

Throughout this paper, all spaces are assumed to be Tychonoff. The set of
positive integers is denoted by N or w. The space P(N) splits into two important
subspaces: the family of infinite subsets of N, denoted [N]>°, and the family of finite
subsets of N, denoted [N]<°.

Let R be the real line, we put I = [0, 1] C R, and let Q be the rational numbers.

Let C,(X) denote the space of continuous real-valued functions C(X) on a
space X with the topology of pointwise convergence. Let By(X) = C(X) and
inductively define B, (X) for each ordinal a@ < w; to be the space of pointwise
limits of sequences of functions in (Jz_, Bs(X). So B(X) = Us_,,, Bs(X) a set of
all functions of Baire, defined on a Tychonoff space X, provided with the pointwise
convergence topology.

We recall that a subset of X that is the complete preimage of zero for a certain
function from C(X) is called a zero-set. A subset O C X is called a cozero-set (or
functionally open) of X if X \ O is a zero-set.

The family of Baire sets of a space X is the smallest family of sets containing
the zero sets of continuous real-valued functions, and closed under countable unions
and countable intersections. The Baire sets of X of multiplicative class 0, denoted
Z(X), are the zero-sets of continuous real-valued functions. The sets of additive
class 0, denoted CZ(X), are the complements of the sets in Z(X).

The symbol 0 stands for the constant function to 0. A basic open neighborhood
of 0 is of the form [F,(—¢,¢)] = {f € C(X) : f(F) C (—€,¢€)}, where F' € [X]|<¥
and € > 0.

Let A and B be collections of subsets of an infinite set.

e Then S;(A, B) denote the following hypothesis:

For each sequence (A, : n € N) of elements of A there is a sequence (B, : n € N)
such that, for each n, B, € A,, and {B,, : n € N} is an element of B.

e The symbol Sgy, (A, B) denote the following hypothesis:

For each sequence (A,, : n € N) of elements of A there is a sequence (B, : n € N)
such that, for each n, B, C A, is finite, and | J{B, : n € N} is an element of B.

e Usn(A,B): For each sequence (4, : n € N) of elements of A there is a
sequence (B, : n € N) such that, for each n, B,, C A, is finite, and {|J B, : n € N}
is an element of B.

An open cover U of a space X is:

e an w-cover if X does not belong to U and every finite subset of X is contained
in a member of U. Note that if U is an w-cover of a set X and X ¢ U, then each
finite subset of X is contained in infinitely many members of U.

e a ~y-cover if it is infinite and each x € X belongs to all but finitely many
elements of U. Note that every y-cover contains a countably ~y-cover.

e a yp-shrinkable if it is an y-cover U of co-zero sets of X and there exists a
~-cover {F(U) : U € U} of zero-sets of X with F(U) C U for every U € U.

For a topological space X we denote:

e O—the family of all open covers of X.
e ()—the family of all open w-covers of X.
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I'—the family of all countable open ~-covers of X.

I z—the family of all countable yg-shrinkable covers of X.
B—the family of all countable Baire covers of X.

Bpr—the family of all countable Baire ~y-covers of X.
Ba—the family of all countable Baire w-covers of X.
S51(0, Q) denote the Rothberger property.

San(0, O) denotes the Menger property.

Usin(0,T) denotes the Hurewicz property.

Let X be a topological space, and z € X. A subset A of X converges to x,
x = lim A, if A is infinite, x ¢ A, and for each neighborhood U of z, AN\ U is finite.
Q, ={ACX:xc A\ A}
QY ={AC X :|A =Rpand z € A~ A}.
,={AC X :z=1imA}.
Iy ={AC X :|A| =Rp and z = lim A}.

3. An embedding of sequential hedgehogs in function spaces

THEOREM 3.1. [10, Theorem 3.2] The following conditions are equivalent for
a space X :
(1) S, cannot be embedded into Cp(X).
(2) X has property Sgn(Lr, Q).

Let P be a topological property. Arhangel’skii calls X projectively P if every
second countable continuous image of X is P.
By Theorem BT and [8, Theorem 11.1], we have the following result.

THEOREM 3.2. The following conditions are equivalent for a space X :
(1) S, cannot be embedded into Cp(X).
(2) X has property projectively Sgn (T, 2).
(3) Cp(X) has property San(T'Y,Q%).
(4) Cp(X) has property San(T'z, Q).

Note that, if every finite power of X is projectively Menger, then X is projec-
tively Sgun (€2, ) in [10, Proposition 4.4].
COROLLARY 3.1. If every finite power of X is projectively Menger, then the
following conditions are equivalent:
(1) S, cannot be embedded into Cp(X).
(2) X has property projectively Sgn(2,€2).

COROLLARY 3.2. [10l Proposition 4.12] Every finite power of X is projectively
Menger if, and only if, for any n € N, S,, cannot be embedded into Cp(X™).

We summarize implications in the following diagram.
X is projectively Sgn (€2, Q)
4
X is San(Tr, Q)

)
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Su ¢ Cp(X) & X is projectively Sgn (T, ©2)
4
X is projectively Menger

Diagram 1.
LEMMA 3.1. [3| Lemma 80] Let X = {z} U{zp,m : n,m € N} be a Hausdorff

space such that T, — x (m — o) for each n € N, and for any ¢ € NN,
¢ {xnm:n€N,m< (n)}. Then S, can be embedded into X .

THEOREM 3.3. The following conditions are equivalent for a space X :

(1) S, cannot be embedded into B(X).
(2) X has property Sgn(Br, Ba).

(3) X has property S1(Br, Ba).

(4) B(X) has property Sgin(Lz, Q).

PROOF. (3) = (1). Let S, = {0} U {fnx:n,k € N} C B(X), where f,r — 0
(k — o0). For each n,k € N, we put Upx = {# € X : |fnx(2)| < £}. Each Uy is
a Baire set in X. Let U, = {Upp : k € N}. If I = {n € N: X € U,} is infinite,
some sequence {fn g, : n € I} converges to 0 uniformly. This is a contradiction,
so without loss of generality, we may assume U, # X for each n,k € N. We
can easily check that the condition f, x — 0 (k — oo) implies that U, is a Baire
~v-cover of X. Then, by (3), there is {Up, : n € N} a w-cover of X such that
Unk, €U, for each n € N. Then 0 € {f, x, : n € N}, this is a contradiction.

(1) = (3). Let U, = {Unx : k € N} be a Baire y-cover of X for each n € N
and U, = {U,, : n € Nk < p(n)} is not an w-cover of X for any ¢ € NN, For
each n,k € N, we take a Baire function f,, : X — [0,1] such that f,x(z) =0
for all z € U,y and fr = 1 for all 2 € X N\ U, . Then f, — 0 (kK — o0).
Let ¢ € N. Since U, is not an w-cover of X, there is a finite subset F' C X
such that F' is not contained in any member of U,. Then we can easily check
{J € BX): f(F) € (-3, 510 {fux :n € Nk < o(n)} = 0. By Lemma BT, S,
can be embedded into {0} U {fn m : n,m e N} C B(X).

(2) & (3). By Theorem 9 in [11], Sgn(Br, Ba) = S1(Br, Ba).

(3) & (4). By Theorem 6.1 in [7], S1(Br, Ba) = San(Ts, Q). O

By [11], Theorem 6], S1(Br, B) = San(Br, B). Note also that, if all finite powers
of X have property S1(Br, B), then X has property San(Bgq, Ba) [11, Theorem 20].

COROLLARY 3.3. If all finite powers of X have property Si(Br,B) then the
following conditions are equivalent:

(1) S, cannot be embedded into B(X).
(2) X has property Sgn(Ba, Ba).

COROLLARY 3.4. Every finite power of X have property S1(Br, B) if, and only
if, for any n € N, S,, cannot be embedded into B(X™).

We summarize implications in the following diagram.
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X is Sﬁn(BQ,BQ)
I
Sw §Z B(X) < Xis Sﬁn(BF,BQ)
I
X is S1(Br,B)

Diagram 2.

PROPOSITION 3.1. There is a space X such that S, can be embedded into B(X),
but S, cannot be embedded into Cp(X).

PROOF. Let X be the real line R with the usual topology. By [4, Theorem
2.2], every o-compact topological space is a member of class Sg, (€2, Q). Hence, X
has the property S, (T, ). By Theorem B2 S, cannot be embedded into Cp,(X).
Since X has not property S1(T',Q), it has not property Si(Br,Bgq). Hence, by
Theorem B3] S,, can be embedded into B(X). O

4. An embedding of F-hedgehogs in function spaces

For sets a,b € [N]>, we write a C* b if the set a\ b is finite. A semifilter [12] is
a set S C [N]*° such that, for each set s € S and each set b € [N]> with s C* b, we
have b € S. Important examples of semifilters include the maximal semifilter [N]>°,
the minimal semifilter cF of all cofinite sets, and every nonprincipal ultrafilter on N.

By filter we mean a semifilter closed under finite intersections.

An infinite set B C N is said to be a pseudointersection of a family A C F if
B C* A for any A € A. By P-filter we mean a semifilter F closed under countable
pseudointersection, i.e. if A ={A4, : 4, € F,n € N} and B is a pseudointersection
of A then B € F.

DEFINITION 4.1. Let F be a filter. A sequence (x, : n € N) of elements of a
topological space X F*-converges to x € X, written z,, 7, x, if
(1) for every neighborhood U of x, we have {n e N:x, e U} € &,

(2) for every F € F there is a neighborhood U of z such that
{neN:z,eU}=F.

For a filter F, Sy = {00} U {(n,m) : n,m € N} be the F-hedgehog (F-fan) of
spininess w, where each (n,m) is isolated in Sy and a basic open neighborhood of
oo is of the form N(p) = {cc}U{(n,m) :n € N,m € ¢(n)} for function ¢ : N — F.

First, we note that the topology of Sy can be characterized by the following
conditions:

(a) the points of N x N are isolated,
(b) for every n € N, the sequence ((n,m) : m € N) F*-converges to {o0},
(c¢) if AC N x N, and for each n € N there is B,, € F such that AN {(n,m) :
m € B,} =0, then {c0} ¢ A.
We need the following lemma, similar to Lemma 79 in [3].

LEMMA 4.1. Let § C [N]*® be a P-filter and let X = {zpm : n,m € N} U {p}
be a Hausdorff space such that
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1

) all points T m and p are distinct,

) for every n,m,k €N, xp m & {zn,,;: 1 <i< k,j N}~ A{xnm},
)

)

for every n € N, 0, = (X, m : m € N) F*-converges to p, and
if AC X ~{p}, and for each n € N there is B, € F such that
AN{xpm:me€ By} =0, thenp ¢ A.

Then X contains a subspace homeomorphic to Ss.

(
(2
(3
(4

PrROOF. For n € N, denote S,, = {y,m : m € N}. For every n,m, there are
disjoint neighborhoods Oy, m 3 ¢n,m and N, ,, 2 p. Hence, there exists P, ,, =
{F} . :ieNF] €3} such that {p} U{zn;:n eNjie F.,, } C Nyy. Since
F is a P-filter, there is a pseudointersection B € F of {F}.,, : i,n,m € N}. Since
B C* Ff;’m for any i,n,m € N, there is a function ¢ : N — F N B such that for
every n,m, there are at most finitely many & such that Ny, NSk 2 {@p, : [ €
¢(k) € BN F} ,,}. Denote the set of all these k by Ky m.

Put Z = {p} U{zk, : | € p(k)}. Put h(p) = {0} and h(zk:) = (k,¥x())
whenever [ € p(k) where 9y, : ¢(k) — N is a monotonic bijection for every k € N.
Then A is an homeomorphism of Z onto S3. We have to check only that the point
of Z ~ {p} are isolated in Z. Let xym € Z and Cyp pm = {p} U{zr;: k € Kpm,l €
o(k)}. Since Oy N Ny =0, Oy N Z C Chy . By condition (2), all points of
Cp,m other than p are isolated. O

DEFINITION 4.2. Let X be a topological space and F C [N]* be a filter.

e A cover V = (V, : n € N)is a F*y-cover, if it is infinite, each z € X
{n:z €V,} € Fandeach F € F there is K € [X]<* such that {n: K CV,} = F.

e A cover {V,, : n € N} is called a refinement of the cover {U, : n € N}, if
V., C U, for each n € N. An F*-vy-cover {U,, : n € N} is F*-yp-shrinkable if there
exists a zero-set F*-y-cover that is a refinement of {U, : n € N}.

For a topological space X and a filter ¥ C [N]*°® we denote:

e JF*-T" the family of all countable open F*-y-covers of X.
e F"-I'p the family of all countable co-zero F*-~-shrinkable covers of X.

o FI¥={ACX:|A=Noand AL z}.

DEFINITION 4.3. Let F C [N]* be a semifilter. A space X is F*-Menger, if for
every sequence (U, : n € N) of open F*-T" covers of X, there are finite subfamilies
V., C Uy, such that [ J{V, : n € N} is an open cover of X, i.e., X has property
Usn (F*-T, 0).

DEFINITION 4.4. Let P be a topological property. A space X has property
condensationly P if every second countable one-to-one continuous image of X is P.

Note that if X has the property projectively P then it has the property con-
densationly P.

PROPOSITION 4.1. Let F be a filter and X has a coarser second countable
topology. Then X has the property Sgn(F*-I'r, Q) if and only if it has the property
condensationly San(F*-T',Q).
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PROOF. The proof is similar to the proof of [8, Theorem 10.2]. O

THEOREM 4.1. Let F be a P-filter. Then the following conditions are equivalent
for a space X :

(1) Sy cannot be embedded into Cp(X).
(2) X has property Sgn(F*-I'r, Q).
(3) Cp(X) has property San(F*-T'Y, Q).

PROOF. (1) = (2). Assume that there is a sequence (U, : n € N) such that, for
each n, U, € F*-T'p, and if W,, € [U,]<¥ for each n € N then (J{W,, : n € N} ¢ Q.
Let V, =U; Nn...NU, for each n € N. Since J is a P-filter, V,, € 3"-I'}, for each
n € N. By Theorem 6 and [5], Corollary 7], " is homeomorphic to F for any n € N.
Hence, V,, € F-I'}, for each n € N.

Let V, = {Vium : m € N} and Z,, = {Z,,,;n : m € N} is a zero-set family such
that Z,, € 3-I' and Z,, ,, C V}, 1, for each m € N.

For each n,m € N, we put

0, T € Znm
fn,m(x) = {

n—i—%, e X N Vim.

Consider the set Y = {0} U{f,.m : n,m € N}. By construction, the set ¥ have
all conditions in Lemma (.11

We check the condition (4). Let A C Y ~ {0}, and for each n € N there is
B, € F such that AN{fnm : m € B,} = 0. Consider a pseudointersection S of
{By, : n € N}. Since ¥ is a P-filter, S € F. There exists a neighborhood W7 of 0
such that [WiNAN{fnm : m € N}| < Xq for each n € N. Note that if 0,, € [V,,]<¥
for each n € N then {0, : n € N} ¢ Q. Hence there is a neighborhood W5 of 0
such that Wo N Wi NAN{fnm :m € N} =0 for each n € N. Let W = Wy N Wa
then WNA=0and 0 ¢ A.

(2) = (1). Assume that Sy = {0} U{fnm : n,m € N} C C,(X), where f,, m
F*-converges to 0 (m — o). For each n,m € N, we put

Unm = {2z € X ¢ | fam(2)] < %}a Znm ={z € X ¢ |fam(z)] < %.,.1}

Each Uy, , (resp., Z,, m) is a cozero-set (resp., zero-set) in X with Z,, ,, C Uy .
Let Up, = {Upm :m €N} and 2, ={Zpm :meNL T ={neN: X eU,}
is infinite, some sequence {fy m, : n € I} converges to 0 uniformly. This is a
contradiction, so without loss of generality, we may assume U, ,, # X for each
n,m € N. We can easily check that the condition f, ,, F-converges to 0 (m — o)
implies that Z,, € F-I'}. of X. By condition (2), there is a sequence (W,, : n € N)
such that, for each n, W,, C Z,, is finite, and | J{W,, : n € N} is an element of Q. Let
Wy ={Zn.mys s Znmy, y for eachn € N. Then 0 € {fnm, :n € N, 1< i < k(n)}.
This is a contradiction.

The proof of implication (2<3) is similar to the proof of Theorem 7.2 in [6]. O

COROLLARY 4.1. Let F be a P-filter and X has a coarser second countable
topology. Then Sz cannot be embedded into Cp(X) if and only if X has property
condensationly San(F*-T',Q).
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THEOREM 4.2. The following conditions are equivalent for a space X :

(1) Sy cannot be embedded into B(X).
(2) X has property S1(Bs«_r,Bq).
(3) B(X) has property Sgn(F*-T'z,Qs).

PROOF. The proof of implication (1 < 2) is similar to the proof of implication
(1 & 2) of Theorem FIl The proof of implication (2 < 3) is similar to the proof
of implication (1 < 2) of [7, Theorem 6.1]. O

COROLLARY 4.2. Assume that X has property San(Bq, Ba) and F is a P-filter.
Then Sy cannot be embedded into B(X).

We summarize implications observed in this paper (con. is an abbreviation for
condensationly).

X is Sﬁn(BQ, BQ)

U
Sq ¢ B(X) < X is Sﬁn(gg*,p,gg) = X is Sﬁn(gg*,p,g)
U
X is con. Sgn(2,9Q) = Sy ¢ Cp(X) & X is con. San(F*-T', Q)
I

X is con. F*-Menger
Diagram 3.

QUESTION 1. Assume that all finite powers of X have property condensationly
F*-Menger.

a). Does it follow that X satisfies condensationly Sg, (€2, Q)?

b). Does it follow that Sy cannot be embedded into C),(X™) for every n € N?

QUESTION 2. Assume that all finite powers of X have property Sgan(Bg«_r,B).
a). Does it follow that X satisfies Sgn(Ba, Ba)?
b). Does it follow that Sy cannot be embedded into B(X™) for every n € N?
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