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INEQUALITIES FOR THE GENERALIZED

DERIVATIVE OF A COMPLEX POLYNOMIAL

F. A. Bhat, N. A. Rather, and S. Gulzar

Abstract. We extend the well known Bernstein inequality to the generalized
derivative of a polynomial introduced by Sz-Nagy [13] with restricted zeros
and obtain some new inequalities with respect to sup-norm. The obtained
results include some known inequalities of Turán, Malik and Govil as special
cases for the ordinary derivative.

1. Introduction

One of the interesting problems related to polynomials was posed by Mendeleev
[10], which says how large is the size of modulus of the derivative of P (x) on a given
interval? This extremal problem was solved by Markov [9] for real polynomial of
degree at most n in a generalized form. He proved that if P (x) =

∑n
ν=0 aνxν is an

algebraic polynomial of degree 6 n with real coefficients, then

(1.1) max
−16x61

|P ′(x)| 6 n2 max
−16x61

|P (x)|.

Several years later, an analogue of (1.1) for the unit disc in the complex plane was
formulated by Bernstein [11] which is commonly known as Bernstein’s theorem for
trigonometric polynomials. It states that if t(θ) is a trigonometric polynomial of
degree at most n, then

(1.2) max
−π6θ6π

|t′(θ)| 6 n2 max
−π6θ6π

|t(θ)|.

The above inequalities show how fast a polynomial of degree at most n or its de-
rivative can change. Various analogues of these inequalities are known in which
the underlying intervals, the sup-norms, and the family of functions are replaced
by more general sets, norms, and families of functions, respectively. Several mono-
graphs and papers have been published on Markov’s and Bernstein’s inequalities
and their generalizations. For instance one can see Borwein and Erdélyi [2], Lorentz
et al. [7] and Milovanović and Rassias [12]. Let Pn denote the space of all complex
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polynomials of degree less than or equal to n, then for P ∈ Pn, inequality (1.2) is
equivalent to

(1.3) max
|z|=1

|P ′(z)| 6 n max
|z|=1

|P (z)|.

Inequality (1.3) is best possible with equality holding for polynomial P (z) = λzn,
λ being a complex number. In this direction Turán [16] considered the class of
polynomials vanishing inside the disc |z| 6 1, and proved that if P ∈ Pn has all
zeros in |z| 6 1, then we have

(1.4) max
|z|=1

|P ′(z)| >
n

2
max
|z|=1

|P (z)|.

Aziz [1] proved that inequality (1.4) holds true without any restriction on the zeros
of polynomials which are self-inversive or self-reciprocal. As an extension of (1.4)
to polynomials P ∈ Pn having all their zeros in the disc |z| 6 k, k 6 1, Malik [8]
proved that

(1.5) max
|z|=1

|P ′(z)| >
n

1 + k
max
|z|=1

|P (z)|.

The case when k > 1 of inequality (1.5) was considered by Govil [6] who proved
that, if P ∈ Pn has all its zeros in the disc |z| 6 k with k > 1, then

(1.6) max
|z|=1

|P ′(z)| >
n

1 + kn
max
|z|=1

|P (z)|.

These inequalities are fundamental and play a very significant role for the proofs
of many inverse theorems in polynomial approximation theory. The study of
Bernstein-type inequalities which relate the norm of a polynomial to that of its
derivative and their various versions are classical topics in analysis. These inequal-
ities have been extended widely in the literature from ordinary derivative to polar
derivative of complex polynomials. For more information related to this area one
can refer to a very recent monograph due to Gardner, Govil and Milovanović [5].
In this paper, we approach this study and extend the above inequalities to the
generalized derivative of a polynomial introduced by Sz-Nagy [13] and obtain some
new interesting inequalities which include the above inequalities as particular cases.

Definition 1.1 (Sz-Nagy generalized derivative). Given a polynomial P (z) =
c(z − z1)(z − z2) · · · (z − zn) of degree n and an n-tuple γ := (γ1, γ2, . . . , γn) of non-
negative real numbers not all zero, Sz-Nagy [13] introduced a generalized derivative
of P (z) defined by

(1.7) P γ(z) := P (z)

n
∑

j=1

γj

z − zj

=

n
∑

j=1

γjPj(z),

where Pj(z) = c
∏n

i=1,i6=j(z − zi) for 1 6 j 6 n. Note that the ordinary derivative

P ′(z) of P (z) can be obtained from P γ(z) by taking γj = 1 for j = 1, 2, . . . , n, that
is

P γ(z) = P ′(z) for γ = (1, 1, . . . , 1).
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Throughout the paper we shall use the following notations

S = {γ : γ = (γ1, γ2, . . . , γn), γi > 0 ∀ i = 1, 2, . . . , n} and Λ :=

n
∑

j=1

γj .

Many results pertaining to ordinary derivative of a polynomial have been ex-
tended to the generalized derivative of a polynomial. For instance, Diaz–Barrero
and Egozcue [3] have extended a well known Gauss–Lucas theorem to the above
generalized derivative of a polynomial. Rather et al. [15] have also presented a
proof of the Gauss–Lucas theorem for the generalized derivative of a polynomial
which is much simpler than the one given by Diaz–Barrero and Egozcue [3]. In
[15] the authors have also extended Jensen’s theorem to the Sz-Nagy generalized
derivative of a polynomial.

2. Lemmas

In this section, we mention the following lemmas that will be used to prove
our main results in the next section. The first lemma is due to Rather, Gulzar and
Bhat [15].

Lemma 2.1. If P ∈ Pn and 0 6= γ ∈ S and P γ(z) is defined as in (1.7), then

all the zeros of P γ(z) lie in the convex hull of the zeros of P (z).

The following lemma is a simple consequence of maximum modulus principle
(see [14, Vol. I, p. 137]).

Lemma 2.2. If P ∈ Pn, then for R > 1

max
|z|=1

|P (Rz)| 6 Rn max
|z|=1

|P (z)|.

The next lemma is due to Aziz [1].

Lemma 2.3. If P ∈ Pn has all its zeros in the disc |z| 6 k, k > 1, then

max
|z|=k

|P (z)| >
2kn

1 + kn
max
|z|=1

|P (z)|.

The following lemma is due to Frappier, Rahman and Ruscheweyh [4].

Lemma 2.4. If P ∈ Pn, then for k > 1 we have

max
|z|=k

|P (z)| 6 kn max
|z|=1

|P (z)| − φ(k)|P (0)|,

where

(2.1) φ(k) =

{

kn − kn−1 if n > 1

k − 1 if n = 1.

Lemma 2.5. If P (z) = a
∏n

j=1(z − zj) is a polynomial of degree n and Q(z) =

znP (1/z̄) = ā
∏n

j=1(1−zz̄j) and γ = (γ1, γ2, . . . , γn) is n-tuple of non-negative real

numbers with γ 6= 0, then

zn−1P γ(1/z̄) ≡ ΛQ(z) − zQγ(z) and zn−1Qγ(1/z̄) ≡ ΛP (z) − zP γ(z),



74 BHAT, RATHER, AND GULZAR

where P γ(z) is defined as in (1.7) and Qγ(z) = Q(z)
∑n

j=1 γj z̄j/(zz̄j − 1).

Proof. We have

(2.2)

n
∑

j=1

γjQ(z) − zQγ(z) = Q(z)

n
∑

j=1

(

γj −
γjzz̄j

zz̄j − 1

)

= −Q(z)

n
∑

j=1

γj

zz̄j − 1
.

Since P γ(z) = P (z)
∑n

j=1
γj

z−zj
, therefore,

(2.3) zn−1P γ(1/z̄) = −znP (1/z̄)

n
∑

j=1

γj

zz̄j − 1
= −Q(z)

n
∑

j=1

γj

zz̄j − 1
.

Combining (2.2) and (2.3), we obtain zn−1P γ(1/z̄) ≡
∑n

j=1 γjQ(z) − zQγ(z)
The second part follows on the same lines and the lemma is proved. �

3. Main results and proofs

We extend inequalities (1.4), (1.5) and (1.6) to the Sz-Nagy’s generalized de-
rivative of a polynomial defined in (1.7) and obtain some interesting inequalities
concerning the derivatives of a polynomial. We first present the following extension
of inequality (1.3).

Theorem 3.1. If P ∈ Pn has all its zeros z1, z2, . . . , zn in the disc |z| 6 k,

k 6 1 and 0 6= γ ∈ S, then

( n
∑

j=1

γj

1 + |zj |

)

max
|z|=1

|P (z)| 6 max
|z|=1

|P γ(z)|,

where P γ(z) is defined as in (1.7). The result is best possible and the extremal

polynomial is P (z) = (z + k)n.

Proof. Let P (z) = c
∑n

j=1(z − zj) where |zj | 6 k, j = 1, 2, . . . , n, k 6 1; then

for γ = (γ1, γ2, . . . , γn), we have

P γ(z) = P (z)
n

∑

j=1

γj

z − zj

.

This gives for the points eiθ, 0 6 θ 6 2π, which are not the zeros of P (z)

eiθP γ(eiθ)

P (eiθ)
=

n
∑

j=1

eiθγj

eiθ − kjeiθj
, zj = kjeθj , kj 6 k, 1 6 j 6 n.
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Therefore

Re
eiθP γ(eiθ)

P (eiθ)
=

n
∑

j=1

Re
eiθγj

eiθ − kjeiθj
=

n
∑

j=1

Re
γj

1 − kjei(θj−θ)

=

n
∑

j=1

γj Re
1 − kje−i(θj−θ)

|1 − kjei(θj−θ)|2
=

n
∑

j=1

γj

1 − kj cos(θj − θ)

1 + k2
j − 2kj cos(θj − θ)

>

n
∑

j=1

γj

1 + kj

for the points eiθ, 0 6 θ 6 2π, which are not the zeros of P (z). This implies

∣

∣

∣

eiθP γ(eiθ)

P (eiθ)

∣

∣

∣
> Re

eiθP γ(eiθ)

P (eiθ)
>

n
∑

j=1

γj

1 + |zj |

for the points eiθ, 0 6 θ 6 2π, which are not the zeros of P (z). Equivalently

(3.1) |P γ(eiθ)| >

n
∑

j=1

γj

1 + |zj |
|P (eiθ)|

for the points eiθ, 0 6 θ 6 2π, which are not the zeros of P (z). Since the inequality
(3.1) also holds for the points eiθ, 0 6 θ 6 2π which are the zeros of P (z), therefore
it follows that

|P γ(eiθ)| >

n
∑

j=1

γj

1 + |zj|
|P (eiθ)| for all z on |z| = 1.

Hence

max
|z|=1

|P γ(z)| >

n
∑

j=1

γj

1 + |zj |
max
|z|=1

|P (z)|. �

Using the given condition on the zeros of P (z) in Theorem 3.1, one can easily
obtain the following result.

Corollary 3.1. If P ∈ Pn has all its zeros in the disc |z| 6 k, k 6 1 and

0 6= γ ∈ S, then

(3.2) Λ max
|z|=1

|P (z)| 6 (1 + k) max
|z|=1

|P γ(z)|,

where P γ(z) is defined as in (1.7). The result is best possible and equality in (3.2)
holds for P (z) = (z + k)n.

Remark 3.1. If we take γj = 1 for all j = 1, 2, . . . , n in (3.2), then we obtain
inequality (1.5).

Similarly if we choose γ = (0, . . . , γj , . . . , 0) with γj = 1 for 1 6 j 6 n in (3.2),
we get the following result.
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Corollary 3.2. If P ∈ Pn has all its zeros z1, z2, . . . , zn in the disc |z| 6 k,

k 6 1, then

max
|z|=1

∣

∣

∣

P (z)

z − zj

∣

∣

∣
>

1

1 + k
max
|z|=1

|P (z)|

for j = 1, 2, . . . , n.

The result is best possible as shown by P (z) = (z + k)n.
Next, we present the following analogous result for the class of polynomials

having all their zeros in |z| 6 k where k > 1.

Theorem 3.2. If P ∈ Pn has all its zeros in the disc |z| 6 k, k > 1 and

0 6= γ ∈ S, then

(3.3) Λ max
|z|=1

|P (z)| 6 (1 + kn) max
|z|=1

|P γ(z)|,

where P γ(z) is defined as in (1.7).

Remark 3.2. If we take γ = (1, 1, . . . , 1) in (3.3), we get (1.6).

If we take γ = (0, . . . , γj , . . . , 0) with γj = 1 for 1 6 j 6 n in (1.7), we obtain

Corollary 3.3. If P ∈ Pn has all its zeros z1, z2, . . . , zn in the disc |z| 6 k,

k > 1, then

max
|z|=1

∣

∣

∣

P (z)

z − zj

∣

∣

∣
>

1

1 + kn
max
|z|=1

|P (z)|

for j = 1, 2, . . . , n.

Instead of proving Theorem 3.2, we prove the following more general result
which yields Theorem 3.2 as a special case.

Theorem 3.3. If P ∈ Pn has all its zeros z1, z2, . . . , zn in the disc |z| 6 k,

k > 1 and 0 6= γ ∈ S, then

n
∑

j=1

kγj

k + |zj|
max
|z|=1

|P (z)| 6
1 + kn

2
max
|z|=1

|P γ(z)|,

where P γ(z) is defined as in (1.7).

Proof. Let P (z) = c
∑n

j=1(z − zj) where |zj | 6 k, j = 1, 2, . . . , n, k > 1,

then, the polynomial F (z) = P (kz) has all its zeros in |z| 6 1. Therefore for
γ = (γ1, γ2, . . . , γn), we have

F γ(z) = F (z)

n
∑

j=1

γj

z − wj

where wj = zj/k and |wj | 6 1, 1 6 j 6 n.

Proceeding similarly as in the proof of Theorem 3.1, we obtain

|F γ(z)| >

n
∑

j=1

γj

1 + |zj |/k
|F (z)| for |z| = 1,
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which implies

max
|z|=1

|F γ(z)| >
n

∑

j=1

kγj

k + |zj |
max
|z|=1

|F (z)| =
n

∑

j=1

kγj

k + |zj|
max
|z|=k

|P (z)|.

Since P (z) is a polynomial of degree n having all zeros in |z| 6 k where k > 1, it
follows by Lemma 2.3 that

max
|z|=1

∣

∣

∣

∣

F (z)

n
∑

j=1

γj

z − zj/k

∣

∣

∣

∣

>

n
∑

j=1

kγj

k + |zj|

2kn

1 + kn
max
|z|=1

|P (z)|,

or equivalently,

k max
|z|=k

∣

∣

∣

∣

P (z)
n

∑

j=1

γj

z − zj

∣

∣

∣

∣

>

n
∑

j=1

kγj

k + |zj|

2kn

1 + kn
max
|z|=1

|P (z)|,

which implies

max
|z|=k

|P γ(z)| >
2kn

1 + kn

n
∑

j=1

γj

k + |zj |
max
|z|=1

|P (z)|.

Again since P γ(z) is a polynomial of degree n − 1, invoking Lemma 2.2 it follows
that

kn−1 max
|z|=1

|P γ(z)| >
2kn

1 + kn

n
∑

j=1

γj

k + |zj |
max
|z|=1

|P (z)|,

or equivalently,

max
|z|=1

|P γ(z)| >
2k

1 + kn

n
∑

j=1

γj

k + |zj |
max
|z|=1

|P (z)|. �

Next, we establish the following refinement of Theorem 3.3.

Theorem 3.4. If P ∈ Pn has all its zeros z1, z2, . . . , zn in the disc |z| 6 k,

k > 1, and 0 6= γ ∈ S, then

max
|z|=1

|P γ(z)| >
2k

1 + kn

( n
∑

j=1

γj

k + |zj|

)

max
|z|=1

|P (z)| +
φ(k)

kn−1 |P γ(0)|,

where P γ(z) is defined as in (1.7) and φ(k) is given by (2.1).

Proof. Proceeding as in the proof of Theorem 3.3, we get

max
|z|=k

|P γ(z)| >
2kn

1 + kn

n
∑

j=1

γj

k + |zj |
max
|z|=1

|P (z)|.

Since P γ(z) is a polynomial of degree n − 1, it follows by Lemma 2.4

kn−1 max
|z|=1

|P γ(z)| − φ(k)|P γ(0)| >
2kn

1 + kn

n
∑

j=1

γj

k + |zj |
max
|z|=1

|P (z)|
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Or equivalently

max
|z|=1

|P γ(z)| >
2k

1 + kn

n
∑

j=1

γj

k + |zj|
max
|z|=1

|P (z)| +
φ(k)

kn−1 |P γ(0)|. �

The following corollary is an easy consequence of Theorem 3.4

Corollary 3.4. If P ∈ Pn has all its zeros in the disc |z| 6 k, k > 1 and

0 6= γ ∈ S, then

max
|z|=1

|P γ(z)| >
Λ

1 + kn
max
|z|=1

|P (z)| +
φ(k)

kn−1 |P γ(0)|,

where P γ(z) is defined as in (1.7) and φ(k) is given by (2.1).

If we take γ = (1, 1, . . . , 1) in Corollary 3.4, we get the following refinement of
Govil’s inequality (1.6).

Corollary 3.5. If all the zeros of P ∈ Pn lie in the disc |z| 6 k, k > 1, then

max
|z|=1

|P ′(z)| >
n

1 + kn
max
|z|=1

|P (z)| +
φ(k)

kn−1 |P ′(0)|,

where P γ(z) is defined as in (1.5) and φ(k) is given by (2.1).

Finally, we prove the following result for self inversive and self reciprocal poly-
nomials.

Theorem 3.5. If P ∈ Pn is self-inversive or self-reciprocal and 0 6= γ ∈ S,

then

max
|z|=1

|P γ(z)| >
1

2

n
∑

j=1

γj max
|z|=1

|P (z)|.

where P γ(z) is defined as in (1.7). The result is sharp and equality holds if P (z) =
(1 + z)n.

Proof. Let Q(z) = znP̄ (1/z̄), then P (z) = znQ̄(1/z̄), so that by Lemma 2.5

|Qγ(z)| =

∣

∣

∣

∣

n
∑

j=1

γjP (z) − zP γ(z)

∣

∣

∣

∣

for |z| = 1

which gives,

|Qγ(z)| >
n

∑

j=1

γj |P (z)| − |P γ(z)| for |z| = 1

or equivalently,

|P γ(z)| + |Qγ(z)| >

n
∑

j=1

γj |P (z)| for |z| = 1.
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Assume first that P (z) is a self-inversive polynomial of degree n. Then for all
complex numbers z one has Q(z) = znP̄ (1/z̄) = P (z) Using this fact in (3.2), we
get

2|P γ(z)| >

n
∑

j=1

γj |P (z)| for |z| = 1

and hence

2 max
|z|=1

|P γ(z)| >

n
∑

j=1

γj max
|z|=1

P (z).

This establishes the result for self-inversive polynomials. Next suppose that P (z)
is a self-reciprocal polynomial of degree n, then

P (z) = znP (1/z) = t(z) (say)

so that

P γ(z) = tγ(z) = t(z)
n

∑

j=1

γj

z − 1/zj

.

This gives

zn−1P γ
(1

z

)

=
P (z)

z

n
∑

j=1

γj

1/z − 1/zj

= P (z)

n
∑

j=1

−γjzj

z − zj

= P (z)

n
∑

j=1

γj

(

1 −
z

z − zj

)

=

n
∑

j=1

γjP (z) − zP γ(z),

which implies

∣

∣

∣
zn−1P γ

(1

z

)∣

∣

∣
=

∣

∣

∣

∣

n
∑

j=1

γjP (z) − zP γ(z)

∣

∣

∣

∣

>

n
∑

j=1

γj |P (z)| − |P γ(z)| for |z| = 1

or equivalently,

|P γ(z)| +
∣

∣

∣
zn−1P γ

(1

z

)∣

∣

∣
>

n
∑

j=1

γj |P (z)| for |z| = 1.

Hence

max
|z|=1

|P γ(z)| + max
|z|=1

|P γ(z)| > |P γ(z)| + |zn−1P γ(1/z)| for |z| = 1

>

n
∑

j=1

γj |P (z)| for |z| = 1,

which implies

max
|z|=1

P γ(z) >
1

2

n
∑

j=1

γj , max
|z|=1

P (z). �
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