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ON ĆIRIĆ TYPE THEOREMS IN b -METRIC SPACES

Nguyen Van Dung

Abstract. We show that the range of contraction constant in a result of
Karapınar et al. can not be extended to [0, 1). However, by using some addi-
tional conditions, we prove that the range can be extended to [0, 1). The first

result gives a negative answer to the open question on a Ćirić type theorem in

b-metric spaces, and the next results are improvements of Ćirić type theorems
in b-metric spaces in the literature.

1. Introduction and preliminaries

In [4], Bryant refined the Banach contraction map principle in the sense that
the given map T does not have to be a contraction, but for some n, the map T n is
a contraction. The result of Bryant was improved by Sehgal [15] as follows.

Theorem 1.1. [15, p. 631] Let (X, d) be a complete metric space, λ ∈ [0, 1)
and T : X → X be a continuous map satisfying for each x ∈ X, there is a positive

integer n(x) such that for all y ∈ X, d(T n(x)x, T n(x)y) 6 λd(x, y). Then T has a

unique fixed point x∗ ∈ X, and for all x ∈ X, limm→+∞ Tmx = x∗.

In [11], Guseman refined Sehgal’s result by removing the continuity of given

map. After that, Ćirić [5] generalized the result of Sehgal as follows.

Theorem 1.2. [5, Theorem 1] Let (X, d) be a complete metric space, λ ∈ [0, 1)
and T : X → X be a map satisfying for each x ∈ X, there is a positive integer n(x)
such that for all y ∈ X,

d(T n(x)x, T n(x)y)

6 λmax{d(x, y), d(x, T y), d(x, T 2y), . . . , d(x, T n(x)y), d(x, T n(x)x)}.

Then T has a unique fixed point x∗ ∈ X and for all x ∈ X, limm→+∞ Tmx = x∗.

There have been many generalizations of metric spaces, one of them being the
b-metric space by Bakhtin [2] and Czerwik [7, 8]. Compared to the metric, the
b-metric is not necessarily continuous and the generalized inequality can not be
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applied to finite points in general. Many fixed point theorems in metric spaces
have been studied and extended to b-metric spaces, for example, see [3,10] and the
references therein. In particular, Karapinar et al. [12] extended Theorem 1.2 to
b-metric spaces as follows.

Theorem 1.3. [12, Theorem 2.1] Let (X, d, κ) be a complete b-metric space,

λ ∈ [0, 1
κ
) and T : X → X be a map satisfying for each x ∈ X, there is a positive

integer n(x) such that for all y ∈ X,

d(T n(x)x, T n(x)y)

6 λmax
{

d(x, y), d(x, T y), d(x, T 2y), . . . , d(x, T n(x)y), d(x, T n(x)x)
}

.

Then T has a unique fixed point x∗ ∈ X, and for all x ∈ X, limm→+∞ Tmx = x∗.

Theorem 1.4. [12, Theorem 2.2] Let (X, d, κ) be a complete b-metric space,

λ ∈ [0, 1
κ
) and f : X → X be a continuous map satisfying for each x ∈ X, there

exists a positive integer n(x) such that for all y ∈ X,

d(T n(x)(x), T n(x)(y)) 6 λmax
{

d(x, y), d(x, T y), d(x, T 2y), . . . , d(x, T n(x)y),

d(x, Tx), d(x, T 2x), . . . , d(x, T n(x)x)
}

.

Then T has a unique fixed point x∗, and for all x ∈ X, limm→+∞ Tmx = x∗.

The proof of Theorem 1.3 in b-metric spaces follows that of Theorem 1.2 in
metric spaces. However, the technique there is only available for λ ∈ [0, 1

κ
) where

[0, 1
κ
) ⊂ [0, 1). So, the authors posed the following question.

Question 1.1. [12, p. 9] In Theorem 1.3, can we extend the range of λ to the

case 1
κ
6 λ < 1?

We must say that not every fixed point theorem in metric spaces can be ex-
tended fully to b-metric spaces, for example, see [10, Examples 20 and 21]. Re-
cently, Lu et al. [13] proved an extension of the Ciric fixed point theorem in metric
spaces [6, Theorem 1] to b-metric spaces with certain additional assumptions as
follows.

Theorem 1.5. [14, Theorem 3] Let (X, d, κ) be a complete b-metric space,

λ ∈ [0, 1) and T : X → X be a map such that for all x, y ∈ X,

d(Tx, T y) 6 λmax{d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)}

and let one of the following conditions hold.

(1) T is continuous.

(2) d satisfies the Fatou property, that is, for all x, y ∈ X and limn→+∞ xn = x,

we have d(x, y) 6 lim infn→+∞ d(xn, y).
(3) λ ∈ [0, 1

κ
).

Then T has a unique fixed point x∗, and for all x ∈ X, limn→+∞ T nx = x∗.

In this paper, we give an example to show that the range of contraction constant
in [12, Theorem 2.1] can not be extended to [0, 1) which is a negative answer to
Question 1.1. By using some suitable conditions, we also prove that the range can
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be extended to [0, 1) which are improvements of Theorems 1.3 and 1.4 in b-metric
spaces.

2. Main results

First, we give an example to show that the answer to Question 1.1 is negative.

Example 2.1. Let X =
{

0, 1, 12 , . . . ,
1
n
, . . .

}

, and

d(x, y) =



















0, if x = y

1, if x 6= y ∈ {0, 1}

|x− y| if x 6= y ∈ {0} ∪
{

1
2n : n ∈ N

}

1
4 otherwise,

and let T : X → X be defined by

Tx =

{

1, if x = 0
1
10x if x = 1

n
, n ∈ N.

Then

(1) (X, d, κ) is a complete b-metric space with κ = 4.
(2) There exists λ ∈ [ 1

κ
, 1) satisfying for each x ∈ X , there is a positive integer

n(x) such that for all y ∈ X ,

(2.1) d(T n(x)x, T n(x)y)

6 λmax
{

d(x, y), d(x, T y), d(x, T 2y), . . . , d(x, T n(x)y), d(x, T n(x)x)
}

.

(3) T is fixed point free.

Proof. (1). See [9, Example 2.6.(1)].

(2) We find that 1
κ
= 1

4 . For λ = 1
4 , we consider the following cases.

Case 1. x = 0. Let n(x) = 1. If y = 0, then d(T n(x)x, T n(x)y) = 0. If y = 1
n
, then

d(T n(x)x, T n(x)y) = d
(

T 0, T
1

n

)

= d
(

1,
1

10n

)

=
1

4
,

d(x, T n(x)x) = d(0, T 0) = d(0, 1) = 1.

Therefore d(T n(x)x, T n(x)y) 6 λd(x, T n(x)x).
The above calculations show that, for n(x) = 1, (2.1) holds for all y ∈ X .

Case 2. x = 1
2n . Let n(x) = 2n. If y = 1

2m , then

d(T n(x)x, T n(x)y) = d
(

T 2n 1

2n
, T 2n 1

2m

)

= d
( 1

102n 2n
,

1

102n 2m

)

=
∣

∣

∣

1

102n 2n
−

1

102n 2m

∣

∣

∣
,

d(x, y) = d
( 1

2n
,
1

2m

)

=
∣

∣

∣

1

2n
−

1

2m

∣

∣

∣
.

Therefore d(T n(x)x, T n(x)y) 6 1
1002n d(x, y) 6 λd(x, y).
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If y = 1
2m−1 , then

d(T n(x)x, T n(x)y) = d
(

T n(x) 1

n
, T n(x) 1

2m− 1

)

= d
( 1

102nn
,

1

102n(2m− 1)

)

=
∣

∣

∣

1

102nn
−

1

102n(2m− 1)

∣

∣

∣
<

1

100
,

d(x, y) = d
( 1

n
,

1

2m− 1

)

=
1

4
.

Therefore d(T n(x)x, T n(x)y) < 1
25d(x, y) 6 λd(x, y).

If y = 0, then

d(T n(x)x, T n(x)y) = d
(

T 2n 1

2n
, T 2n0

)

= d
( 1

102n 2n
,

1

102n−1 2

)

=
∣

∣

∣

1

102n 2n
−

1

102n−1 2

∣

∣

∣
<

1

2 102n−1
,

d(x, y) = d
( 1

2n
, 0
)

= |
1

2n
− 0| =

1

2n
.

Therefore d(T n(x)x, T n(x)y) 6 1
10d(x, y) 6 λd(x, y).

The above calculations show that, for n(x) = 2n, (2.1) holds for all y ∈ X .

Case 3. x = 1
2n−1 . Let n(x) = 2n. If y = 1

2m , then

d(T n(x)x, T n(x)y) = d
(

T 2n 1

2n− 1
, T 2n 1

2m

)

= d
( 1

102n(2n− 1)
,

1

102n 2m

)

=
∣

∣

∣

1

102n(2n− 1)
−

1

102n 2m

∣

∣

∣
<

1

100
,

d(x, y) = d
( 1

2n− 1
,

1

2m

)

=
1

4
.

Therefore d(T n(x)x, T n(x)y) < 1
25d(x, y) 6 λd(x, y).

If y = 1
2m−1 , then

d(T n(x)x, T n(x)y) = d
(

T 2n 1

2n− 1
, T 2n 1

2m− 1

)

= d
( 1

102n(2n− 1)
,

1

102n(2m− 1)

)

=
∣

∣

∣

1

102n(2n− 1)
−

1

102n(2m− 1)

∣

∣

∣
<

1

100
,

d(x, y) = d
( 1

2n− 1
,

1

2m− 1

)

=
1

4
.

Therefore d(Tx, T y) < 1
25d(x, y) 6 λd(x, y).

If y = 0, then

d(T n(x)x, T n(x)y) = d
(

T 2n 1

2n− 1
, T 2n0

)

= d
( 1

102n(2n− 1)
,

1

102n−1

)

=
∣

∣

∣

1

102n(2n− 1)
−

1

102n−1

∣

∣

∣
<

1

102n−1
,

d(x, y) = d
( 1

2n− 1
, 0
)

= |
1

2n− 1
− 0| =

1

2n− 1
.
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Therefore d(T n(x)x, T n(x)y) 6 1
10d(x, y) 6 λd(x, y).

The above calculations show that for n(x) = 2n, (2.1) holds for all y ∈ X .
The above three cases show that for each x ∈ X , there is a positive integer

n(x) such that (2.1) holds for all y ∈ X .

(3). It follows from the definition of T that T is fixed point free. �

Now, with some additional conditions, we show that the range [0, 1
κ
) of λ in

Theorem 1.3 can be extended to [0, 1).

Theorem 2.1. Let (X, d, κ) be a complete b-metric space, λ ∈ [0, 1) and f :
X → X be a map satisfying for each x ∈ X, there exists a positive integer n(x)
such that for all y ∈ X,

(2.2) d(T n(x)(x), T n(x)(y))

6 λmax
{

d(x, y), d(x, T y), d(x, T 2y), . . . , d(x, T n(x)y), d(x, T n(x)x)
}

and let one of the following conditions hold.

(1) T is continuous.

(2) d has the Fatou property, in particular, d is continuous.

(3) λ ∈ [0, 1
κ
).

Then T has a unique fixed point x∗, and for all x ∈ X, limm→+∞ Tmx = x∗.

Proof. Since λ ∈ [0, 1), there exists m0 such that λm0 < 1
κ
. Let x ∈ X . For

all m ∈ N, put

n0 = n(x), n1 = n(T n0x), n2 = n(T n0+n1x), . . . , nm = n(T n0+n1+···+nm−1x)

(2.3) sm =

m
∑

i=0

ni.

Now, fixing x = x0 in (2.3) and considering the sequence {Tmx0}, we shall
prove that

(2.4) r(x0) 6
κ

1− κλm0

max{d(x0, T
mx0) : 0 6 m 6 sm0

}

where r(x0) = sup{d(x0, T
mx0) : m ∈ N}. For each m > sm0

, there exists
p ∈ {0, 1, . . . ,m} such that d(x0, T

px0) = max{d(x0, T
ix0) : 0 6 i 6 m}. To

prove (2.4), we need to show that

(2.5) d(x0, T
px0) 6

κ

1− κλm0

max{d(x0, T
ix0) : 0 6 i 6 sm0

}.

Indeed, for the case p 6 sm0
, since κ

1−κλm0
> 1, we find that (2.5) holds. We

consider the case p > sm0
. Note that

(2.6) d(x0, T
px0) 6 κ d(x0, T

sm0x0) + κ d(T sm0x0, T
px0).

By using (2.2), we have
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d(T sm0x0, T
px0) = d(T nm0T sm0−1x0, T

nm0T p−nm0x0)

6 λmax{d(T sm0−1x0, T
p−nm0x0), d(T

sm0−1x0, T
p−nm0

+1x0),

. . . , d(T sm0−1x0, T
px0), d(T

sm0−1x0, T
sm0x0)}

= λd(T sm0−1x0, T
im0x0)

for some im0
∈ {p− nm0

, p− nm0
+ 1, . . . , p, sm0

} ⊂ {0, 1, . . . ,m}.
By using (2.2) again, we also have

d(T sm0−1x0,T
im0x0) = d(T nm0−1T sm0−2x0, T

nm0−1T im0
−nm0−1x0)

6 λmax{d(T sm0−2x0, T
im0

−nm0−1x0), d(T
sm0−2x0, T

i−nm0−1+1x0),

. . . , d(T sm0−2x0, T
ix0), d(T

sm0−2x0, T
sm0−1x0)}

= λd(T sm0−2x0, T
im0−1x0)

for some im0−1 ∈ {im0
− nm0−1, im0

− nm0−1 + 1, . . . , im0
, sm0−1} ⊂ {0, 1, . . . ,m}.

Continuing the process, we find that

d(T sm0x0, T
px0) 6 λd(T sm0−1x0, T

im0x0)

6 λ2 d(T sm0−2x0, T
im0−1x0) 6 · · · 66 λm0 d(x0, T

i1x0)

for some i1 ∈ {0, 1, . . . ,m}. It implies that

(2.7) d(T sm0x0, T
px0) 6 λm0 d(x0, T

i1x0) 6 λm0 d(x0, T
px0).

It follows from (2.6) and (2.7) that

d(x0, T
px0) 6 κ d(x0, T

sm0x0) + κλm0 d(x0, T
px0).

Note that 1− κλm0 > 0. So we get

d(x0, T
px0) 6

κ

1− κλm0

d(x0, T
sm0x0).

This proves that (2.5) holds.
Now, we prove that the sequence {Tmx0} is Cauchy. Let k, l > sm. By

using (2.2), we have

d(T smx0, T
lx0) = d(T nmT sm−1x0, T

nmT l−nmx0)

6 λmax{d(T sm−1x0, T
l−nmx0), d(T

sm−1x0, T
l−nm+1x0),

. . . , d(T sm−1x0, T
lx0), d(T

sm−1x0, T
smx0)}

= λd(T sm−1x0, T
imx0)

for some im ∈ {l − nm, l − nm + 1, . . . , l, sm}. By using (2.2) again, we also have

d(T sm−1x0, T
imx0) = d(T nm−1T sm−2x0, T

nm−1T im−nm−1x0)

6 λmax{d(T sm−2x0, T
im−nm−1x0), d(T

sm−2x0, T
im−nm−1+1x0),

. . . , d(T sm−2x0, T
imx0), d(T

sm−2x0, T
sm−1x0)}

= λd(T sm−2x0, T
im−1x0)

for some im−1 ∈ {im − nm−1, im − nm−1 + 1, . . . , im, sm−1}.
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Continuing the process, we have

d(T smx0, T
lx0) 6 λd(T sm−1x0, T

imx0)

6 λ2d(T sm−2x0, T
im−1x0) 6 · · · 6 λmd(x0, T

i0x0)

for some i0 ∈ {i1 − n1, im − nm−1 + 1, . . . , i1, s1}. It implies that

(2.8) d(T smx0, T
lx0) 6 λmd(x0, T

i0x0) 6 λmr(x0).

Similarly, we also have

(2.9) d(T smx0, T
kx0) 6 λm r(x0).

It follows from (2.8) and (2.9) that for all k, l > sm,

d(T lx0, T
kx0) 6 κ[d(T lx0, T

smx0) + d(T smx0, T
kx0)] 6 2κλm r(x0).

Combining this with (2.4), we find that the sequence {Tmx0} is Cauchy. Since
(X, d, κ) is complete, there exists x∗ ∈ X such that

(2.10) lim
m→+∞

Tmx0 = x∗.

By using (2.2), we have for all m ∈ N,

(2.11) (T n(x∗)x∗, T n(x∗)+m(x0)) = d(T n(x∗)x∗, T n(x∗)(Tmx0))

6 λmax
{

d(x∗, Tmx0), d(x
∗, TTmx0), . . . , d(x

∗, T n(x∗)Tmx0), d(x
∗, T n(x∗)x∗)

}

= λmax
{

d(x∗, Tmx0), d(x
∗, Tm+1x0), . . . , d(x

∗, T n(x∗)+mx0), d(x
∗, T n(x∗)x∗)

}

.

Now, if T is continuous, then

Tx∗ = T
(

lim
m→+∞

Tmx
)

= lim
m→+∞

Tm+1x = x∗.

This proves that x∗ is a fixed point of T .
If d has the Fatou property, then letting m → +∞ in (2.11) and using (2.10)

we get

d(T n(x∗)x∗, x∗) 6 lim inf
m→+∞

d(T n(x∗)x∗, T n(x∗)+m(x0))(2.12)

6 λ lim inf
m→+∞

max
{

d(x∗, Tmx0), d(x
∗, Tm+1x0), . . . ,

d(x∗, T n(x∗)+mx0), d(x
∗, T n(x∗)x∗)

}

= λd(x∗, T n(x∗)x∗).(2.13)

Since 0 6 λ < 1, we find that d(T n(x∗)x∗, x∗) = 0, that is, x∗ is a fixed point of
T n(x∗).

If λ ∈ [0, 1
κ
), then as in the proof of [12, Theorem 2.1], x∗ is a fixed point

of T n(x∗).
Now, for a fixed point x∗ of T n(x∗), we find that for all m ∈ N,

Tmx∗ = TmT n(x∗)x∗ = T n(x∗)Tmx∗.

This proves that Tmx∗ is a fixed point of T n(x∗) for all m ∈ N. So, if

d(x∗, T qx∗) = sup{d(x∗, Tmx∗) : m ∈ N}
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then d(x∗, T qx∗) = max{d(x∗, Tmx∗) : 1 6 m < n(x∗)}. Therefore, we have

d(x∗, T qx∗)

= d(T n(x∗)x∗, T n(x∗)+q(x∗))

6 λmax
{

d(x∗, T qx∗), d(x∗, TT qx∗), . . . , d(x∗, T n(x∗)T qx∗), d(x∗, T n(x∗)x∗)
}

= λmax
{

d(x∗, T qx∗), d(x∗, T 1+qx∗), . . . , d(x∗, T n(x∗)+qx∗), d(x∗, T n(x∗)x∗)
}

6 λd(x∗, T qx∗).

Since 0 6 λ < 1, we find that d(x∗, T qx∗) = 0. This proves that d(x∗, Tmx∗) = 0
for all m ∈ N. So d(x∗, T x∗) = 0, and x∗ is a fixed point of T .

The above arguments show that T has a fixed point x∗. Now, if y∗ is also a
fixed point of T , then we have

(2.14) d(x∗, y∗) = d(T n(x∗)x∗, T n(x∗)(y∗))

6 λmax
{

d(x∗, y∗), d(x∗, T y∗), . . . , d(x∗, T n(x∗)y∗), d(x∗, T n(x∗)x∗)
}

= λmax
{

d(x∗, y∗), d(x∗, y∗), . . . , d(x∗, y∗), d(x∗, x∗)} = λd(x∗, y∗).

Since 0 6 λ < 1, we get that d(x∗, y∗) = 0. This proves that the fixed point of T
is unique.

Finally, since x0 in (2.10) is arbitrary in X and x∗ is unique. So for all x ∈ X ,
we have limm→+∞ Tmx = x∗. �

Next, we show that the range [0, 1
κ
) of λ in [12, Theorem 2.2] can be extended

to [0, 1).

Theorem 2.2. Let (X, d, κ) be a complete b-metric space, λ ∈ [0, 1) and f :
X → X be a continuous map satisfying for each x ∈ X, there exists a positive

integer n(x) such that for all y ∈ X,

d(T n(x)(x), T n(x)(y)) 6 λmax
{

d(x, y), d(x, T y), d(x, T 2y), . . . , d(x, T n(x)y),

d(x, Tx), d(x, T 2x), . . . , d(x, T n(x)x)
}

.(2.15)

Then T has a unique fixed point x∗, and for all x ∈ X, limm→+∞ Tmx = x∗.

Proof. By using notations and arguments in the proof of Theorem 2.1, we
also get (2.6), that is d(x0, T

px0) 6 κ d(x0, T
sm0x0) + κ d(T sm0x0, T

px0). By us-
ing (2.15), we have

d(T sm0x0, T
px0) = d(T nm0T sm0−1x0, T

nm0T p−nm0x0)

6 λmax{d(T sm0−1x0, T
p−nm0x0), d(T

sm0−1x0, T
p−nm0

+1x0),

. . . , d(T sm0−1x0, T
px0), d(T

sm0−1x0, T
sm0−1+1x0),

. . . , d(T sm0−1x0, T
sm0x0)}

= λd(T sm0−1x0, T
im0x0)

for some im0
where

im0
∈ {p− nm0

, p− nm0
+ 1, . . . , p, sm0−1, sm0−1 + 1, . . . , sm0

} ⊂ {0, 1, . . . ,m}.
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Then, by doing similar as in the proof of Theorem 2.1, there exists x∗ ∈ X

such that limm→+∞ Tmx0 = x∗. Since T is continuous, we have

Tx∗ = T ( lim
m→+∞

Tmx) = lim
m→+∞

TTmx = lim
m→+∞

Tm+1x = x∗.

Then x∗ is a fixed point of T . By doing similar as in the proof of Theorem 2.1, x∗

is the unique fixed point of T . �

The following example shows that the continuity of the map T in Theorem 2.2
is essential.

Example 2.2. Let X = [0, 1] and for all x, y ∈ X ,

d(x, y) =

{

|x− y|, if xy 6= 0

2|x− y|, if xy = 0
and Tx =

{

x
2 , if x ∈ (0, 1]

1, if x = 0.

Then we have

(1) All assumptions of Theorem 2.2 are satisfied except for the continuity of T .
(2) T is fixed point free.

Proof. (1). It follows from the definition of T that T is not continuous. It
follows from [13, Example 6] that (X, d, κ) is a complete b-metric space with κ = 2.

Let λ = 3
4 ∈ [ 1

κ
, 1) and n(x) = 2 for all x. For the case x = 0, if y = 0, then

d(T n(x)x, T n(x)y) = 0. If y 6= 0, then

d(T n(x)x, T n(x)y) = d(T 20, T 2y) = d
(1

2
,
y

4
) =

∣

∣

∣

1

2
−
y

2

∣

∣

∣
6

1

2
<

3

4
d(0, 1) =

3

4
d(x, Tx).

For the case x 6= 0, if y 6= 0, then

d(T n(x)x, T n(x)y) = d(T 2x, T 2y) = d
(x

4
,
y

4

)

=
∣

∣

∣

x

4
−

y

4

∣

∣

∣
6

3

4
d(x, y).

If y = 0, then

d(x, y) = d(x, 0) = 2x

d(x, T y) = d(x, T 0) = d(x, 1) = 1− x.

So we have

d(T n(x)x, T n(x)y) = d(T 2x, T 20) = d
(x

4
,
1

2

)

=
∣

∣

∣

x

4
−

1

2

∣

∣

∣
6

3

4
max{d(x, y), d(x, T y)}.

The above calculations show that (2.15) holds for all y ∈ X .

(2). It follows from the definition of T that T is fixed point free. �

In Theorem 2.1, if we replace the assumption b-metric with b-metric-like [1,
Definition 2.3], then the proof is similar, except for the arguments in proving (2.12)
and (2.14). Indeed, in proving (2.12) and (2.14), we need d(x∗, x∗) = 0 while, for
a b-metric-like d, we only have d(x, y) = 0 ⇒ x = y. So, the following question
remains open.

Question 2.1. Do the conclusions of Theorems 2.1, and 2.2 hold if the as-

sumption b-metric is replaced by b-metric-like?
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