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RATE OF CONVERGENCE BY KANTOROVICH
TYPE OPERATORS INVOLVING ADJOINT
BERNOULLI POLYNOMIALS

Mine Menekse Yilmaz

ABSTRACT. We introduce a sequence of positive linear operators involving ad-
joint Bernoulli polynomials of the first kind, and we focus on the approximation
properties of these operators. One of the main objectives is to get estimates
for the order of approximation by means of first-order modulus of continuity,
the Lipschitz condition, first modulus of derivative and a combination of first-
order modulus of continuity and extended second-order modulus. Further,
we give Voronovskaya type and Griiss—Voronovskaya type asymptotic results.
Finally, we give two examples for error estimation by using Maple software.

1. Introduction

There are many various proofs of the Weierstrass theorem on the density of
algebraic and trigonometric polynomials on compact intervals in R. But, the re-
markable proofs of the theorem related to the approximation of a continuous func-
tion by polynomials use some sequences of linear positive operators. The classical
operators of Bernstein, Gauss—Weierstrass, Vallee-Poussin, Jackson, and Landau
are good examples of this situation. However, the simplest proof of the Weierstrass
theorem was given by Bernstein in [6]. Let C([0,1]) be the set of continuous func-
tions on [0,1]. For f € C(]0,1]), Bernstein defined the following linear positive
operators:

Bufia) = 30 1 (E)busto)
k=0

where for n,k € NU {0}, bpx(z) = (})x*(1 — 2)"~" is called the Bernstein basis
polynomial of degree n. For some pioneering studies on generalizations of Bernstein
operators and their approximation properties in approximation theory, one may
refer to [BLI5L[16l[24128]. Bernstein polynomials and Bernstein-type operators are
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studied not only in approximation theory, but also in analytic number theory and
combinatorics (e.g. [1L20H23]).

Classes of polynomials are important in approximation theory, one of which is
the class of Appell polynomials. The Appell polynomial families {py(x)}72, are
introduced by means of the exponential generating function of the type

(11) Zpk k/"’

where A(t) = Y7o, ak’;—k!, A(0) # 0, is an analytic function at ¢ = 0, and «ay, =
pr(0) [3]. Jakimovski and Leviatan constructed the linear positive operator using
the Appell polynomials in [12]. For similar studies, see [2|4][111[17[25H27]. The
case of A(t) = =+ in (1)), polynomials {py(x)};2; turn out the Bernoulli poly-
nomials. In [I8], Natalini and Ricci introduced the adjunction property for the
Appell polynomials set and gave the particular case of adjoint Appell Bernoulli
polynomials. According to [18], simply, adjoint Appell polynomials are defined by
changing A(t) with 1/A(¢) in the generating function. The adjoint Bernoulli poly-
nomials {f(z)}52, are defined by means of the exponential generating function of
the type Equation (8) in [1§]

e =1 ., =z . tF
(1.2) e = Zﬁk(ﬂﬁ)y-
k=0 '

The Taylor expansion of the expression e n —Le7t ig

1+( +1)t+(2+ +1)t2+(3+32+ +1)t3
TP\ TRy AT Tt TP
4

1\t
+ (x4+2x3+2z2+z+g)ﬁ+0(t5),

where fancy O denotes big-O notation.

The importance of the adjoint Bernoulli polynomials for this work is that they
are positive on [0,00). The classical Bernstein operators are suitable only for con-
tinuous functions, to approximate integrable function f € L;(]0,1]). In 1932, Kan-
torovich [13] presented the linear positive operators K, : L1([0,1]) — C([0,1]) de-
fined for any f € L1([0,1]) and any non-negative integer n by

;) = (n . "k — gt i .
19 Kt =03 ([eta e [ s

Based on ([2) and (L3) for n € N, we define the operators A, (f;x), as follows.

DEFINITION 1.1. Let A,: L1([0,1]) — C([0,1]). For n € N and f € C([0,1]),
the operators A,, defined by

(14) Aoy =0 Y 2R [ gy,
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where { Bk(z)}z’;o are adjoint Bernoulli polynomials that are positive on the interval
[0, 1].

For all n € N, the operators A,, are positive and linear.

The rest of the paper is organized as follows: In the next section, we give some
auxiliary lemmas for the operators A,. In the third section, we investigate the
uniform approximation of the sequence {4, (f ;2) 152, and then we estimate the
rate of convergence of the operators A, with the aid of the first-order modulus of
continuity, the Lipschitz condition, first modulus of derivative and a combination of
first-order modulus of continuity and extended second-order modulus. In the fourth
section, we give the Voronovskaya type and Griiss—Voronovskaya type theorems for
the operators A,. Finally, we give some numerical estimations for the rate of
approximation of 4, to a given function using the first-order modulus of continuity

and extended second-order modulus, and then graphically illustrate them.

2. Auxiliary Results

In this part, we give the following lemmas which are used in the sequel. The
following lemma gives the moments of the operators A, (f;x).

LEMMA 2.1. For all z € [0,1] and n € N, the operators A, satisfy

(21) An(e(),'r) = 15
A,

e+1
(el,x)—$+ma
- 2e 4e — 1
Ay ; =22 )
(ezi) =2 +n(e—1)x+3n2(e—1)
- 1 9e — 3 13e — 1 1le+1
. = }
(esi) =27+ 201" © o C T
- 1 2le — 3
An(€4;.’1]) = .’L'4 + m{(Se — 4).’1]3 + eT.’L'Q}
L 1 {22@—48 +4le—1}
nle — 1) nz 5n3 )’

where e;(t) =t € C([0,1]), j =0, 4.

PRrROOF. If we take the derivative of both sides of (.2)) with respect to ¢, then
we get

(2.2) i ktk1% = %2 [(—1 +t(z +1)e @) 4 (—tz + 1)6”} .
k=0

Substituting ¢t = 1 and = nz in (22]), we have

> Bk(nac)
2

=e"nx(e—1)+ ™.
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After continuing similar operations, we get

Z ﬂk(n‘r) _ enz(e —1),

Pt k!
Z kﬂkij) =nze™ (e —1) + ",
k=0 ’
Z kQ—ﬂkE{;m) =n?2%e" (e — 1) + nxe™ (e + 1) + " (e — 1),
k=0 )

Z k? Pr(nz) =n?r3e (e — 1) + n?z?e™ 3e + nwe"* (4e — 1) + " (e + 1),

Z k* Br(nz) =n'zt(e — 1) + n323e"*(6e — 2) + nx?e"*(13e — 1)
+ nze"(1le 4+ 1) + e"*(4e — 1).
Finally, using above equalities and ([L4]), we obtain the desired results. (]

LEMMA 2.2. The central moments for the operators fln(f; x) forn € N are

(2.3) Ap(ey —zy) = ﬁ,

(24) Auller =) = T o2

25) Al(er =)o) = et +
26) Auler — oty = 2 M0,y el

PRrROOF. Using the linearity property of A,, we get
An((er — ) 2) = Ay (eq; ) — 4z Ay, (e3;2) + 622 A, (62 2)
— 423 A, (e1; ) + 2t A, (eo; ).
Using Lemma 2] we arrive at (Z6]). For equations (23)—(23]), the proof method

is similar. O

LEMMA 2.3. For all z € [0,1] and n € N, the operators A, satisfy

An(el - $§$) < Ty An((el - 'T)2§$) <én,

where

11
2.7 n =,
(2.7) & 10n

1 192
(28) fn =



RATE OF CONVERGENCE BY KANTOROVICH TYPE OPERATORS 55

ProoF. With the help of any calculator, one determines the expressions on
the right-hand sides of ([Z3]) and (24 cannot exceed (Z71) and (2.8)), respectively,
for all z € [0,1] and n € N. O

3. Approximation properties of the operators A,

_In this section, we investigate the approximation properties of the operators
A, and give some required notions.

THEOREM 3.1. For any f € C([0,1]), lim, oo An(f;2) = f(x) uniformly
on [0,1].

PRrROOF. From Lemma 1] we have lim,, o A, ((e1 —2)%;2) = 0, uniformly on
[0,1]. According to the Korovkin theorem [14], the desired result is obtained. O

DEFINITION 3.1 (cf. [9]). The first-order modulus of continuity is defined by

Wl(fa §) = sup{|f(t) - f(x)la ZEAS [O’ 1]’ |t - .T| < 6}’
where § > 0, f € C([0,1]).

The first-order modulus of continuity satisfies [9]:

(3.1) [F(t) = f(@)] S @r(f; [t = x)),
(3.2) wi(f;md) < (1+m)wi(f;d), m=0.

The following theorem gives the rate of convergence of the operators A,,.

THEOREM 3.2. For any f € C([0,1]) and each x € [0,1], the operators A,
satisfy |An(fix) — f(2)] < 2w (f; \/cn(x)), where ¢, (x) = Ap((t — z)%; ).

PROOF. Using linearity property of the operators A,, and (ZI)), we write

k+1
k
n

B3 VA - f@) <nS 3B [ ) - )
k=0 n

On the other hand, with the aid of B1]) and [B2]), we get

(3.4) 1f() = F@)| S wi(filt =) < L+ 072t — 2)*)wi(f:9).
For |t — x| < 6, (B4 is clear. For |t — z| > §, using [B.2)), we get
(3.5) (1 +m)wi(f;0) < (1+m*)wi(f39),

where we substitute m = §~1(t — z) in B.5) (cf. [5]).

Using (34) in (B3), we get
(36) |An(fiz) - f@)] < ni 3 Beln2) /T(1 +672(t — o)) (f; 8)dt

< (An(eos2) + 072 An((er — )% 2))wn (£:6),
for any § > 0 and each z € [0,1].
From (1) and (24]), we obtain |/~1n£f;z) — f(@)] < (1 + 0 %6, (2))wi(f;90),

for any § > 0 and each = € [0,1]. Since A4, are positive operators, it follows that
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Sn(x) = 0 for each x € [0,1]. In this case, if one chooses § := /¢, (x) in [B.6]), the
desired result is obtained. (]

DEFINITION 3.2. Lipschitz class of order «, denotes Lip;(a; K) (0 < « < 1,
K > 0), is defined by

Lip, (a; K) := {f € C([0,1]) : |[f(t) = f(2)| < K|t —x|%, t,2 € [0,1]}.
THEOREM 3.3. Let f € Lip,(«o; K). For x € [0,1], we have
|An(f3) = F(@0)] < K55 ().

PROOF. Since the monotonicity property of A,, follows from (B3)), the following
inequality holds |A, (f;z) — f(z)| < KAy (|t — 2|*; ). Using the Holder inequality,
we get |A, (f;z) — f(z)] < K(An((eq — 2)%;2))*/2. Hence, we obtained the desired
result. O

Let f’ be the derivative of f and let wi(f’;d) be the first modulus of the
derivative. In the following theorem, we give an estimate for the differentiable
function f (cf. [19]).

THEOREM 3.4. Let f be differentiable on [0,1] and f' be bounded on [0,1].
Then the following estimate holds

(37) An(fi2) ~ F@) < VE[IF @]+ e (7 VE)
for all x € 10,1].
PRrOOF. Using [19, Theorem 2.3.8] by r = 2, we derive the following estimate:
(3.8) [Au(fi2) = f(2)] < |An(er — z32)||f'(2)]
5 - .
+ [FAu(eoi) + 07 Aul(e2 — 2)%) | (£:0).

If we substitute (27), (21) and (Z.8)) in (8:8) and consider ,, < &,, then we obtain

- 1)
An(f12) = F@)] < VIS @)+ |+ 076 |wr(750):
Choosing § := /€, we immediately derive ([B.1)). O

If f is not differentiable, one cannot use the first modulus of the derivative.
In [19], Paltanea gave the following definition, which is an expanded version of the
first modulus of the derivative for the class of arbitrary function.

DEFINITION 3.3. For real-valued function f: [0,1] — R and any § > 0,

Sup‘f(wﬂ) - f(:c)‘ B ’f(y+s) — f(z)
t S

x,x+t,y+s€0,1], max{z +t,y+ s} —max{z,y} < (5}.

wi(f56) = of 56> 0,
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THEOREM 3.5. For f € C([0,1]), the following inequality holds

A1) = F@)] € S (£:0) + gt (f:0).
ProOF. Using [19, Theorem 2.3.7] by r = 2, we get
(39) |An(f;2) = f(2)] <67 An(er — z32)|wn (f36)
+ [ Aneor ) + 2 An((er = %5 2)|wd(7:0)
Substituting €7), @I) and (Z8) in @), we get
[An(f50) — F@) < 67 yan(F30) + [5 + 5726 |wd(7:0)

Taking § = /&, we arrive at the desired result. (]

4. Voronovskaya-type and Griiss—Voronovskaya type theorems

In this section we give an adapted version of the asymptotic formula given
by Voronovskaya for Bernstein operators in 1932, [29], and then give Griiss type
Voronovskaya theorem (cf. [10] and [7]).

THEOREM 4.1. Let f € C([0,1]) and f be differentiable twice on [0,1]. Then

lim nl A, (F:2) — f(@)] = 5o )+ ),

n—o0o 2(6 — 1)

for every x € [0,1].

PrOOF. For all t € [0,1] and a fixed point g € [0, 1], by Taylor’s formula
we get

(@1 )~ Fao) = (- a0) (o) + LI () 1 pi )¢~ x0)?

where p(t, zo) is the Peano form of the remainder such that p(t, z) € C(]0,1]) and
limg—, , p(t, o) = 0. By 2I) and [@I), we have
f//(z())

n[An(fizo) — flzo)] = f(@)nAn(t — z0;20) + o] nAn((t — z0)*; 20)
+ n;ln(p(t, x0)(t — 20)%; 20),

for every n € N.

Using (Z3) and 24), we get

. ~ e+1
(42) nh~>ngo nAn(el — Z0; 1'0) = 2(6 — 1)5
(4.3) li_>m n[ln((el — xO)Q;xO) = 0.

On the other hand, by the Cauchy—Schwarz inequality, it follows that

nAu(p(t,20) (er — 20)% o) < \/n2An((e1 — 0)%; 20) Au (P2 (t, x0); ).
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From (2.0), we get
(4.4) lim n2A4, ((e; — 20)*; z0) = 322

n—oo
The function ¢(t, zo) = p*(t, z0), t = 0, we have ¢(t, z¢) € C([0,1]) and limy_,
o(t,xo) = 0, therefore
(4.5) Jim. A (p?(t,m0); w0) = Jim. A ((t, 30); w0) = $(x0,x0) = 0,

uniformly with respect to zp € [0, 1]. Taking into account ([@4]) and (L), we obtain
limy, 00 NAR(P(t, 20) (t — 10)?;20) = 0. By ({2) and ([&3), we have that

lim n[A,(f;2) - f(o)] = = pray + L0,

O
n—o0o 2(6 — 1) 2!

The following theorem is a Voronovskaya-type theorem obtained using the
Griiss inequality.

THEOREM 4.2. If f, g are bounded on [0, 1], differentiable in some neighborhood
of  and has second derivative f"'(x) and g"(x) for some x € [0,1], then

1Lm nA,(f,g;x) = xf'(x)g (z),
where Ay (f, g;x) = An(fg;2) — An(f;2)An(g; ).
PROOF. The first and second derivatives of fg are as follows:

(f9)'(x) = f'(x)g(x) + f(2)g'(x),
(f9)"(x) = f"(x)g(x) + 2f'(x)g'(x) + ¢" (x) f ().

By using the linearity property of the operator A, and simple computations,
we obtain

An(f.g;:2) = An(fg; ) — f(2)g(x) — (fg) (x)An(er — z;2)

f 1 T - 9
U 5 (- %2
— (@) [Au(fi2) — F&) ~ F@)Anler - z2) - T (0 - 2))]
A [Aulgi) — 0(a) — o @) Anler — mi2) ~ LI A (0 2)%)]

+ Ap(er — z;2)[f(2)g (z) — ¢ (2) An (f; )]
Using (Z3) and 24), we get
lim n[ln(f,g;z) = lim n[;ln(fg,if) - An(f,x)fin(gaz)]

n—o0 n—o0

= lim ald,(7g50) ~ (o)) - 5

(o) (@) - VLD,
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o) i nlAn(752) - 0] - )5 - LA

- Jim A5 tim ald(gs2) - o) — o (0)5 - L]

+ g (@) Jim [£() = Aulf; )] + 2 (@) (@)

2! n—o0
+ (@) 5 Jim (1) = A1)

Finally, taking into account Theorem 3.1l and ] we complete the proof. O

5. Applications and Examples

In this section, we obtain some upper bounds for the error A, (f;z)—f(z) in the
terms of the first-order modulus of continuity wq(f;.) and extended second-order
modulus wg(f;.) by using Maple 2021.

Let B, := |A,(f;2) — f(2)|, f(x) = ze* ! and n € {10, 30,100, 250}.

EXAMPLE 5.1. For some values in [0, 1], the absolute error E,, of the operators

A, is computed with the help of the first-modulus of continuity in Table [ and
illustrated graphically in Figure [l

TABLE 1. Error of approximation operators A, to f(x) = ze®T!

using w1 (f;.)
x Eio E3o E1o0 Easo
0.0 2.650265324 1.235906659 0.6071382192 0.3677764872
0.2 3.784531330 1.784724711 0.8826317616 0.5362513930
0.4 5.291142748 2.515979292 1.2503539480 0.7612998148
0.6 7.279375384 3.483551688 1.7376396630 1.0597143150
0.8 9.888640910 4.756239236 2.3794068440 1.4529501090
1.0 13.29647458 6.421719002 3.2201743960 1.9683665460

14
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FIGURE 1. Error estimates by means of w; (f;.)
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EXAMPLE 5.2. The absolute error F,, is obtained by using the extended second-
order modulus of continuity in Table 2] and represented graphically in Figure 2 for
some values in [0, 1].

TABLE 2. Error of approximation operators A, to f(x) = ze®T!

using wi(f;.)

x Eqo Es3o E100 Ess0
0.0 0.8442376264 0.2224360117 0.0597963438 0.0229862841
0.2 1.1256469900 0.2975942848 0.0801562211 0.0308387404
0.4 1.4902821370 0.3951294256 0.1066003968 0.0410415388
0.6 1.9612014410 0.5212658360 0.1408250063 0.0542505027
0.8 2.5675940030 0.6838872243 0.1849789985 0.0712966459
1.0 3.3463640480 0.8929662361 0.2417814945 0.0932316003
35
50 eeeeees E1p ot
Eso
25 L o
Ei0 ot
20 F  eeeecee Ezso ...,.-"
15 L veo*’ -
10 e
05 I
0,0 Fisassasssssss }.-mo--o-.--‘-..}--...p-.‘--q-.‘,.op--‘-..,-.,--}...‘-..‘.-‘---‘---
0 02 04 06 038 1

FIGURE 2. Error estimates by means of w¢ (f;.)

When we examine the tables and figures in both examples, we notice that the
approximation errors of the operators A, decrease as n increases. Moreover, one
observes that estimates with the extended second-order modulus are more refined
than estimates using the first-order modulus of continuity.

6. Conclusion

The adjoint Bernoulli polynomials defined by Ricci [18] are positive on the pos-
itive semi-axis. We have introduced the Kantorovich-type linear positive operators
containing these polynomials and proved the uniform convergence of these opera-
tors with a Korovkin-type approximation. We have used the first-order modulus of
continuity, the Lipschitz class, the first modulus of derivative, and a combination
of the first-modulus of continuity and extended second-order modulus to estimate
the rate of convergence by operators A,,. We have derived asymptotic formulae for
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determining the uniform order of convergence of operators A, to a given function

f

using the idea of the Voronovskaya theorem and Griiss inequality. Finally, we

have obtained error estimations for operators A, with the help of the moduli w;
and wg, and then we have presented the numerical results via tables and figures.

For further studies, one may define various types of operators based on adjoint

Appell polynomials and determine the order of approximation of these operators

in

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

terms of various types of moduli.
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