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DOMAIN OF THE CESARO MEAN
OF ORDER o IN MADDOX’S SPACE £(p)

Medine Yesilkayagil Savagci and Feyzi Basar

ABSTRACT. The sequence space ¢(p) was defined by I. J. Maddox, Spaces of
strongly summable sequences, Quart. J. Math. Oxford (2), 18 (1967), 345
355. Here, we introduce the paranormed Cesaro sequence space ¢(Cq,p) of
order «, of non-absolute type as the domain of Cesaro mean C, of order «
and prove that the spaces (Cq,p) and £(p) are linearly paranorm isomorphic.
Besides this, we compute the a-, 8- and ~v-duals of the space £(Ca,p) and
construct the basis of the space ¢(Cq, p) together with the characterization of
the classes of matrix transformations from the space ¢(Cq,p) into the spaces
loo of bounded sequences and f of almost convergent sequences, and any given
sequence space Y, and from a given sequence space Y into the sequence space
£(Cq,p). Finally, we emphasize on some geometric properties of the space

L(Ca,p).

1. Introduction

We denote the space of all sequences of complex entries by w. Any vector
subspace of w is called a sequence space. We shall write £, ¢ and ¢y for the spaces
of all bounded, convergent and null sequences, respectively. Also by bs, cs, £1 and
¢,, we denote the spaces of all bounded, convergent, absolutely and p-absolutely
convergent series, respectively.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g: X — R such that g(0) =0, g(x) = g(—=x)
and scalar multiplication is continuous, i.e., |, —a| = 0 and g(x,, — ) — 0 imply
glanx, —ax) — 0 for all o’s in R and all 2’s in X, where 6 is the zero vector
in the linear space X. Assume here and after that (px) be a bounded sequence of
strictly positive real numbers with suppy, = H and M = max{1, H}. Then, the
linear space £(p) was defined by Maddox in [17] (see also Nakano [21] and Simons
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[24]), as follows:

E(p):{x:(xk)ew:2|xk|p’“<oo} with 0<pr < H < o0
k

which is a complete space paranormed by

g1(2) = (Z |xk|m)1/M.

For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to co. We shall assume throughout that plzl + (p,)~! = 1 provided
1 < inf pr, < H < oo and denote the collection of all finite subsets of N by &F, where
N=1{0,1,2,...}.

The multiplier space S(X,Y) of the sequence spaces X and Y is defined by

(1.1) S(X,)Y)={z=(21) €cw:az=(xpz) €Y forall z € X}.

With the notation of (IIJ), the a-, 8- and y-duals X, X? and X7 of a sequence
space X are defined by X = S(X,¢;), X# = S(X,cs), and X? = S(X, bs).

If a sequence space X paranormed by g contains a sequence (by) with the
property that for every x € X there is a unique sequence of scalars (ay) such that
lim,, o0 Q(SC*ZZZO akbk) =0, then (bg) is called a Schauder basis (or briefly basis)
for X. The series Zk arbr which has the sum z is then called the expansion of x
with respect to (bx) and written as = = >, auby.

Let X, Y be any two sequence spaces and A = (a,x) be an infinite matrix
of complex numbers a,x, where k,n € N. Then, we say that A defines a matriz
transformation from X into Y and denote it by writing A: X — Y, if for every
sequence z = (xy) € X the sequence Az = {(Az),}, the A-transform of z, is in Y
where

(1.2) (Az), = Z ankxp for each n e N.
k

By (X :Y), we denote the class of all matrices A such that A: X — Y. Thus,
A€ (X :Y) if and only if the series on the right side of (L2 converges for each
n € N and every x € X, and we have Az € Y for all z € X. Also, we write
A, = (ank)ken for the sequence in the n-th row of A.

Let @« € R with @« > —1. The Cesaro matrix of order « or, in short, the

Cy-matrix is defined by the matrix C, = (cgffc)) which is given by

(k)

=4 (29

0, otherwise

0<k<n,

for all n, k € N. Then, the inverse C;! = (6510,;)) of the C,-matrix is determined by

o O (1), max{0.n —a} <k <,
nko 0, k>n
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for all n,k € N, where a € N. We should note here that the reader can refer to
Malkowsky and Rakocevic [19] pp.28-44] for some details related to the Cesaro
methods of order greater than -1.

1.1. The spaces f and fy. Now, we may give a short survey on the concept
of almost convergence which is a generalization of the ordinary convergence. Banach
[3] proved the existence of a functional L on the space ¢, satisfying the following
conditions for all ,y € £, and all scalars A and pu:

(i) LAz + py) = AL(x) + pL(y).
(ii) @ >0 for all k € N implies L((zr)52,) = 0.

(ili) L((xn+r)ieg) = L((zr)32,) for all n € N.

(iv) L(e) =1, where e = (1,1,1,...,1,...).

Lorentz [16] defined a Banach limit to be any functional on ¢, satisfying the
conditions in (i)—(iv), and a sequence & = (z1,) € { is said to be almost convergent
to the generalized limit « if all Banach limits of x are coincide and are equal to
a, [16]. This is denoted by f-limz, = «. The shift operator P is defined on w by
P, (%) = Tp41 for all n € N. Let P* be the composition of P with itself i times and
write for a sequence x = ()

I

tmn(x) = ——=» P:(z) forall m,neN.
m+1 =

Lorentz [16] proved that f-lim z; = « if and only if lim,, o0 tmn () = «, uniformly
in n. It is well-known that a convergent sequence is almost convergent such that
its ordinary and generalized limits are equal. For more detail on the Banach limit,
the reader may refer to Colak and Cakar [11], and Das [12]. Therefore, we define
the spaces fp and f of almost null and almost convergent sequences by

— _ T S Tn+k . .
fo = {:c = (k) € oo : mlgnm];) el 0 uniformly in n},

m

— _ . . Tnt+k . .
f= {:c = (xf) € oo : Jar € C such that n}gnoozo mal = uniformly in n}

One can easily see that the inclusions ¢y C fo, ¢ C f, and fy C f are strictly hold.

2. The Cesaro sequence space £(C%, p) of order «

In this section, we define the Cesaro sequence space £(C,,p) and prove that
0(Cy, p) is linearly isomorphic to the space £(p), where 0 < pr < H < oo for all
k € N. Finally, we give the basis for the space ¢(Cy, p).

Let X be any sequence space. Then, the domain X 4 of an infinite matrix A in
X is defined by

(2.1) Xa={r=(vp) cw: Az € X}.

In [10], Choudhary and Mishra have defined the sequence space ¢(p) consisting of
all sequences whose B-transforms are in the space £(p), where B = (by,) is defined
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by

1, 0<k<n
bnk:
0, k>n

for all k,n € N. Bagar and Altay [6] have examined the space bs(p) which is
formerly defined by Basar [5] as the set of all series whose sequences of partial

sums are in the space £ (p). With the notation of (Z1I), the spaces £(p) and bs(p)
can be redefined by

((p) =[t(p)lz and bs(p) = [leo(p)] B-

In [7], Basar and Altay defined the sequence space r4(p) consisting of all se-
quences whose R?-transforms are in the space ¢(p), where R? = (r!, ) is the matrix
of Riesz mean, that is

ri(p) = {¢(p)}rs and 1= ({,)pe.

In [25], Wang defined the sequence space X, consisting of all sequences
whose N'-transforms are in ¢, and is a Banach space with the norm

[e'S) k
el = (X |72 2 tues
K k=0

=0
Yesilkayagil and Bagar [26] 27] have defined the sequence space Nt(p) con-
sisting of all sequences whose Norlund transforms are in the space ¢(p), where
Nt = (a',) is the matrix of the Norlund mean, that is

N'(p) = {t(p)} -

Also, Aydin and Bagar [1}, 2], Basar et al. [8] and Nergiz and Basar [22] gave the
domain of some triangle matrices in the sequence space ¢(p). The reader can refer
to the monographs [4] and [20] for the background on the normed and paranormed
sequence spaces, and summability theory and related topics.

Now, we introduce the Cesaro sequence space £(Cy, p) of order a defined by

k .
1 k—j+a—1 Pk
(k+a) Z( k—j )‘Tj <OO}

k /) j=0
with 0 <pr < H < o0.

P\ 1/p
> with 1< p< .

UCy,p) = {:I: = (z) Ew: Z

k

It is natural that this space may be also defined with the notation of ([ZI]) that

U(Ca,p) = {t(p)}c.-
Define the sequence y = (yg), which will be frequently used, by the C,-
transform of a sequence x = (xy), i.e.,

(22) Y = (Caz)k =

1 & <k:—j+a—1
=0

) x; forall keN.
(k-};a)j k—J > !
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THEOREM 2.1. ¢(Cy,p) is a complete linear metric space paranormed by go

defined by
1 K (k—jta—1\ [P\YY
(k+a) Z k—j T

k) j=0
PROOF. Since this can be shown by a routine verification, we omit details. [J

ni) = (3

k

REMARK 2.1. One can easily see that the absolute property does not hold on
the space £(Cq,p), that is ga(z) # g2(|x|) for at least one sequence in the space
¢(Cy,p) and this says that ¢(C,, p) is a sequence space of non-absolute type; where

2| = (k).

THEOREM 2.2. The Cesdro sequence space of order a, £(Cy,p) of non-absolute
type is linearly isomorphic to the space £(p), where 0 < p, < H < oo for all k € N.

PRrROOF. To prove the theorem, we should show the existence of a linear bi-
jection between the spaces £(Cq,p) and £(p) for 0 < pp < H < co. Consider the
transformation T defined, with the notation of (22,

T:U(Cy,p) — Lp), z—Tx=y.

The linearity of T is clear. Further, it is trivial that x = 6 whenever Tz = 6 and
hence T is injective.
Let us take any y € ¢(p) and define the sequence = = (xy) by

for all k£ € N, where max{0,k — a} < j. Then, we have

1 K (k—j+a—1\ [\'M
(k-};a)z k—j Lj

2 §=0
_(Z 1 u (kz—y—i—a—l)zj:(j—z—a—l)(z—l—a)y p")l/M
- k+a o o i

k (k)]:O k—J i=0 J =t t

- (gwum)w

= g1(y) < o0.

This means that € £(C,,p). Consequently, T is surjective and is paranorm
preserving. Hence, T is a linear bijection and this says us that the spaces ¢(Cy, p)
and /(p) are linearly paranorm isomorphic. O

We determine the basis for the paranormed space £(Cl,, p).
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THEOREM 2.3. Define the sequence b¥) (o) = {b%k)(a)}neN of the elements of
the space €(Cy, p) for every fized k € N by

n—k—a—1)\ (k+«
(2.4) b®) (@) = ("Tase (), max{0,n—a} <k <n,
" 0, otherwise.

Then, the sequence {b®)(a)}ren is a basis for the space {(Cy,p) and any x €
0(Cy,p) has a unique representation of the form

(2.5) T = Z Mk (@)b™ (o

where A (a) = (Cox)i for allk € N and 0 < py, < H < o0.
PROOF. It is clear that {b®)(a)} C €(Cy,p), since
(2.6) Cob® () =e®™ e t(p) forall keN,

where e(®) is the sequence whose only non-zero term is a 1 in the k-th place for
each k e Nand 0 < pr < H < .
Let x € ¢(Cy, p) be given. For every non-negative integer m, we put

(2.7) ziml = Z Ak(@)b™® (a).
k=0
Then, we obtain by applying C,, to (2.7)) with (20 that
Cozlm = Z)\k Cob™ () = Z(Cax)ke(k),
k=0

0<i<m,

(x — zlm =
{ } { Co)iy, ©>m,
where i,m € N. Given € > 0, then there is an integer mg such that

[ i |(cax)i|mr/M <e

i=m—+1

for all (m + 1) > mg. Hence,

[Cale ~ )] = | > |<caw>i|Pk]1/M <| 3 |<ca:c>i|Pk]1/M <
i=mt1 i=mo

for all (m + 1) > mg which proves that z € £(C,,p) is represented as in (2.5l

Let us show the uniqueness of the representation for x € £(Cy,, p) given by (Z.5]).
Suppose, on the contrary, that there exists a representation z = Y, 15 (a)b® ().
Since the linear transformation T, from £(Cy,p) to ¢(p), used in the proof of The-
orem is continuous we have at this stage that

(Cam)i =Y ur(@){Cab™ (@)}, = 3~ ui(@)ef” = u(a)
k k
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for all [ € N which contradicts the fact that (Cpz); = Ai(«) for all I € N. Hence,
the representation ([Z.H) of z € ¢(Cy,p) is unique. O

3. The a-, 8- and ~-duals of the space £(Cy, p)
In this section, we determine the a-, -and y-duals of the space £(Cy, p). Firstly,

we quote some lemmas which are needed in proving our theorems.
LEMMA 3.1. [14, Theorem 5.1.0] The following statements hold:

(i) Let 1 < pp < H < oo for every k € N. Then, A € ({(p) : £1) if and only if
there exists an integer B > 1 such that

sup Z Z ankB

NeF neN

(ii) Let 0 < pr <1 for every k € N. Then, A € ({(p) : £1) if and only if

D ank

neN
LEmMMA 3.2. [15] Theorem 1] The following statements hold:

(i) Let 1 < pr < H < o0 for every k € N. Then, A € ({(p) : L) if and only if
there exists an integer B > 1 such that

<oo.

Pk
sup sup < o0.
NeF keN

3.1 su anx B~ Pk < 0.
(3.1) neng KB
(ii) Let 0 < px <1 for every k € N. Then, A € (£(p) : L) if and only if
(3.2) sup |ank|P* < oo.
n,keN

LEMMA 3.3. [15] Theorem 1] Let 0 < pr, < H < oo for every k € N. Then,
A€ (L(p):c) if and only if BT), B2) hold and there is By € C such that anr — Pk
for each k € N, as n — oo.

THEOREM 3.1. Let 1 < pp < H < oo for every k € N, max{0,n — a} <k and
max{0,j — a} < k. Then, define the sets D1(p), D2(p) and Ds(p) as follows:

Dl(p) = U{a—(ak)ew ]S\,lg;z Z<n_ _Z—1><k-l:a>anB1 k<00}7
Dz (p) := U{aZ(ak)Ew: (]kzl)(kza)ajB_l k<oo}7

Ds(p) = U {a = (ar) €Ew: nlgr;oz (J -k 727 1) (k;;a)aj ea:ists}.

B>1

neN

Then, the following statements hold:
(i) {€(Ca,p)}* = Di(p). (i) {€(Ca,p)}” = D2(p).
(iii) {£(Ca, )}’ = D2(p) N D3(p).
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PROOF. (i) Let us take a = (a,) € w. We easily derive with (Z3]) that

" —k—a—1\/[(k
(3.3) AnTn = Z (n " 72 ) ( Za) anyr = (Bay)n forall neN,
k=0

where B, = (b)) is defined by
s [T (T an, max{0,n—a} <k <n,
L ) k>n

for all n,k € N. Thus, we observe by combining B3] with part (i) of Lemma
B that ax = (anz,) € ¢4 whenever z = (z,,) € £(C,,p) if and only if Bay €l
whenever y = (y,) € £(p). This gives the desired result that {£(Cy,p)}* = D1(p).

(ii) Consider the equality

(3.4) Zakxk zn:zk: (k_i_?_ 1) (‘jJ;_a)akyj

k=0 j=0

" i—k—a-1\[(k+a
k=0 j=Fk J
Ea )n
for all n € N, where E, = (e( )) is defined by
o _ [T (75 (1)ay, max{o,i—a) <k <n,
Cnk =
0, k>n

3

—~

for all n,k € N. Thus, we deduce from part (i) of Lemma with (34) that
ax = (agzk) € bs whenever x = (z) € ¢(Cy,p) if and only if F,y € fo whenever
y = (yx) € £(p). Therefore, we obtain from part (i) of LemmaB2that {¢/(C,,p)}" =
Ds(p).

(iii) We see from Lemma B3] that ax = (arxy) € c¢s whenever = (xy) € £(Cq,D)
if and ounly if E,y € ¢ whenever y = (yx) € €(p). Therefore, we derive that

{£(Ca,p)}? = Da(p) N D3(p). O

THEOREM 3.2. Let 0 < pr < 1 for every k € N. Define the sets Dya(p) and
D5(p) by
Z(n—kz—a—l)(kz—i—a)a pk<oo}
= n—=k k " ’
zn:(j—k—a—l)(k:—i—a) ‘pk< }
2 ik p )W 0 .

Then, the following statements hold:

() {€(Ca,p)}* = Da(p). (i) {€(Ca,p)}” = Ds(p).
(iii) {€(Ca,p)}’ = D3(p) N Da(p).

Dy(p) := {a = (ar) € w : sup sup
NeF keN

Ds(p) := {a = (ag) € w: sup
n,keN
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PROOF. This is easily obtained by proceeding as in the proof of Theorem [31]
by using Lemma and the second parts of Lemmas 311 instead of the first
parts. So, we omit details. O

4. Some matrix transformations related to the sequence space £(Cqu,p)

In the present section, we characterize the classes (£(Co,p) : €oo), (6(Ca,p) : f),
(U(Cq,p) : Y) and (Y : £(Cq,p)) of matrix transformations, where ¥~ denotes any
given sequence space. Since Y4 2 Y for any triangle A and any sequence space Y,
it is trivial that the equivalence "z € Yy, if and only if y = Ax € Y” holds.

For simplicity in notation, in this section we use the notation

(nkm m+lzan+zk

for all n,k,m € N. Throughout this section, we assume that the entries of the
infinite matrices A = (ank) and F, = ( fflz)) are connected with the relation

(a)__oo j—k—a—-1\/k+« ‘
(4.1) For _Z( Pk )(k n;
j=k
for all n, k € N, where max{0,j — a} < k.

THEOREM 4.1. The following statements hold:
(i) Let 0 < pr <1 for all k € N. Then, A = (ank) € (U(Ca,p) : Lso) if and only if

(4.2) sup | £ < oc.
n,keN
(ii) Let 1 < px < oo for all k € N. Then, A = (an) € (U(Cq,D) : o) if and only if
(4.3) = supZ‘ (a)B ’p;“ <oo forall B>1.
PROOF. (i) Suppose that the condition [@2]) holds, and =z = (zx) € £(Cy, p).
This implies the fact that A, = (ank)ren € [((Ca,p)]? for each n € N and the

product F,C, exists. Hence, the A-transform Ax of x exists. Then, we derive the
following relation from the mth partial sum of the series > & OnkT) that

R o (R [Gw 1
g G G

for all m € N. Therefore, by passing to limit as m — oo in ([@4]) we obtain the
consequence that

@5)  (Ax), = Zk:ankxk -y {i (j - ’; o 1) (k Z a)anj}yk

k. -j=
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*Zf,(zkyk* )

for all n € N. In this situation, since condition [B.2) of part (ii) of Lemma [B.2] is
fulfilled by the matrix F,,, we conclude that Ax = F,y € {.. Hence, the condition
is sufficient.

Conversely, suppose that A = (ank) € (((Ca,p) : loo). Then, Az exists and is
in the space (o, for all @ € £(C,,p). This gives that A,, = (ank)ren € [¢(Cu,p)]?
for each n € N which shows the necessity of (£2).

(ii) Suppose that condition [3)) holds, and x = (zx) € ¢(Cy,p). Then, Ax
exists and we again have relation (@3] by following the same way in proving part
(i), above. Now, consider the following inequality (see [15]) which holds for any
B >0 and a, 8 € C that

(4.6) laB| < BllaB~'" +|8|"] with p> 1.
Therefore, we observe by combining ([£H) and inequality (&6]) that
sup

Zankxk sup > | £ [lye] < BIC(B) + g1(y)] < o0
neN neN P

which means that A€ (U(Cqyp) : lso).

Conversely, let us suppose that A = (anr) € (U(Cq,p) : bs). Then, Az exists
and belongs to the space £, for all & € ¢(C,,p). This yields that A,, = (ank)ken €
[0(Cq,p)]? for each n € N which shows the necessity of (E3). O

THEOREM 4.2. A = (ank) € (U(Cy,p) : f) if and only if conditions [@2)) and
&E3) hold, and

j—k —a—l k+ a
(47) Oék—E(CB 1E>noom—+122( )( k )a/n-‘r’l‘,] = O

uniformly in n, for all k € N.

PROOF. Since the theorem can be proved for 0 < px < 1 by a similar way, to
avoid the repetition of the similar statements, we only consider the case 1 < px < oo.

Let A = (ank) € €(Cy,p) : f) with 1 < pp < co. Then, Az exists and is in
the space f for all @ € ¢(Cy,p). Since the inclusion f C ¢, holds, the necessity of
condition ([@3]) follows from Theorem ATl

Besides, one can conclude for = b*)(a) = {b%k) (@)} € £(Cq,p) defined by

24) that
(j—k—a-1\/k+a
{2 (50 ()
jgk .77k k JnEN

belongs to the space f for each k € N. This gives the necessity of condition (&.1).

Conversely, suppose that conditions [{3]) and 7)) hold, and take any = =
(zx) € £(Ca,p). Then, since A, = (ank)ren € [((Ca,p)]? for each n € N, Az exists.
Therefore, we again have relation ([£3]) by following the same way in proving part
(i), above. Since the series Z;O:O ankxk is convergent by the hypothesis, the series

>orco [E;’;k (jfl;:zfl) (kzo‘)anﬂyk is also convergent. Therefore, we have from
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@) that [f()(n, k,m)|Px — |ax|P*, as m — oo, uniformly in n for each k € N
which leads with (3] that the inequality

Z |k |Pe < sup Z £ (n, k,m)|” = C < o0
mmER p=0

holds for every ¢ € N. That is, (o) € £(p’). Since z € ¢(Cq,p) by the hypothesis
and £(Cy,p) = £(p), y = (yx) € £(p). Therefore, we see by applying Holder’s
inequality that Y7 |owyk| < oo for all y € €(p). For any given € > 0, choose a
fixed kg € N such that

oo 1/pk c
Pr < .
<kkz+1 o > ACY/a
=ko

Then, there is some mg € N by (@) such that | Z olF @ (n, k,m) — aglyx| < /2
for every m > my, uniformly in n. Therefore, we see by applying Holder’s inequality
that

m
‘ Z ay n4i — Zakyk

i=0
ko o
<T@ km) — oy + | Y O (0, kom) — oy
k=0 k=ko+1
€ oo , 1/pj, oo 1/px
<5+{ > [|f<a>(n,k,m>|+|ak|]pk} (3 mr)
k=ko+1 k=ko+1
1/p;
< = 5 —I—QC k— Cl/Pk

for all sufficiently large m uniformly in n. Hence, F,y € f which leads to the fact
that Az € f, as desired. That is to say that the conditions (@3] and (&1) are
sufficient.

This step completes the proof of the theorem for the case 1 < pi < oo. O

If we replace the space fo with the space f, then Theorem is reduced to
the following:

COROLLARY 4.1. Let A = (ank) be an infinite matriz. Then, A € (£(Cq,D) : fo)
if and only if @2) and [E3) hold, and @) also holds with a = 0 for all k € N.

If we replace the spaces ¢ and ¢y with the spaces f and fy, then Theorem
and Corollary 1] are respectively reduced to the following:

COROLLARY 4.2. Let A = (ani) be an infinite matriz. Then, the following
statements hold:

(i) A€ (U(Cq,p):c) if and only if @ED) and @E3) hold, and
(4.8) Jay, € C  such that li_>m fr(ﬁ;) =ay for each fired k € N.



30 YESILKAYAGIL SAVASCI AND BASAR

(ii) A € (((Cq,p) : co) if and only if @2) and EI) hold, and [EI]) also holds
with a, = 0 for all k € N.

By combining Theorems [£.1] and with Corollaries[Z] and 2] the following
results are derived for the characterization of some matrix classes concerning with
the Cesaro sequence spaces ¢(C,,p) of order a:

COROLLARY 4.3. Let the entries of the infinite matrices A = (ank) and Fo =

(ffi)) are connected with the relation @), and a(n, k) = Y. aix for alln, k € N.
Then, the following statements hold:

(i) Let 0 < pr <1 for all k € N. Then, A = (ank) € (€(Cy,p) : bs) if and only if
E2) holds with a(n,k) instead of any.

(if) Let 1 < py < oo for all k € N. Then, A = (ank) € ({(Cq,p) : bs) if and only
if @3) holds with a(n, k) instead of ank.

(iii) Let 0 < px <1 for allk € N. Then, A = (ank) € (U(Cq,p) : [s) if and only if
E2) and D) hold with a(n, k) instead of ank, where fs denotes the space
of all series whose sequence of partial sums are in the space f.

(iv) Let 1 < pr < oo for all k € N. Then, A = (ank) € ({(Ca,p) : fs) if and only
if @3) and @) hold with a(n, k) instead of ank.

(v) Let 0 < pp < 1 for all k € N. Then, A = (anr) € (((Cq,p) : fso) if and
only if (A2)) holds and [@T)) also holds with ay, = 0 for all k € N with a(n, k)
instead of ank, where fsy denotes the space of all series whose sequence of
partial sums are in the space fo.

(vi) Let 1 < pi < oo for all k € N. Then, A = (ank) € (l(Cq,p) : fSo) if and
only if @3)) holds and [E1) also holds with ay, = 0 for all k € N with a(n, k)
instead of ang.

(vii) Let 0 < px < 1 for all k € N. Then, A € ({(Cq,p) : cs) if and only if ([@E2)
and (&) hold with a(n, k) instead of an.

(viii) Let 1 < px < 0o for all k € N. Then, A € ({(Cu,p) : cs) if and only if (@3]
and @) hold with a(n, k) instead of any.

(ix) Let 0 < py <1 for all k € N. Then, A € ({(Cq,p) : cso) if and only if (£2)
holds and ([A8) also holds with ax, = 0 for all k € N with a(n, k) instead of
ank, where csg denotes the space of all series whose sequence of partial sums
are in the space cg.

(x) Let 1 < pp, < oo for all k € N. Then, A € ({(Cy,p) : cso) if and only if [E3)
holds and (L8)) also holds with a, = 0 for all k € N with ag, = 0 for allk € N
with a(n, k) instead of any.

In order to be able to characterize the classes of matrix transformations from
the space ¢(C,,p) to the any given sequence space Y and conversely from the any
given sequence space Y to the space ¢(Cy, p), we give the following two theorems:

THEOREM 4.3. Suppose that the entries of the infinite matrices A = (ank) and
F, = (fﬁ)) are connected with the relation (@I for all k,n € N and Y be any
given sequence space. Then, A € ({(Cy,p):Y) if and only if A, € {{(Cq,p)}? for
allmeNand Fy € ({(p) : Y).
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PROOF. Let Y be any given sequence space. Suppose that ([£1]) holds between

the entries of the matrices A = (an) and F,, = ( fﬁ)), and take into account that
the spaces ¢(Cy,p) and £(p) are linearly paranorm isomorphic.
Let A € (((Cq,p):Y) and take any y € £(p). Then,

(FuCl) nk*z Flore) _ ZZ<J_3__3_1>< ]zt:_1>anjank,
i=k j=1i

i.e., F,,C, exists and A,, € {¢(C,,p)}? which yields that (F,),, € ¢; for each n € N.
Hence, F,y exists and thus

N (TR GUM S Crr S

k j=k k i=0
k
_ZZ(J_ _a_l)anJZ(k_;—i_a_l) Zankxk
k j=k =0

for all n € N. So, we derive that F,y = Az, which leads us to the consequence
F,e({(p):Y).

Conversely, let A, € {{(Cq,p)}? for each n € N and F,, € ({(p) : Y), and take
x = (xr) € £(Cq,p). Then, Ax exists. Therefore, we again obtain the relation
[#X) by following the same way used in the proof of part (i) of Theorem [ZT] for all
n €N, i.e., Az = F,y and this shows that A € (¢(Cq,p) : Y). O

By changing the roles of the spaces ¢(Cy, p) with Y in Theorem 3] we have:

THEOREM 4.4. Suppose that Y be any given sequence space and the entries of

(gflk)) are connected with the relation

o 1 n—j+a—1
g,(zk)mz< o >ajk

n
n /) j=0 J

the infinite matrices A = (ank) and G4

for alln,k € N. Then, A€ (Y : £(Cq,p)) if and only if G4 € (Y : £(p)).

PROOF. Let s = (s;) € Y and consider the following equality

= ngf,‘c)sk for all n € N.

Then, by letting m — oo in (9) we have {Cy(As)}, = (Gas)n for all n € N. Since
As € £(Cq,p), Ca(As) = Gys € L(p). O
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5. The rotundity of the space £(C,, p)

In functional analysis, the rotundity of Banach spaces is one of the most im-
portant geometric property. For details, the reader may refer to [9], 13, 18]. In
this section, we give the necessary and sufficient condition in order to the space
£(Cq,p) be rotund and present some results related to this concept.

DEFINITION 5.1. Let S(X) be the unit sphere of a Banach space X. Then, a
point € S(X) is called an extreme point if 2z = y + z implies y = z for every
Y,z € S(X). A Banach space X is said to be rotund (strictly convex) if every point
of S(X) is an extreme point.

DEFINITION 5.2. A Banach space X is said to have Kadec—Klee property (or
property (H)) if every weakly convergent sequence on the unit sphere is convergent
in norm.

DEFINITION 5.3. A Banach space X is said to have
(i) the Opial property if every sequence (x,,) weakly convergent to xg € X satis-
fies
liminf ||z, — x|l < liminf |z, + z|
n—o0 n—oo
for every z € X with z # zo.
(ii) the uniform Opial property if for each & > 0, there exists an 7 > 0 such that

1+ 7 < liminf ||z, + z||
n— oo

for each x € X with ||z| > £ and each sequence (z,,) in X such that x, ~ 0
and liminf,, o ||z, > 1.

DEFINITION 5.4. Let X be a real vector space. A functional o: X — [0, 00) is
called a modular if
(i) o(x) =0 if and only if x = 6;
) o(nz) = o(x) for all scalars n with |n| = 1;
ii) o(nz + Py) < o(x) +o(y) for all z,y € X and 0,8 > 0 with n+ 5 =1;
) the modular ¢ is called convex if o(nz + By) < no(z) + Bo(y) for all x,y € X
and 7,8 >0 withn+ 8 =1;
A modular ¢ on X is called
(a) right continuous if lim, 1+ o(nz) = o(x) for all z € X,.
(b) left continuous if lim,_,1- o(nx) = o(x) for all z € X,.
(¢) continuous if it is both right and left continuous, where
X, = {x € X: lim o(nz) = 0}.

n—0+t

We define o, on £(Cy,p) by

)= > ()

k =0

Pk
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If pr, > 1 for all positive integer k, by the convexity of the function ¢ — [¢|P* for
each k, o, is a convex modular on ¢(Cy,p). We consider ¢(Cy,,p) equipped with
Luxemburg norm given by

(5.1) Jall = inf{y > 05 oy (/) < 1},
¢(Cq,p) is a Banach space with this norm. This can be showed by the similar way

used in the proof of Theorem 7 in [22].
We establish some basic properties for the modular o,,.

PROPOSITION 5.1. The modular o, on £(Cy, p) satisfies the following properties
with pr = 1 for all positive integer k:
(i) If0 < n < 1, then nMo,(z/n) < op(z) and op(nz) < nop(z).
(ii) Ifn > 1, then op(z) < nMop(x/n).
(iii) If n > 1, then op(x) = nop(x/n).
(iv) The modular o, is continuous.

PROOF. (i) Let 0 <n < 1. Then n™ /nPr < 1 for all pi > 1. So, we have

k .
1 k—j+a—-1
(k-};a)Z( k—j )xj

Pk

Moye/n) =" Z—

k 7=0
k
1 k—j+a-1 Pk
gz k+o Z( k/’— )'rj —O'p(l'>,
k (k)j:O J
k
1 k—j+a—1 Pk
) = Y (41
k (k)j:O J
k
1 k—j+a-—1 Pk
SO D DY G T R NE
k (k)j:O J
(i) Let n > 1. Then 1 < n™ /nP* for all p, > 1. So, we have

op(@) < orow(@) = o (/).

(iii) Let n > 1. Then n/nP* < 1 for all py > 1. Therefore, one can easily see that

k .
1 k—j+a—1
(kJ]ga)Z( k—j )xj

Pk

(iv) If n > 1, then we have

(1)

=0

Pk

k .
1 k—j+a—-1
(k;;a)z< ke )xﬂ'
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k
anM Z( —j—f—a—l)xj
k

JZO

Pk

)

that is to say that

(5.2) nop(w) < op(nz) < 0oy ().
By passing to limit as n — 17 in (52), we have lim,_,1+ 0p(nz) = op(x). Hence,
op is right continuous.

If 0 < n <1, we have

e (h )

j=0 j=0
k
1 k—j4+a-1 Pk
a2 ()
k k 7=0
that is
(5-3) " op(2) < op(nz) < nop(z).
By letting n — 17 in (&3), we have lim,_,;- 0,(nx) = op(x). Hence, o, is left
continuous. Since o), is both right and left continuous, it is continuous. [

Now, we give some relationships between the modular o, and the Luxemburg
norm on ¢(Cy, p).

PROPOSITION 5.2. For any x € £(Cy,p), the following statements hold:
(i) If ||=]| <1, then op(z) < |||

(i) 17 [zl > 1, then oy (x) > |1l

(iii) ||lzf] =1 if and only if op(x) = 1.

(iv) |lz|l < 1 if and only if op(x) < 1.

(v) ||lzl] > 1 if and only if op(x) > 1.

(vi) If0 <n <1 and ||z|| > n, then o,(z) > n™.

(vii) If n = 1 and ||z|| < n, then op(x) < nM

PROOF. Let x € ¢(Cy,p).

(i) Let € > 0 such that 0 < e < 1 — ||z||. By the definition of || - || in (&), there
exists an n > 0 such that ||z]| + & > n and o, (z/n) < 1. So, we have

o] +e\er| 1 = (k—j+a—1
S e ()
< (el + e)op(z/n) < ||zl +

Since ¢ is arbitrary, we have o,(z) < ||z|| from (&4).

(ii) If we choose € > 0 such that 0 < e < 1—1/|z|, then 1 < (1 —¢)|jz|| < ||z||. By
the definition of || - || in (5I) and part (iii) of Proposition B}, we have

z } < ! op(z).
A=a)lll} = @ =gl "

Pk

N

(5.4) op ()

1<0p[
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So, (1 —¢)||lz|| < ||z|| for all e € (0,1 — (1/||z||)). This implies that ||z|| < op(z)
iii) Since o}, is continuous by Theorem 1.4 of [18], we directly have (iii).
iv) This follows from parts (i) and (iii).

i) of Proposition B.11

(
(
(v) This follows from parts (ii) and (iii). (vi) This follows from part (ii) and part
(
(vii) This follows from part (i) and part (ii) of Proposition B} O

THEOREM 5.1. The space £(Cq,p) is rotund if only if pr, > 1 for all k € N.

PROOF. Let ¢(C,,p) be rotund and choose k € N such that p, = 1 for all
k < 3. Consider the sequences ¢ = () and u = (uy) given by

— o _JEDETGN), kB2
xp = (—1)F (k:) and  ug = {0, k L—0

Then, obviously x # u and

oua) = o) = oy () =1

By part (iii) of Proposition 5.2 z,u, (x + u)/2 € S[¢(Cq,p)] which leads us to the
contradiction that the sequence space £(Cy, p) is not rotund. Hence, px > 1 for all
keN.

Conversely, let © € S[¢(Cq,p)] and v, z € S[¢(Cq,p)] with x = (v + z)/2. By
convexity of o, and part (iii) of Proposition 5.2, we have

_ 50) +y(2)

1=o0,(x) < =1

2 3
which gives that

(5.5) opla) = 2 F )
Also, since z = (v + 2)/2 and from (5.5) we obtain that

1 & kE—j+a—1\ (v;+z)
Z (kJra)Z( k—j )T

Pk

k k) j=0
1 1 i<k]+al) P
-5 k+a _ J
245 (k)j:O k=g
k )
1 1 k—j+a—1\ [P
e w2 (T
2 k (k)]:O k—J
This implies that
(56) ’Uj ;ZJ P — |’Uj|pk ; |zj|pk

for all k € N. Since the function ¢t — |¢|P* is strictly convex for all k € N, it follows
by (B6) that vy = z; for all k € N. Hence, v = z. That is, ¢(Cy, p) is rotund. O
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THEOREM 5.2. Let (x) be a sequence in €(Cq,p). Then, the following state-
ments hold:

(1) limg oo ||2k|| = 1 implies limy o0 op(zx) = 1.

(ii) limg—oo op(zk) = 0 implies limy_y o0 ||zx| = 0.

PrOOF. This is easily obtained by following the proof of Theorem 10
in [22]. 0

THEOREM 5.3. Let © € £(Cy,p) and (z)) C £(Cy,p). If 0p(29)) — 0,(2) as

n—>oocmd:1:§€j)—>xk asn — oo for all k € N, then z\9) — z as j — oo.

PROOF. Let ¢ > 0 be given. Since x € £(Cy,p) and (2\9)) C €(Ca, p), op(x) —
z) =Y, [{Cu (29 — 2)}4|P* < 0o. So, there exists an ko € N such that

= - e €
(5.7) > {Cal@D) =)}, ™ < 5
k=ko+1
Also, since x,(cj) — Xk, we have

(5.8) > {Cala? =)}, ™ < 3.
k=1

Therefore, we obtain from (5.7) and (5.8) that o,(z(/) — x) < e. This means that
op(x) — x) — 0, as j — oo. This result implies |29} — z|| — 0, as j — oo from
part (ii) of Theorem [5.21 Hence, x, — = as k — oo. O

THEOREM 5.4. The sequence space £(Cy,p) has the Kadec—Klee property.

PROOF. Let x € S[((C,,p)] and (z)) C £(C4,p) such that [|2)| — 1 and
() 2 g are given. By part (i) of Theorem 5.2 we have o,(2(9)) — 1, as n — oco.
Also, x € S[¢(Cq,p)] implies ||z|| = 1. By part (iii) of Proposition 5.2 we obtain
0,(x) = 1. Therefore, we have o,(z)) — 7, (), as n — cc.

Since ) % 2 and gy : £(C,,p) — R or C) defined by gx(x) = xy, is continuous,
x,(cj) — 2y, as j — oo. Therefore, 29) — z, as j — co. (]

THEOREM 5.5. For any 1 < p < oo, the space X

property.

a(p) has the uniform Opial

PROOF. Since the proof can be given by the similar way used in proving The-
orem 13 of Nergiz and Bagar [22], we omit details. O

Conclusion

Wang introduced the sequence space X,(,), in [25]. Although the domain of
several triangle matrices in the classical sequence spaces ¢, co, ¢ and {, and in
the Maddox spaces £(p), co(p), ¢(p) and £ (p) were investigated by researchers, we
introduce the Cesaro sequence space £(Cl, p) of order « and prove that the spaces
¢(Cq,p) and {(p) are linearly paranorm isomorphic. Furthermore, we give the a-,
B-and y-duals of the space ¢(C,,p) and characterize the classes (((Co,p) : lxo),
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(U(Cqa,p) : f), (l(Cq,p) : Y) and (Y : £(Cq,p)) of infinite matrices, where Y is
any given sequence space. Finally, we investigate some geometric properties of the
space £(Cy, p).

It is clear that by depending the choice of the sequence space Y, the charac-
terization of several classes of matrix transformations from the space ¢(C,,p) and
into the space ¢(C,,p) can be obtained from Theorems 3] and 4 respectively.
Since py = p for all k € N our space ¢(Cy,p) is reduced to the space £,(C,), our
results are more general and more comprehensive than the corresponding results
given by Roopaei and Bagar [23]. As a natural continuation of this paper, one can
study the domains ¢ (Cy,p), ¢(Cq,p) and co(Cy, p) of the Cesaro mean of order
a in the Maddox’s spaces £ (p), ¢(p) and co(p), respectively.

Acknowldgement. The authors express their sincere thanks and appreciation
to Professor Eberhard Malkowsky, who reported the inverse of the C, matrix for
a € N, with the personal request of the second author.
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