ON ĆIRIĆ TYPE THEOREMS IN b-METRIC SPACES

Nguyen Van Dung

Abstract

We show that the range of contraction constant in a result of Karapınar et al. can not be extended to $[0,1)$. However, by using some additional conditions, we prove that the range can be extended to $[0,1)$. The first result gives a negative answer to the open question on a Ćirić type theorem in b-metric spaces, and the next results are improvements of Ćirić type theorems in b-metric spaces in the literature.

1. Introduction and preliminaries

In 4], Bryant refined the Banach contraction map principle in the sense that the given map T does not have to be a contraction, but for some n, the map T^{n} is a contraction. The result of Bryant was improved by Sehgal 15 as follows.

Theorem 1.1. 15 p. 631] Let (X, d) be a complete metric space, $\lambda \in[0,1)$ and $T: X \rightarrow X$ be a continuous map satisfying for each $x \in X$, there is a positive integer $n(x)$ such that for all $y \in X, d\left(T^{n(x)} x, T^{n(x)} y\right) \leqslant \lambda d(x, y)$. Then T has a unique fixed point $x^{*} \in X$, and for all $x \in X, \lim _{m \rightarrow+\infty} T^{m} x=x^{*}$.

In [11, Guseman refined Sehgal's result by removing the continuity of given map. After that, Ćirić [5] generalized the result of Sehgal as follows.

Theorem 1.2. [5. Theorem 1] Let (X, d) be a complete metric space, $\lambda \in[0,1)$ and $T: X \rightarrow X$ be a map satisfying for each $x \in X$, there is a positive integer $n(x)$ such that for all $y \in X$,

$$
\begin{aligned}
& d\left(T^{n(x)} x, T^{n(x)} y\right) \\
& \quad \leqslant \lambda \max \left\{d(x, y), d(x, T y), d\left(x, T^{2} y\right), \ldots, d\left(x, T^{n(x)} y\right), d\left(x, T^{n(x)} x\right)\right\}
\end{aligned}
$$

Then T has a unique fixed point $x^{*} \in X$ and for all $x \in X, \lim _{m \rightarrow+\infty} T^{m} x=x^{*}$.
There have been many generalizations of metric spaces, one of them being the b-metric space by Bakhtin [2] and Czerwik [7, 8]. Compared to the metric, the b-metric is not necessarily continuous and the generalized inequality can not be

[^0]applied to finite points in general. Many fixed point theorems in metric spaces have been studied and extended to b-metric spaces, for example, see [3, 10] and the references therein. In particular, Karapinar et al. 12 extended Theorem 1.2 to b-metric spaces as follows.

Theorem 1.3. 12, Theorem 2.1] Let (X, d, κ) be a complete b-metric space, $\lambda \in\left[0, \frac{1}{\kappa}\right)$ and $T: X \rightarrow X$ be a map satisfying for each $x \in X$, there is a positive integer $n(x)$ such that for all $y \in X$,

$$
\begin{aligned}
& d\left(T^{n(x)} x, T^{n(x)} y\right) \\
& \quad \leqslant \lambda \max \left\{d(x, y), d(x, T y), d\left(x, T^{2} y\right), \ldots, d\left(x, T^{n(x)} y\right), d\left(x, T^{n(x)} x\right)\right\}
\end{aligned}
$$

Then T has a unique fixed point $x^{*} \in X$, and for all $x \in X, \lim _{m \rightarrow+\infty} T^{m} x=x^{*}$.
Theorem 1.4. [12, Theorem 2.2] Let (X, d, κ) be a complete b-metric space, $\lambda \in\left[0, \frac{1}{\kappa}\right)$ and $f: X \rightarrow X$ be a continuous map satisfying for each $x \in X$, there exists a positive integer $n(x)$ such that for all $y \in X$,

$$
\begin{aligned}
d\left(T^{n(x)}(x), T^{n(x)}(y)\right) \leqslant \lambda \max \{d(x, y), & d(x, T y), d\left(x, T^{2} y\right), \ldots, d\left(x, T^{n(x)} y\right) \\
& \left.d(x, T x), d\left(x, T^{2} x\right), \ldots, d\left(x, T^{n(x)} x\right)\right\}
\end{aligned}
$$

Then T has a unique fixed point x^{*}, and for all $x \in X, \lim _{m \rightarrow+\infty} T^{m} x=x^{*}$.
The proof of Theorem 1.3 in b-metric spaces follows that of Theorem 1.2 in metric spaces. However, the technique there is only available for $\lambda \in\left[0, \frac{1}{\kappa}\right)$ where $\left[0, \frac{1}{\kappa}\right) \subset[0,1)$. So, the authors posed the following question.

Question 1.1. [12, p.9] In Theorem 1.3, can we extend the range of λ to the case $\frac{1}{\kappa} \leqslant \lambda<1$?

We must say that not every fixed point theorem in metric spaces can be extended fully to b-metric spaces, for example, see [10, Examples 20 and 21]. Recently, Lu et al. [13] proved an extension of the Ciric fixed point theorem in metric spaces [6, Theorem 1] to b-metric spaces with certain additional assumptions as follows.

Theorem 1.5. 14, Theorem 3] Let (X, d, κ) be a complete b-metric space, $\lambda \in[0,1)$ and $T: X \rightarrow X$ be a map such that for all $x, y \in X$,

$$
d(T x, T y) \leqslant \lambda \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

and let one of the following conditions hold.
(1) T is continuous.
(2) d satisfies the Fatou property, that is, for all $x, y \in X$ and $\lim _{n \rightarrow+\infty} x_{n}=x$, we have $d(x, y) \leqslant \liminf _{n \rightarrow+\infty} d\left(x_{n}, y\right)$.
(3) $\lambda \in\left[0, \frac{1}{\kappa}\right)$.

Then T has a unique fixed point x^{*}, and for all $x \in X, \lim _{n \rightarrow+\infty} T^{n} x=x^{*}$.
In this paper, we give an example to show that the range of contraction constant in 12, Theorem 2.1] can not be extended to $[0,1)$ which is a negative answer to Question 1.1. By using some suitable conditions, we also prove that the range can
be extended to $[0,1)$ which are improvements of Theorems 1.3 and 1.4 in b-metric spaces.

2. Main results

First, we give an example to show that the answer to Question 1.1 is negative.
Example 2.1. Let $X=\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right\}$, and

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y \in\{0,1\} \\ |x-y| & \text { if } x \neq y \in\{0\} \cup\left\{\frac{1}{2 n}: n \in \mathbb{N}\right\} \\ \frac{1}{4} & \text { otherwise }\end{cases}
$$

and let $T: X \rightarrow X$ be defined by

$$
T x= \begin{cases}1, & \text { if } x=0 \\ \frac{1}{10} x & \text { if } x=\frac{1}{n}, n \in \mathbb{N}\end{cases}
$$

Then
(1) (X, d, κ) is a complete b-metric space with $\kappa=4$.
(2) There exists $\lambda \in\left[\frac{1}{\kappa}, 1\right)$ satisfying for each $x \in X$, there is a positive integer $n(x)$ such that for all $y \in X$,
(2.1) $\quad d\left(T^{n(x)} x, T^{n(x)} y\right)$

$$
\leqslant \lambda \max \left\{d(x, y), d(x, T y), d\left(x, T^{2} y\right), \ldots, d\left(x, T^{n(x)} y\right), d\left(x, T^{n(x)} x\right)\right\}
$$

(3) T is fixed point free.

Proof. (11). See [9, Example 2.6.(1)].
(2) We find that $\frac{1}{\kappa}=\frac{1}{4}$. For $\lambda=\frac{1}{4}$, we consider the following cases.

Case 1. $x=0$. Let $n(x)=1$. If $y=0$, then $d\left(T^{n(x)} x, T^{n(x)} y\right)=0$. If $y=\frac{1}{n}$, then

$$
\begin{gathered}
d\left(T^{n(x)} x, T^{n(x)} y\right)=d\left(T 0, T \frac{1}{n}\right)=d\left(1, \frac{1}{10 n}\right)=\frac{1}{4}, \\
d\left(x, T^{n(x)} x\right)=d(0, T 0)=d(0,1)=1
\end{gathered}
$$

Therefore $d\left(T^{n(x)} x, T^{n(x)} y\right) \leqslant \lambda d\left(x, T^{n(x)} x\right)$.
The above calculations show that, for $n(x)=1$, (2.1) holds for all $y \in X$.
Case 2. $x=\frac{1}{2 n}$. Let $n(x)=2 n$. If $y=\frac{1}{2 m}$, then

$$
\begin{aligned}
d\left(T^{n(x)} x, T^{n(x)} y\right) & =d\left(T^{2 n} \frac{1}{2 n}, T^{2 n} \frac{1}{2 m}\right) \\
& =d\left(\frac{1}{10^{2 n} 2 n}, \frac{1}{10^{2 n} 2 m}\right)=\left|\frac{1}{10^{2 n} 2 n}-\frac{1}{10^{2 n} 2 m}\right| \\
d(x, y) & =d\left(\frac{1}{2 n}, \frac{1}{2 m}\right)=\left|\frac{1}{2 n}-\frac{1}{2 m}\right|
\end{aligned}
$$

Therefore $d\left(T^{n(x)} x, T^{n(x)} y\right) \leqslant \frac{1}{100^{2 n}} d(x, y) \leqslant \lambda d(x, y)$.

If $y=\frac{1}{2 m-1}$, then

$$
\begin{aligned}
d\left(T^{n(x)} x, T^{n(x)} y\right) & =d\left(T^{n(x)} \frac{1}{n}, T^{n(x)} \frac{1}{2 m-1}\right)=d\left(\frac{1}{10^{2 n} n}, \frac{1}{10^{2 n}(2 m-1)}\right) \\
& =\left|\frac{1}{10^{2 n} n}-\frac{1}{10^{2 n}(2 m-1)}\right|<\frac{1}{100} \\
d(x, y) & =d\left(\frac{1}{n}, \frac{1}{2 m-1}\right)=\frac{1}{4} .
\end{aligned}
$$

Therefore $d\left(T^{n(x)} x, T^{n(x)} y\right)<\frac{1}{25} d(x, y) \leqslant \lambda d(x, y)$.
If $y=0$, then

$$
\begin{aligned}
d\left(T^{n(x)} x, T^{n(x)} y\right) & =d\left(T^{2 n} \frac{1}{2 n}, T^{2 n} 0\right)=d\left(\frac{1}{10^{2 n} 2 n}, \frac{1}{10^{2 n-1} 2}\right) \\
& =\left|\frac{1}{10^{2 n} 2 n}-\frac{1}{10^{2 n-1} 2}\right|<\frac{1}{210^{2 n-1}}, \\
d(x, y) & =d\left(\frac{1}{2 n}, 0\right)=\left|\frac{1}{2 n}-0\right|=\frac{1}{2 n} .
\end{aligned}
$$

Therefore $d\left(T^{n(x)} x, T^{n(x)} y\right) \leqslant \frac{1}{10} d(x, y) \leqslant \lambda d(x, y)$.
The above calculations show that, for $n(x)=2 n$, (2.1) holds for all $y \in X$.
Case 3. $x=\frac{1}{2 n-1}$. Let $n(x)=2 n$. If $y=\frac{1}{2 m}$, then

$$
\begin{aligned}
d\left(T^{n(x)} x, T^{n(x)} y\right) & =d\left(T^{2 n} \frac{1}{2 n-1}, T^{2 n} \frac{1}{2 m}\right)=d\left(\frac{1}{10^{2 n}(2 n-1)}, \frac{1}{10^{2 n} 2 m}\right) \\
& =\left|\frac{1}{10^{2 n}(2 n-1)}-\frac{1}{10^{2 n} 2 m}\right|<\frac{1}{100}, \\
d(x, y) & =d\left(\frac{1}{2 n-1}, \frac{1}{2 m}\right)=\frac{1}{4} .
\end{aligned}
$$

Therefore $d\left(T^{n(x)} x, T^{n(x)} y\right)<\frac{1}{25} d(x, y) \leqslant \lambda d(x, y)$.
If $y=\frac{1}{2 m-1}$, then

$$
\begin{aligned}
& d\left(T^{n(x)} x, T^{n(x)} y\right)=d\left(T^{2 n} \frac{1}{2 n-1}, T^{2 n} \frac{1}{2 m-1}\right) \\
& =d\left(\frac{1}{10^{2 n}(2 n-1)}, \frac{1}{10^{2 n}(2 m-1)}\right)=\left|\frac{1}{10^{2 n}(2 n-1)}-\frac{1}{10^{2 n}(2 m-1)}\right|<\frac{1}{100}, \\
& d(x, y)=d\left(\frac{1}{2 n-1}, \frac{1}{2 m-1}\right)=\frac{1}{4} .
\end{aligned}
$$

Therefore $d(T x, T y)<\frac{1}{25} d(x, y) \leqslant \lambda d(x, y)$.
If $y=0$, then

$$
\begin{aligned}
d\left(T^{n(x)} x, T^{n(x)} y\right) & =d\left(T^{2 n} \frac{1}{2 n-1}, T^{2 n} 0\right)=d\left(\frac{1}{10^{2 n}(2 n-1)}, \frac{1}{10^{2 n-1}}\right) \\
& =\left|\frac{1}{10^{2 n}(2 n-1)}-\frac{1}{10^{2 n-1}}\right|<\frac{1}{10^{2 n-1}}, \\
d(x, y) & =d\left(\frac{1}{2 n-1}, 0\right)=\left|\frac{1}{2 n-1}-0\right|=\frac{1}{2 n-1} .
\end{aligned}
$$

Therefore $d\left(T^{n(x)} x, T^{n(x)} y\right) \leqslant \frac{1}{10} d(x, y) \leqslant \lambda d(x, y)$.
The above calculations show that for $n(x)=2 n$, (2.1) holds for all $y \in X$.
The above three cases show that for each $x \in X$, there is a positive integer $n(x)$ such that (2.1) holds for all $y \in X$.
(3). It follows from the definition of T that T is fixed point free.

Now, with some additional conditions, we show that the range $\left[0, \frac{1}{\kappa}\right)$ of λ in Theorem 1.3 can be extended to $[0,1)$.

Theorem 2.1. Let (X, d, κ) be a complete b-metric space, $\lambda \in[0,1)$ and f : $X \rightarrow X$ be a map satisfying for each $x \in X$, there exists a positive integer $n(x)$ such that for all $y \in X$,

$$
\begin{align*}
& d\left(T^{n(x)}(x), T^{n(x)}(y)\right) \tag{2.2}\\
& \quad \leqslant \lambda \max \left\{d(x, y), d(x, T y), d\left(x, T^{2} y\right), \ldots, d\left(x, T^{n(x)} y\right), d\left(x, T^{n(x)} x\right)\right\}
\end{align*}
$$

and let one of the following conditions hold.
(1) T is continuous.
(2) d has the Fatou property, in particular, d is continuous.
(3) $\lambda \in\left[0, \frac{1}{\kappa}\right)$.

Then T has a unique fixed point x^{*}, and for all $x \in X, \lim _{m \rightarrow+\infty} T^{m} x=x^{*}$.
Proof. Since $\lambda \in[0,1)$, there exists m_{0} such that $\lambda^{m_{0}}<\frac{1}{\kappa}$. Let $x \in X$. For all $m \in \mathbb{N}$, put

$$
\begin{gather*}
n_{0}=n(x), n_{1}=n\left(T^{n_{0}} x\right), n_{2}=n\left(T^{n_{0}+n_{1}} x\right), \ldots, n_{m}=n\left(T^{n_{0}+n_{1}+\cdots+n_{m-1}} x\right) \\
s_{m}=\sum_{i=0}^{m} n_{i} . \tag{2.3}
\end{gather*}
$$

Now, fixing $x=x_{0}$ in (2.3) and considering the sequence $\left\{T^{m} x_{0}\right\}$, we shall prove that

$$
\begin{equation*}
r\left(x_{0}\right) \leqslant \frac{\kappa}{1-\kappa \lambda^{m_{0}}} \max \left\{d\left(x_{0}, T^{m} x_{0}\right): 0 \leqslant m \leqslant s_{m_{0}}\right\} \tag{2.4}
\end{equation*}
$$

where $r\left(x_{0}\right)=\sup \left\{d\left(x_{0}, T^{m} x_{0}\right): m \in \mathbb{N}\right\}$. For each $m>s_{m_{0}}$, there exists $p \in\{0,1, \ldots, m\}$ such that $d\left(x_{0}, T^{p} x_{0}\right)=\max \left\{d\left(x_{0}, T^{i} x_{0}\right): 0 \leqslant i \leqslant m\right\}$. To prove (2.4), we need to show that

$$
\begin{equation*}
d\left(x_{0}, T^{p} x_{0}\right) \leqslant \frac{\kappa}{1-\kappa \lambda^{m_{0}}} \max \left\{d\left(x_{0}, T^{i} x_{0}\right): 0 \leqslant i \leqslant s_{m_{0}}\right\} \tag{2.5}
\end{equation*}
$$

Indeed, for the case $p \leqslant s_{m_{0}}$, since $\frac{\kappa}{1-\kappa \lambda^{m_{0}}} \geqslant 1$, we find that (2.5) holds. We consider the case $p>s_{m_{0}}$. Note that

$$
\begin{equation*}
d\left(x_{0}, T^{p} x_{0}\right) \leqslant \kappa d\left(x_{0}, T^{s_{m_{0}}} x_{0}\right)+\kappa d\left(T^{s_{m_{0}}} x_{0}, T^{p} x_{0}\right) \tag{2.6}
\end{equation*}
$$

By using (2.2), we have

$$
\begin{aligned}
d\left(T^{s_{m_{0}}} x_{0}, T^{p} x_{0}\right) & =d\left(T^{n_{m_{0}}} T^{s_{m_{0}-1}} x_{0}, T^{n_{m_{0}}} T^{p-n_{m_{0}}} x_{0}\right) \\
\leqslant & \leqslant \max \left\{d\left(T^{s_{m_{0}-1}} x_{0}, T^{p-n_{m_{0}}} x_{0}\right), d\left(T^{s_{m_{0}-1}} x_{0}, T^{p-n_{m_{0}}+1} x_{0}\right),\right. \\
& \left.\ldots, d\left(T^{s_{m_{0}-1}} x_{0}, T^{p} x_{0}\right), d\left(T^{s_{m_{0}-1}} x_{0}, T^{s_{m_{0}}} x_{0}\right)\right\} \\
& =\lambda d\left(T^{s_{m_{0}-1}} x_{0}, T^{i_{m_{0}}} x_{0}\right)
\end{aligned}
$$

for some $i_{m_{0}} \in\left\{p-n_{m_{0}}, p-n_{m_{0}}+1, \ldots, p, s_{m_{0}}\right\} \subset\{0,1, \ldots, m\}$.
By using (2.2) again, we also have

$$
\begin{aligned}
& d\left(T^{s_{m_{0}-1}} x_{0}, T^{i_{m_{0}}} x_{0}\right)=d\left(T^{n_{m_{0}-1}} T^{s_{m_{0}-2}} x_{0}, T^{n_{m_{0}-1}} T^{i_{m_{0}}-n_{m_{0}-1}} x_{0}\right) \\
& \leqslant \lambda \max \left\{d\left(T^{s_{m_{0}-2}} x_{0}, T^{i_{m_{0}}-n_{m_{0}-1}} x_{0}\right), d\left(T^{s_{m_{0}-2}} x_{0}, T^{i-n_{m_{0}-1}+1} x_{0}\right),\right. \\
& \left.\quad \ldots, d\left(T^{s_{m_{0}-2}} x_{0}, T^{i} x_{0}\right), d\left(T^{s_{m_{0}-2}} x_{0}, T^{s_{m_{0}-1}} x_{0}\right)\right\} \\
& \quad=\lambda d\left(T^{s_{m_{0}-2}} x_{0}, T^{i_{m_{0}-1}} x_{0}\right)
\end{aligned}
$$

for some $i_{m_{0}-1} \in\left\{i_{m_{0}}-n_{m_{0}-1}, i_{m_{0}}-n_{m_{0}-1}+1, \ldots, i_{m_{0}}, s_{m_{0}-1}\right\} \subset\{0,1, \ldots, m\}$.
Continuing the process, we find that

$$
\begin{aligned}
d\left(T^{s_{m_{0}}} x_{0}, T^{p} x_{0}\right) & \leqslant \lambda d\left(T^{s_{m_{0}-1}} x_{0}, T^{i_{m_{0}}} x_{0}\right) \\
& \leqslant \lambda^{2} d\left(T^{s_{m_{0}-2}} x_{0}, T^{i_{m_{0}-1}} x_{0}\right) \leqslant \cdots \leqslant \leqslant \lambda^{m_{0}} d\left(x_{0}, T^{i_{1}} x_{0}\right)
\end{aligned}
$$

for some $i_{1} \in\{0,1, \ldots, m\}$. It implies that

$$
\begin{equation*}
d\left(T^{s_{m_{0}}} x_{0}, T^{p} x_{0}\right) \leqslant \lambda^{m_{0}} d\left(x_{0}, T^{i_{1}} x_{0}\right) \leqslant \lambda^{m_{0}} d\left(x_{0}, T^{p} x_{0}\right) \tag{2.7}
\end{equation*}
$$

It follows from (2.6) and (2.7) that

$$
d\left(x_{0}, T^{p} x_{0}\right) \leqslant \kappa d\left(x_{0}, T^{s_{m_{0}}} x_{0}\right)+\kappa \lambda^{m_{0}} d\left(x_{0}, T^{p} x_{0}\right)
$$

Note that $1-\kappa \lambda^{m_{0}}>0$. So we get

$$
d\left(x_{0}, T^{p} x_{0}\right) \leqslant \frac{\kappa}{1-\kappa \lambda^{m_{0}}} d\left(x_{0}, T^{s_{m_{0}}} x_{0}\right) .
$$

This proves that (2.5) holds.
Now, we prove that the sequence $\left\{T^{m} x_{0}\right\}$ is Cauchy. Let $k, l \geqslant s_{m}$. By using (2.2), we have

$$
\begin{aligned}
d\left(T^{s_{m}} x_{0}, T^{l} x_{0}\right) & =d\left(T^{n_{m}} T^{s_{m-1}} x_{0}, T^{n_{m}} T^{l-n_{m}} x_{0}\right) \\
\leqslant & \lambda \max \left\{d\left(T^{s_{m-1}} x_{0}, T^{l-n_{m}} x_{0}\right), d\left(T^{s_{m-1}} x_{0}, T^{l-n_{m}+1} x_{0}\right)\right. \\
& \left.\quad \ldots, d\left(T^{s_{m-1}} x_{0}, T^{l} x_{0}\right), d\left(T^{s_{m-1}} x_{0}, T^{s_{m}} x_{0}\right)\right\} \\
& =\lambda d\left(T^{s_{m-1}} x_{0}, T^{i_{m}} x_{0}\right)
\end{aligned}
$$

for some $i_{m} \in\left\{l-n_{m}, l-n_{m}+1, \ldots, l, s_{m}\right\}$. By using (2.2) again, we also have

$$
\begin{aligned}
& d\left(T^{s_{m-1}} x_{0}, T^{i_{m}} x_{0}\right)=d\left(T^{n_{m-1}} T^{s_{m-2}} x_{0}, T^{n_{m-1}} T^{i_{m}-n_{m-1}} x_{0}\right) \\
& \leqslant \lambda \max \left\{d\left(T^{s_{m-2}} x_{0}, T^{i_{m}-n_{m-1}} x_{0}\right), d\left(T^{s_{m-2}} x_{0}, T^{i_{m}-n_{m-1}+1} x_{0}\right),\right. \\
& \left.\quad \ldots, d\left(T^{s_{m-2}} x_{0}, T^{i_{m}} x_{0}\right), d\left(T^{s_{m-2}} x_{0}, T^{s_{m-1}} x_{0}\right)\right\} \\
& \quad=\lambda d\left(T^{s_{m-2}} x_{0}, T^{i_{m-1}} x_{0}\right)
\end{aligned}
$$

for some $i_{m-1} \in\left\{i_{m}-n_{m-1}, i_{m}-n_{m-1}+1, \ldots, i_{m}, s_{m-1}\right\}$.

Continuing the process, we have

$$
\begin{aligned}
d\left(T^{s_{m}} x_{0}, T^{l} x_{0}\right) & \leqslant \lambda d\left(T^{s_{m-1}} x_{0}, T^{i_{m}} x_{0}\right) \\
& \leqslant \lambda^{2} d\left(T^{s_{m-2}} x_{0}, T^{i_{m-1}} x_{0}\right) \leqslant \cdots \leqslant \lambda^{m} d\left(x_{0}, T^{i_{0}} x_{0}\right)
\end{aligned}
$$

for some $i_{0} \in\left\{i_{1}-n_{1}, i_{m}-n_{m-1}+1, \ldots, i_{1}, s_{1}\right\}$. It implies that

$$
\begin{equation*}
d\left(T^{s_{m}} x_{0}, T^{l} x_{0}\right) \leqslant \lambda^{m} d\left(x_{0}, T^{i_{0}} x_{0}\right) \leqslant \lambda^{m} r\left(x_{0}\right) \tag{2.8}
\end{equation*}
$$

Similarly, we also have

$$
\begin{equation*}
d\left(T^{s_{m}} x_{0}, T^{k} x_{0}\right) \leqslant \lambda^{m} r\left(x_{0}\right) \tag{2.9}
\end{equation*}
$$

It follows from (2.8) and (2.9) that for all $k, l \geqslant s_{m}$,

$$
d\left(T^{l} x_{0}, T^{k} x_{0}\right) \leqslant \kappa\left[d\left(T^{l} x_{0}, T^{s_{m}} x_{0}\right)+d\left(T^{s_{m}} x_{0}, T^{k} x_{0}\right)\right] \leqslant 2 \kappa \lambda^{m} r\left(x_{0}\right)
$$

Combining this with (2.4), we find that the sequence $\left\{T^{m} x_{0}\right\}$ is Cauchy. Since (X, d, κ) is complete, there exists $x^{*} \in X$ such that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} T^{m} x_{0}=x^{*} \tag{2.10}
\end{equation*}
$$

By using (2.2), we have for all $m \in \mathbb{N}$,
$\left(T^{n\left(x^{*}\right)} x^{*}, T^{n\left(x^{*}\right)+m}\left(x_{0}\right)\right)=d\left(T^{n\left(x^{*}\right)} x^{*}, T^{n\left(x^{*}\right)}\left(T^{m} x_{0}\right)\right)$
$\leqslant \lambda \max \left\{d\left(x^{*}, T^{m} x_{0}\right), d\left(x^{*}, T T^{m} x_{0}\right), \ldots, d\left(x^{*}, T^{n\left(x^{*}\right)} T^{m} x_{0}\right), d\left(x^{*}, T^{n\left(x^{*}\right)} x^{*}\right)\right\}$
$=\lambda \max \left\{d\left(x^{*}, T^{m} x_{0}\right), d\left(x^{*}, T^{m+1} x_{0}\right), \ldots, d\left(x^{*}, T^{n\left(x^{*}\right)+m} x_{0}\right), d\left(x^{*}, T^{n\left(x^{*}\right)} x^{*}\right)\right\}$.
Now, if T is continuous, then

$$
T x^{*}=T\left(\lim _{m \rightarrow+\infty} T^{m} x\right)=\lim _{m \rightarrow+\infty} T^{m+1} x=x^{*}
$$

This proves that x^{*} is a fixed point of T.
If d has the Fatou property, then letting $m \rightarrow+\infty$ in (2.11) and using (2.10) we get

$$
\begin{align*}
d\left(T^{n\left(x^{*}\right)} x^{*}, x^{*}\right) & \leqslant \liminf _{m \rightarrow+\infty} d\left(T^{n\left(x^{*}\right)} x^{*}, T^{n\left(x^{*}\right)+m}\left(x_{0}\right)\right) \tag{2.12}\\
\leqslant & \liminf _{m \rightarrow+\infty} \max \left\{d\left(x^{*}, T^{m} x_{0}\right), d\left(x^{*}, T^{m+1} x_{0}\right), \ldots,\right. \\
& \left.d\left(x^{*}, T^{n\left(x^{*}\right)+m} x_{0}\right), d\left(x^{*}, T^{n\left(x^{*}\right)} x^{*}\right)\right\} \\
& =\lambda d\left(x^{*}, T^{n\left(x^{*}\right)} x^{*}\right) . \tag{2.13}
\end{align*}
$$

Since $0 \leqslant \lambda<1$, we find that $d\left(T^{n\left(x^{*}\right)} x^{*}, x^{*}\right)=0$, that is, x^{*} is a fixed point of $T^{n\left(x^{*}\right)}$.

If $\lambda \in\left[0, \frac{1}{\kappa}\right)$, then as in the proof of [12, Theorem 2.1], x^{*} is a fixed point of $T^{n\left(x^{*}\right)}$.

Now, for a fixed point x^{*} of $T^{n\left(x^{*}\right)}$, we find that for all $m \in \mathbb{N}$,

$$
T^{m} x^{*}=T^{m} T^{n\left(x^{*}\right)} x^{*}=T^{n\left(x^{*}\right)} T^{m} x^{*}
$$

This proves that $T^{m} x^{*}$ is a fixed point of $T^{n\left(x^{*}\right)}$ for all $m \in \mathbb{N}$. So, if

$$
d\left(x^{*}, T^{q} x^{*}\right)=\sup \left\{d\left(x^{*}, T^{m} x^{*}\right): m \in \mathbb{N}\right\}
$$

then $d\left(x^{*}, T^{q} x^{*}\right)=\max \left\{d\left(x^{*}, T^{m} x^{*}\right): 1 \leqslant m<n\left(x^{*}\right)\right\}$. Therefore, we have

$$
\begin{aligned}
& d\left(x^{*}, T^{q} x^{*}\right) \\
= & d\left(T^{n\left(x^{*}\right)} x^{*}, T^{n\left(x^{*}\right)+q}\left(x^{*}\right)\right) \\
\leqslant & \lambda \max \left\{d\left(x^{*}, T^{q} x^{*}\right), d\left(x^{*}, T T^{q} x^{*}\right), \ldots, d\left(x^{*}, T^{n\left(x^{*}\right)} T^{q} x^{*}\right), d\left(x^{*}, T^{n\left(x^{*}\right)} x^{*}\right)\right\} \\
= & \lambda \max \left\{d\left(x^{*}, T^{q} x^{*}\right), d\left(x^{*}, T^{1+q} x^{*}\right), \ldots, d\left(x^{*}, T^{n\left(x^{*}\right)+q} x^{*}\right), d\left(x^{*}, T^{n\left(x^{*}\right)} x^{*}\right)\right\} \\
\leqslant & \lambda d\left(x^{*}, T^{q} x^{*}\right) .
\end{aligned}
$$

Since $0 \leqslant \lambda<1$, we find that $d\left(x^{*}, T^{q} x^{*}\right)=0$. This proves that $d\left(x^{*}, T^{m} x^{*}\right)=0$ for all $m \in \mathbb{N}$. So $d\left(x^{*}, T x^{*}\right)=0$, and x^{*} is a fixed point of T.

The above arguments show that T has a fixed point x^{*}. Now, if y^{*} is also a fixed point of T, then we have

$$
\begin{align*}
& d\left(x^{*}, y^{*}\right)=d\left(T^{n\left(x^{*}\right)} x^{*}, T^{n\left(x^{*}\right)}\left(y^{*}\right)\right) \tag{2.14}\\
& \leqslant \lambda \max \left\{d\left(x^{*}, y^{*}\right), d\left(x^{*}, T y^{*}\right), \ldots, d\left(x^{*}, T^{n\left(x^{*}\right)} y^{*}\right), d\left(x^{*}, T^{n\left(x^{*}\right)} x^{*}\right)\right\} \\
& \quad=\lambda \max \left\{d\left(x^{*}, y^{*}\right), d\left(x^{*}, y^{*}\right), \ldots, d\left(x^{*}, y^{*}\right), d\left(x^{*}, x^{*}\right)\right\}=\lambda d\left(x^{*}, y^{*}\right)
\end{align*}
$$

Since $0 \leqslant \lambda<1$, we get that $d\left(x^{*}, y^{*}\right)=0$. This proves that the fixed point of T is unique.

Finally, since x_{0} in (2.10) is arbitrary in X and x^{*} is unique. So for all $x \in X$, we have $\lim _{m \rightarrow+\infty} T^{m} x=x^{*}$.

Next, we show that the range $\left[0, \frac{1}{\kappa}\right)$ of λ in [12, Theorem 2.2] can be extended to $[0,1)$.

Theorem 2.2. Let (X, d, κ) be a complete b-metric space, $\lambda \in[0,1)$ and f : $X \rightarrow X$ be a continuous map satisfying for each $x \in X$, there exists a positive integer $n(x)$ such that for all $y \in X$,

$$
d\left(T^{n(x)}(x), T^{n(x)}(y)\right) \leqslant \lambda \max \left\{d(x, y), d(x, T y), d\left(x, T^{2} y\right), \ldots, d\left(x, T^{n(x)} y\right)\right.
$$

$$
\begin{equation*}
\left.d(x, T x), d\left(x, T^{2} x\right), \ldots, d\left(x, T^{n(x)} x\right)\right\} \tag{2.15}
\end{equation*}
$$

Then T has a unique fixed point x^{*}, and for all $x \in X, \lim _{m \rightarrow+\infty} T^{m} x=x^{*}$.
Proof. By using notations and arguments in the proof of Theorem [2.1] we also get (2.6), that is $d\left(x_{0}, T^{p} x_{0}\right) \leqslant \kappa d\left(x_{0}, T^{s_{m_{0}}} x_{0}\right)+\kappa d\left(T^{s_{m_{0}}} x_{0}, T^{p} x_{0}\right)$. By using (2.15), we have

$$
\begin{aligned}
& d\left(T^{s_{m_{0}}} x_{0}, T^{p} x_{0}\right)= d\left(T^{n_{m_{0}}} T^{s_{m_{0}-1}} x_{0}, T^{n_{m_{0}}} T^{p-n_{m_{0}}} x_{0}\right) \\
& \leqslant \lambda \max \left\{d\left(T^{s_{m_{0}-1}} x_{0}, T^{p-n_{m_{0}}} x_{0}\right), d\left(T^{s_{m_{0}-1}} x_{0}, T^{p-n_{m_{0}}+1} x_{0}\right),\right. \\
& \quad \ldots, d\left(T^{s_{m_{0}-1}} x_{0}, T^{p} x_{0}\right), d\left(T^{s_{m_{0}-1}} x_{0}, T^{s_{m_{0}-1}+1} x_{0}\right), \\
&\left.\ldots, d\left(T^{s_{m_{0}-1}} x_{0}, T^{s_{m_{0}}} x_{0}\right)\right\} \\
&= \lambda d\left(T^{s_{m_{0}-1}} x_{0}, T^{i_{m_{0}}} x_{0}\right)
\end{aligned}
$$

for some $i_{m_{0}}$ where

$$
i_{m_{0}} \in\left\{p-n_{m_{0}}, p-n_{m_{0}}+1, \ldots, p, s_{m_{0}-1}, s_{m_{0}-1}+1, \ldots, s_{m_{0}}\right\} \subset\{0,1, \ldots, m\}
$$

Then, by doing similar as in the proof of Theorem 2.1 there exists $x^{*} \in X$ such that $\lim _{m \rightarrow+\infty} T^{m} x_{0}=x^{*}$. Since T is continuous, we have

$$
T x^{*}=T\left(\lim _{m \rightarrow+\infty} T^{m} x\right)=\lim _{m \rightarrow+\infty} T T^{m} x=\lim _{m \rightarrow+\infty} T^{m+1} x=x^{*}
$$

Then x^{*} is a fixed point of T. By doing similar as in the proof of Theorem 2.1 x^{*} is the unique fixed point of T.

The following example shows that the continuity of the map T in Theorem 2.2 is essential.

Example 2.2. Let $X=[0,1]$ and for all $x, y \in X$,

$$
d(x, y)=\left\{\begin{array}{ll}
|x-y|, & \text { if } x y \neq 0 \\
2|x-y|, & \text { if } x y=0
\end{array} \quad \text { and } \quad T x= \begin{cases}\frac{x}{2}, & \text { if } x \in(0,1] \\
1, & \text { if } x=0\end{cases}\right.
$$

Then we have
(1) All assumptions of Theorem 2.2 are satisfied except for the continuity of T.
(2) T is fixed point free.

Proof. (11). It follows from the definition of T that T is not continuous. It follows from [13, Example 6] that (X, d, κ) is a complete b-metric space with $\kappa=2$.

Let $\lambda=\frac{3}{4} \in\left[\frac{1}{\kappa}, 1\right)$ and $n(x)=2$ for all x. For the case $x=0$, if $y=0$, then $d\left(T^{n(x)} x, T^{n(x)} y\right)=0$. If $y \neq 0$, then
$d\left(T^{n(x)} x, T^{n(x)} y\right)=d\left(T^{2} 0, T^{2} y\right)=d\left(\frac{1}{2}, \frac{y}{4}\right)=\left|\frac{1}{2}-\frac{y}{2}\right| \leqslant \frac{1}{2}<\frac{3}{4} d(0,1)=\frac{3}{4} d(x, T x)$.
For the case $x \neq 0$, if $y \neq 0$, then

$$
d\left(T^{n(x)} x, T^{n(x)} y\right)=d\left(T^{2} x, T^{2} y\right)=d\left(\frac{x}{4}, \frac{y}{4}\right)=\left|\frac{x}{4}-\frac{y}{4}\right| \leqslant \frac{3}{4} d(x, y)
$$

If $y=0$, then

$$
\begin{gathered}
d(x, y)=d(x, 0)=2 x \\
d(x, T y)=d(x, T 0)=d(x, 1)=1-x
\end{gathered}
$$

So we have
$d\left(T^{n(x)} x, T^{n(x)} y\right)=d\left(T^{2} x, T^{2} 0\right)=d\left(\frac{x}{4}, \frac{1}{2}\right)=\left|\frac{x}{4}-\frac{1}{2}\right| \leqslant \frac{3}{4} \max \{d(x, y), d(x, T y)\}$.
The above calculations show that (2.15) holds for all $y \in X$.
(2). It follows from the definition of T that T is fixed point free.

In Theorem [2.1, if we replace the assumption b-metric with b-metric-like [1, Definition 2.3], then the proof is similar, except for the arguments in proving (2.12) and (2.14). Indeed, in proving (2.12) and (2.14), we need $d\left(x^{*}, x^{*}\right)=0$ while, for a b-metric-like d, we only have $d(x, y)=0 \Rightarrow x=y$. So, the following question remains open.

Question 2.1. Do the conclusions of Theorems 2.1, and 2.2 hold if the assumption b-metric is replaced by b-metric-like?

Acknowledgements. The author gratefully acknowledges the anonymous referee for many helpful suggestions.

References

1. M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl. 402 (2013), 1-25.
2. I. A. Bakhtin, The contraction principle in quasimetric spaces, Func. An., Unianowsk, Gos. Ped. Ins. 30 (1989), 26-37, in Russian.
3. R. K. Bisht, N. K. Singh, V. Rakočević, B. Fisher, On discontinuity at fixed point via power quasi contraction, Publ. Inst. Math., Nouv. Sér. 108(122) (2020), 5-11.
4. V. W. Bryant, A remark on a fixed-point theorem for iterated mappings, Am. Math. Mon. 75(4) (1968), 399-400.
5. Lj. Cirić, On Sehgal's maps with a contractive iterate at a point, Publ. Inst. Math., Nouv. Sér. 33(47) (1983), 59-62.
6. Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45 (1974), 267-273.
7. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1993), no. 1, 5-11.
8. , Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Math. Fis. Univ. Modena 46 (1998), 263-276.
9. N. V. Dung, V. T. L. Hang, On relaxations of contraction constants and Caristi's theorem in b-metric spaces, J. Fixed Point Theory Appl. 18(2) (2016), 267-284.
10. N. V. Dung, W. Sintunavarat, Fixed point theory in b-metric spaces, in: D. Gopal, P. Agarwal, P. Kumam (eds.), Metric Structures and Fixed Point Theory, Chapman and Hall/CRC, 2021, pp. 33-66.
11. L. F. Guseman, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Am. Math. Soc. 26 (1970), 615-618.
12. E. Karapınar, Z. D. Mitrović, A. Öztürk, S. Radenović, On a theorem of Ćirić in b-metric spaces, Rend. Circ. Mat. Palermo (2) 70 (2021), 217-225.
13. N. Lu, F. He, W.-S. Du, Fundamental questions and new counterexamples for b-metric spaces and Fatou property, Mathematics 7 (11) (2019), 1-15.
14. N. Lu, F. He, W.-S. Du, On the best areas for Kannan system and Chatterjea system in b-metric spaces, Optimization 70(5-6) (2021), 973-986.
15. V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Am. Math. Soc. 23(3) (1969), 631-634.

Faculty of Mathematics - Informatics Teacher Education (Received 2302 2022)
Dong Thap University
(Revised 1101 2023)
Cao Lanh City
Dong Thap Province
Vietnam
nvdung@dthu.edu.vn

[^0]: 2010 Mathematics Subject Classification: Primary 47H10; Secondary 54H25.
 Key words and phrases: b-metric; fixed point.
 Communicated by Stevan Pilipović.

