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SPECTRAL PROPERTIES OF SOLUTIONS OF

THE YANG–BAXTER-LIKE MATRIX EQUATION

Jovan Arizanović

Abstract. We analyse the spectral properties of solutions of the Yang–Baxter-
like matrix equation. We explore the solution set when A is nonsingular, give
partial results for nilpotent matrices, and construct elementary solutions to
the problem.

1. Introduction

Let A be a given n × n complex matrix. The following equation

(1.1) AXA = XAX

is called the Yang–Baxter-like matrix equation, for some unknown matrix X . This
equation comes from the more general Yang–Baxter equation first mentioned in
the papers of Yang [14] and Baxter [1]. The Yang–Baxter equation comes up in
areas such as statistical mechanics, knot theory, braid theory and quantum group
theory [15], and because of that, it is important to have a deeper understanding
of this problem. Although the easier matrix equation version (1.1) seems simple,
currently, only some special cases have been solved. Some of the earlier works
include results regarding stochastic matrices [6], spectral projector solutions [7–
9, 18], idempotent matrices [4, 11], cases with A having few distinct eigenvalues
[2,19], rank 1 and 2 matrices [13,16,17], commutative solutions [10,12], numerical
algorithms and others. We will also mention a very recent work [3] which was an
inspiration for this paper, and [5] that analysed isolated and connected solutions,
which will be briefly discussed here.

In order to simplify the starting problem, we can transform the matrix A into
its Jordan canonical form (JCF). Let A, P ∈ Cm×m and J = P −1AP where J is
JCF of A. Then the matrix equation AXA = XAX is equivalent to JZJ = ZJZ,
where Z = P −1XP . We will mostly work with the latter form in this paper.
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2. Nonsingular matrix

First, we will give a generalisation of Lemma 1 from [3]:

Theorem 2.1. Let J = diag(P1(λ1), P2(λ2), . . . , Pk(λk)), with λ1λ2 · · · λk 6= 0
and λi 6= λj when i 6= j, where Pi(λi) is in JCF and consists of Jordan blocks with
eigenvalue λi. If JZJ = ZJZ then:

(1) eigenvalue λ of Z satisfies λ ∈ {λ1, . . . , λk, 0}
(2) aJ (λi) > aZ(λi), aZ(0) = gZ(0)
(3) aJ (λi) − gJ(λi) > aZ(λi) − gZ(λi)

Proof. Let J be of dimension m × m and define s := rank(Z), 0 6 s 6 m,
and Zi, i = 1, . . . , m as the i-th column vector of Z. Let Zpi

, i = 1, . . . , s be the
linearly independent column vectors of Z, such that Zpi

can not be written as a
linear combination of Z1, . . . , Zpi−1. We have

(2.1) ZJZpi
= ZJZepi

= JZJepi
= λqi

JZpi
+ δiJZpi−1

where λqi
∈ {λ1, λ2, . . . , λk} and δi ∈ {0, 1} (δi = 1 iff pi-th column of J has a 1

above its eigenvalue).
We will prove from induction that matrix Z has s linearly independent gener-

alised eigenvectors which correspond to nonzero eigenvalues.

Base case: If p1 = 1 then δ1 = 0 and we have ZJZp1
= λq1

JZp1
. Otherwise,

p1 > 1 and Zp1−1 = 0 which also implies ZJZp1
= λq1

JZp1
. Therefore

(Z − λq1
I)JZp1

= 0

Induction hypothesis: For every i = 1, . . . , n − 1 there exists a vector Ti, which
is a linear combination of vectors Zp1

, . . . , Zpi
with a nonzero coefficient next to

Zpi
such that (Z − λqi

I)riJTi = 0.

Induction step: If δn = 0, we get (Z − λqn
I)JTn = 0 for Tn = Zpn

and we
find an eigenvector JTn. Otherwise, we have (Z − λqn

I)JZpn
= JZpn−1. Because

pn − 1 < pn, it follows that Zpn−1 =
∑n−1

i=1 αiZpi
, αi ∈ C. Define j ∈ {1, . . . , n} as

the largest number such that JTj−1 isn’t a generalised eigenvector with eigenvalue
λqn

. If such generalised eigenvector doesn’t exist, j := 1. From (2.1) we have

JZpk
= (1 − tk)JZpk

+
tk

λqk

ZJZpk
−

tk

λqk

JZpk−1

=
1

λqk
− λqn

(Z − λqn
I)JZpk

+

k−1∑

i=1

ζiJZpi

= (Z − λqn
I)JξkZpk

+

k−1∑

i=1

ζiJZpi

where tk =
λqk

λqk
−λqn

and ζk and ξk are some constants for k = 1, . . . , j − 1. Conse-

quently, we get that
∑j−1

i=1 γiJZpi
= (Z − λqn

I)JZ ′ for some Z ′ which is a linear
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combination of Zp1
, . . . , Zpj−1

. Using this, we can transform the starting equation
to get

(Z − λqn
I)JZpn

= JZpn−1 = J

n−1∑

i=1

αiZpi
=

n−1∑

i=1

βiJTi

=

j−1
∑

i=1

βiJTi +

n−1∑

i=j

βiJTi

=

j−1
∑

i=1

γiJZpi
+

n−1∑

i=j

βiJTi

= (Z − λqn
I)JZ ′ +

n−1∑

i=j

βiJTi

(Z − λqn
I)J(Zpn

− Z ′) =

n−1∑

i=j

βiJTi

(Z − λqn
I)r+1J(Zpn

− Z ′) = (Z − λqn
I)r

n−1∑

i=j

βiJTi

=
n−1∑

i=j

βi(Z − λqn
I)rJTi = 0

The last step follows from the induction hypothesis where r := max{rj , . . . , rn−1}.
Setting Tn := Zpn

− Z ′ and rn := r + 1 we get the desired result.
Because J is nonsingular, we have that JZpi

, i = 1, . . . , s are the linearly
independent generalised eigenvectors of Z with eigenvalues λqi

, i = 1, . . . , s. Let

JZ = diag(Jn1
(σ1), . . . , Jnj

(σj), Jnj+1
(0), . . . , Jnl

(0))

be the JCF of Z for some j, l ∈ N0, where σi 6= 0, i = 1, . . . , j. From

s = rank(Z) = rank(JZ) = n1 + · · · + nj + (nj+1 − 1) + · · · + (nl − 1)

and because there are at least s linearly independent eigenvectors corresponding to
nonzero eigenvalues, we get s = n1 + · · ·+nj and nj+1 = · · · = nl = 1. We conclude
that JZ = diag(Jn1

(σ1), . . . , Jnj
(σj), 0m−s×m−s), where σi ∈ {λ1, . . . , λk}. From

construction of generalised eigenvectors, statements 2 and 3 of the theorem follow
immediately. �

Let us look at a couple of direct implications of Theorem 2.1. Because (1.1) is
symmetric in A and X , the first one easily follows.

Corollary 2.1. If aA(0) > gA(0), then all solutions of (1.1) are singular.
Specifically, nonzero nilpotent matrices don’t pair up with nonsingular matrices.

For the other one we need a notion of connectedness which is in the spirit of [5].
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Definition 2.1. Let A ∈ Cm×m and X1, X2 be solutions of (1.1). We say that
X1 and X2 are connected solutions if there exists a continuous transformation from
X1 to X2 such that all matrices on that path are solutions of (1.1).

Corollary 2.2. Let A ∈ Cm×m be nonsingular and X1, X2 be solutions of
(1.1). X1 and X2 are connected solutions only if they have the same spectrum
(counting multiplicity).

Proof. Observe that from Theorem 2.1 it follows that there are only finitely
many possible spectra (counting multiplicity), and also finitely many possible char-
acteristic polynomials a solution X may have. Suppose that there are solutions of
(1.1) which are connected and which do not share the same spectrum. This implies
that there are two different characteristic polynomials p1(t) and p2(t) such that for
every ǫ > 0 there are solutions X1, X2 with characteristic polynomials p1(t), p2(t)
respectively, such that |[X2]i,j − [X1]i,j | < ǫ, for every i, j ∈ {1, . . . , m}, which are
connected.

We will use ‖ · ‖1 to denote 1-norm for polynomials. Define δ := ‖p1(t) −
p2(t)‖1 > 0, ǫ := δ

(1+M+δ)m2mm! < δ, where M := maxi,j∈{1,...,m} |[X1]i,j |, and

ǫi,j := [X1]i,j − [X2]i,j .

‖p2(t) − p1(t)‖1 =
∥
∥det(tI − X2) − det(tI − X1)

∥
∥

1

=

∥
∥
∥
∥

∑

π∈Sm

sgn(π)

( m∏

i=1

[tI − X2]i,π(i) −

m∏

i=1

[tI − X1]i,π(i)

)∥
∥
∥
∥

1

6
∑

π∈Sm

∥
∥
∥
∥

m∏

i=1

([tI − X1]i,π(i) + ǫi,π(i)) −

m∏

i=1

[tI − X1]i,π(i)

∥
∥
∥
∥

1

6 m! max
π∈Sm

∥
∥
∥
∥

m∏

i=1

([tI − X1]i,π(i) + ǫi,π(i)) −

m∏

i=1

[tI − X1]i,π(i)

︸ ︷︷ ︸

2m−1 summands, all containing some factor ǫi,j

∥
∥
∥
∥

1

< m! max
π∈Sm

∥
∥(2m − 1)ǫ(1 + M + δ)m−1

∥
∥

1

= ǫ(1 + M + δ)m−1(2m − 1)m! < δ

This leads to a contradiction, from which the statement follows. �

3. Nilpotent matrix

The idea from Theorem 2.1 can be also used to give partial results for nilpotent
matrix case.

Theorem 3.1. Let J = diag(Jn1
(0), Jn2

(0), . . . , Jnk
(0)) and n1 + · · · + nk = n.

If JZJ = ZJZ, then aZ(0) + gZ(0) + gJ(0) > n.

Proof. Define s := rank(Z), 0 6 s 6 n, and Zi, i = 1, . . . , n as the i-th column
vector of Z. Let Zpi

, i = 1, . . . , s be the linearly independent column vectors of Z,
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such that Zpi
can not be written as a linear combination of Z1, . . . , Zpi−1. We have

ZJZpi
= ZJZepi

= JZJepi
= δiJZpi−1

where δi ∈ {0, 1} (δi = 1 iff pi-th column of J has a 1).
We will prove from induction that there are at least s − gJ(0) linearly indepen-

dent generalised eigenvectors which correspond to eigenvalue 0.

Base case: If p1 = 1 then δ1 = 0 and we have ZJZp1
= 0. Otherwise, p1 > 1

and Zp1−1 = 0 which implies ZJZp1
= 0. Therefore (Z − 0I)JZp1

= 0.

Induction hypothesis: For every i = 1, . . . , m − 1: (Z − 0I)riJZpi
= 0.

Induction step:

(Z − 0I)JZpm
= δmJZpm−1 = δmJ

m−1∑

i=1

αiZpi

(Z − 0I)r+1JZpm
= (Z − 0I)rδmJ

m−1∑

i=1

αiZpi

= δm

m−1∑

i=1

αi(Z − 0I)rJZpi
= 0

The last step follows from the induction hypothesis where r := max{r1, . . . , rm−1}.
Because rank(J) = n−gJ(0) and JZpi

is a generalised eigenvector for eigenvalue
0 (JZpi

= 0 can also happen), for i ∈ {1, . . . , s}, there must be at least s − gJ(0)
linearly independent generalised eigenvectors corresponding to eigenvalue 0. From
aZ(0) > s − gJ(0) and s = n − gZ(0) we get aZ(0) + gZ(0) + gJ(0) > n. �

We can even extend this to all possible matrices. The proof is left as an exercise
to the reader.

Theorem 3.2. Let J = diag(Pm, Nn), where Pm is m × m nonsingular matrix
with eigenvalues {λ1, . . . , λk}, and Nn is n × n nilpotent matrix, both in JCF. If
JZJ = ZJZ then:

(1) min{aZ(λ1), aJ (λ1)} + · · · + min{aZ(λk), aJ(λk)} > s1

(2) aZ(0) > max{gZ(0), s2 − gJ(0)}, gZ(0) = m + n − s

where s = rank(Z), s1 rank of the first m columns of Z and s2 rank of the last n

columns of Z.

4. Construction of solutions

Taking a look for the first time at equation (1.1), one can immediately see the
trivial solutions X = 0 and X = A. However, a sharp-eyed one can notice the
following:

Lemma 4.1. Let J = diag(Jn1
(λ1), . . . , Jnk

(λk), 0m×m), which is in JCF. All
matrices of the form Z = diag(Z1, . . . , Zk, P0), where Zi ∈ {Jni

(λi), 0ni×ni
} and

P0 is any m × m matrix (essentially, it is enough that P0 is any matrix in JCF),
are solutions to the Yang–Baxter-like matrix equation JZJ = ZJZ.
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Proof. Trivial. �

There are other ways to construct solutions to JZJ = ZJZ. Notice that

J = Jn+1(0) has solutions Z =
( P1×n

0n−1×n

)
and Z =

(
0n×n−1 Pn×1

)
, where P1×n

and Pn×1 are arbitrary. These solutions have JCF of the type diag(λI1×1, 0) or
diag(J2(0), 0). With this we can generalise our earlier result.

Theorem 4.1. Let A ∈ Cm×m and let J = diag(Jn1
(λ1), . . . , Jnk

(λk)) be its
JCF. All matrices of the form Y = diag(Jm1

(σ1), . . . , Jml
(σl)) that are equal to J

with some exceptions:

(1) some Jordan blocks with eigenvalue 0 were swapped with diag(λI1×1, 0) or
diag(J2(0), 0) of the same size, and vice versa

(2) some 0 blocks where swapped with arbitrary matrices of the same size
(again, it is enough to just look at JCF)

are solutions to the Yang–Baxter-like matrix equation JZJ = ZJZ. All matrices
of the form Z = diag(Z1, . . . , Zl), where Zi ∈ {Jmi

(σi), 0mi×mi
}, are solutions to

the Yang–Baxter-like matrix equation JZJ = ZJZ. We will call these solutions
elementary.

Proof. Trivial. �

Note that to find all elementary solutions to equation (1.1) we potentially
need to check several Jordan canonical form representations of A. For example
J1 = diag(2, 2, 0, 0) and J2 = diag(2, 0, 2, 0) have Z1 = diag(2, J3(0)) and Z2 =
diag(J2(0), J2(0)) as solutions respectively.

Corollary 4.1. If A is nonsingular and diagonalisable, then for every solution
X of (1.1) there is a similar elementary solution.

Proof. Theorem 2.1 gives us all possibilities for the JCF of the solution, and
Theorem 4.1 an example for each of them. �

Corollary 4.2. If A is diagonalisable, then for every solution X of (1.1)
there is an elementary solution with the same spectrum (counting multiplicity).

Proof. We will use the same notation as in Theorem 3.2 where J is a diag-
onal matrix similar to A. From Theorem 3.2 a solution Z has at most s nonzero
eigenvalues from where we can choose s1 of them from {λ1, . . . , λk} with each one
having multiplicity of at most aJ (λ1), . . . , aJ (λk) respectively (denote this multiset
as S). Since s 6 s1 + n, we know that there are at most n nonzero eigenvalues
which we did not mention. Let ZJ be equal to J with some changes:

(1) 0n×n block changes to a diagonal matrix with those s − s1 not mentioned
eigenvalues and the rest 0

(2) Pm diagonal matrix changes some of its eigenvalues to 0 such that the
multiset of its nonzero eigenvalues is the same as S.

From Theorem 4.1 we have that JZ is an elementary solution. �
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Finally, from the known solutions, we will try to generate new solutions to
(1.1). Let J be in JCF, and let X0 be a solution such that JX0J = X0JX0.
One way to find a new solution X is to find a similar matrix to X0 which is
a solution. Let X = P −1X0P , where P is nonsingular, be a solution. Then,
JP −1X0P J = P −1X0P JP −1X0P . There are two types of matrices P for which it
is easy to see that they generate new solutions, those are matrices which commute
with J and matrices which commute with X0. Unfortunately, for the latter it
happens that X0 = P −1X0P , and we generate the starting solution. However, we
still have the following:

Theorem 4.2. Let J be in JCF. If JX0J = X0JX0, then X = P −1X0P is a
solution of Yang–Baxter-like matrix equation JXJ = XJX, for every nonsingular
P such that JP = P J .

Proof. Trivial. �

From Corollary 4.1 we can see that the problem of finding solutions of (1.1)
for nonsingular diagonalisable matrices A is now reduced to finding solutions as
similar matrices from the already known elementary solutions, with Theorem 4.2
being one of the techniques.

5. Conclusions

We have talked about the spectrum, and more generally the Jordan canonical
form (JCF) of solutions of the Yang–Baxter-like matrix equation (YBME). We
generalised results for nonsingular matrices, gave new insight for the nilpotent case,
and finally combined them. We also constructed new (elementary) solutions to the
YBME and proved that when A is diagonalisable every solution of YBME has the
same spectrum, or even the same JCF, as some elementary solution. Finally, we
gave one technique for the construction of new solutions from the already known
ones.
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ternship at the Mathematical Institute of the Serbian Academy of Sciences and
Arts, under the mentorship of Dr. Nebojša Dinčić and Dr. Bogdan Ðorđević.
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