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ON CIRIC TYPE THEOREMS IN b-METRIC SPACES
Nguyen Van Dung

ABSTRACT. We show that the range of contraction constant in a result of
Karapinar et al. can not be extended to [0,1). However, by using some addi-
tional conditions, we prove that the range can be extended to [0,1). The first
result gives a negative answer to the open question on a Cirié type theorem in
b-metric spaces, and the next results are improvements of Cirié type theorems
in b-metric spaces in the literature.

1. Introduction and preliminaries

In [4], Bryant refined the Banach contraction map principle in the sense that
the given map 7" does not have to be a contraction, but for some n, the map 7" is
a contraction. The result of Bryant was improved by Sehgal [15] as follows.

THEOREM 1.1. [I5] p.631] Let (X,d) be a complete metric space, A € [0,1)
and T : X — X be a continuous map satisfying for each x € X, there is a positive
integer n(z) such that for all y € X, d(T"®z, T*®)y) < Xd(z,y). Then T has a
unique fized point x* € X, and for all x € X, limy, 400 Tz = x*.

In [1T], Guseman refined Sehgal’s result by removing the continuity of given

map. After that, Ciri¢ [5] generalized the result of Sehgal as follows.

THEOREM 1.2. [B] Theorem 1] Let (X, d) be a complete metric space, A € [0,1)
and T : X — X be a map satisfying for each x € X, there is a positive integer n(x)
such that for all y € X,

d(T”(I)z, Tn(z)y)
< Amax{d(z,y), d(z, Ty), d(z, T?y), ..., d(z, T"y), d(z, T" " z)}.
Then T has a unique fized point * € X and for all x € X, limy, 400 TTx = ™.

There have been many generalizations of metric spaces, one of them being the
b-metric space by Bakhtin [2] and Czerwik [7][8]. Compared to the metric, the
b-metric is not necessarily continuous and the generalized inequality can not be
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applied to finite points in general. Many fixed point theorems in metric spaces
have been studied and extended to b-metric spaces, for example, see [31[10] and the
references therein. In particular, Karapinar et al. [I2] extended Theorem to
b-metric spaces as follows.

THEOREM 1.3. [12] Theorem 2.1] Let (X, d, k) be a complete b-metric space,
A €0, %) and T : X — X be a map satisfying for each x € X, there is a positive
integer n(x) such that for ally € X,

d(Tn(I):I:, T"(z)y)
< Amax {d(:c, y),d(z, Ty),d(z, T%y), ..., d(z, T"(I)y), d(x, T"(I):E)}.
Then T has a unique fixed point x* € X, and for all x € X, limy, 400 T™x = x*.
THEOREM 1.4. [12] Theorem 2.2] Let (X, d, k) be a complete b-metric space,

A €0, %) and f : X — X be a continuous map satisfying for each x € X, there
exists a positive integer n(x) such that for all y € X,

AT (), T (y)) < Amax {d(x,y), d(z, Ty), d(z, T?y), .., d(z, T""y),
d(z, Tx),d(z, T?z), ..., d(z, T"(I)x)}.
Then T has a unique fized point x*, and for all x € X, limy, 00 T™x = x*.

The proof of Theorem [[3] in b-metric spaces follows that of Theorem [[.2] in
metric spaces. However, the technique there is only available for A € [0, %) where
[0,1) € [0,1). So, the authors posed the following question.

QUEsTION 1.1. [12] p.9] In Theorem[L3, can we extend the range of A to the
case % <A<1?

We must say that not every fixed point theorem in metric spaces can be ex-
tended fully to b-metric spaces, for example, see [10, Examples 20 and 21]. Re-
cently, Lu et al. [13] proved an extension of the Ciric fixed point theorem in metric
spaces [6, Theorem 1] to b-metric spaces with certain additional assumptions as
follows.

THEOREM 1.5. [14] Theorem 3| Let (X,d, k) be a complete b-metric space,
A€0,1) and T : X — X be a map such that for all z,y € X,

d(Tz,Ty) < Amax{d(z,y),d(z, Tx),d(y, Ty),d(z, Ty),d(y, Tz)}
and let one of the following conditions hold.

(1) T is continuous.

(2) d satisfies the Fatou property, that is, for all x,y € X and lim, 1o x,, = x,
we have d(z,y) < liminf, 1o d(zn,y).

(3) Aefo,4).

Then T has a unique fixed point x*, and for all x € X, limy,_, 4 oo T"x = ™.
In this paper, we give an example to show that the range of contraction constant

in [I2] Theorem 2.1] can not be extended to [0,1) which is a negative answer to
Question [Tl By using some suitable conditions, we also prove that the range can
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be extended to [0,1) which are improvements of Theorems [[3] and [[4] in b-metric
spaces.
2. Main results
First, we give an example to show that the answer to Question [[.Tlis negative.

ExAMPLE 2.1. Let X = {0,1,3,...,1,...}, and

0, ife=y
1, ite#ye{0,1
d(z,y) = . (0,13 -
|z —y| fex#ye{0}u{s :neN}
% otherwise,

and let T': X — X be defined by

1 if v =
Tr=4q lz ?
jgr ifr=_-nelN

10
Then
(1) (X,d, k) is a complete b-metric space with kK = 4.
(2) There exists A € [%, 1) satisfying for each x € X, there is a positive integer
n(x) such that for all y € X,
(2.1)  d(T"® g, T™@)y)
< Amax {d(z,y),d(z, Ty),d(z, T?y), ..., d(z, T"Py), d(x, T""z)}.
(3) T is fixed point free.

Proor. (). See [9, Example 2.6.(1)].
(@) We find that - = . For A = I, we consider the following cases.
Case 1. x = 0. Let n(z) = 1. If y = 0, then d(IT™®z, T"®)y) = 0. If y = L, then

1 1 1
) 4 7)) — (T T—): (1 —):—
d( x, y) =d(T0, ) =dll ) =

d(z, T"®z) = d(0,T0) = d(0,1) = 1.

Therefore d(T™ )z, T"®)y) < Xd(x, T*®)x).
The above calculations show that, for n(z) = 1, (2.I) holds for all y € X.
Case 2. © = 5. Let n(z) = 2n. If y = 5, then

1 1

2n’ 2m
7d( 1 1 )7‘ 1 1
\1027 207 1027 2m/ 1102720 1027 2m )
1 1 1 1
e = (5, 53) = |3 -
(@) 2n’ 2m on  2m

Therefore d(T™ %)z, T™®)y) < e d(z,y) < Ad(z,y).
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Ify = , then
1 1 1 1
d(Tn(z):L', Tn(z)y) _ d(Tn(z)_, () ) = d( , )
n 2m—1 102"n’ 102"(2m — 1)
1 ‘ < 1
102"n 102" (2m — 1) 100’
1 1 1
d(z,y) = d(—, 7) =1

n' 2m-—1

Therefore d(T™®) z, T™*)y) < sd(z,y) < Nd(z,y).
If y = 0, then
1 1
AT @z, T y) = d<T2" 72" ) a( )
(T, T7y) 0 1027 2n° 102712
1
-l <y

1027 2n 102"’1 2 210271

1 1 1
d(z, :d(—,o) ———0|= —.
(z,9) 2n 2n | 2n
Therefore d(T"®)z, T"(®)y) < Ld(xz,y) < )\d(x,y).
The above calculatlons show that for n( = 2n, (Z1) holds for all y € X.

Case 3. © = 7. Let n(z) = 2n. If y = 5=, then
1 1 1 1
(T, T"y) m—1" 2m 1027 (2n — 1)’ 102" 2m
_ ’ 1 1 ‘ - 1
~11027(2n —1) 1027 2m!| ~ 100’
1 1 1
d(z,y) = d( —) .
@) =T am) =3
Therefore d(T"(””)ac T®)y) < kd(z,y) < Ad(z,y).
Ify = , then

1 1
(e, T"y) m—1" 2m—1

B d( 1 1 ) B ‘ 1 1 !
=~ 10220 — 1) 1027 (2m — 1) 1027(2n— 1)  102*(2m — 1)1 ~ 100’

1 1 1

o =i ) =
(@,y) m—12m—-1) 14
A

Therefore d(Tz, Ty) < %d(x,y) d(z,y).
If y =0, then
AT @ g, TV@)y) = d(TQnL Tzno) _ d( 1 1 )
’ o —1’ 1027(2n — 1) 10271
1 1 1
102°(2n —1) 102%1’ 102n—1°

1 1 1
d —d — —0|=
(@) (2n—1’0) 51 Yl

on—1"
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Therefore d(T™®) z, T"®)y) < wd(z,y) < Ad(z,y).

The above calculations show that for n(z) = 2n, () holds for all y € X.
The above three cases show that for each x € X, there is a positive integer
n(x) such that (1)) holds for all y € X.

@). Tt follows from the definition of 7" that T is fixed point free. ([

Now, with some additional conditions, we show that the range [0, %) of A in
Theorem [L3 can be extended to [0,1).

THEOREM 2.1. Let (X,d, k) be a complete b-metric space, A € [0,1) and [ :
X — X be a map satisfying for each x € X, there exists a positive integer n(x)
such that for all y € X,

(22) d(T"(2), TP (y))
< A max {d(‘ra y)a d((E, Ty)a d(l‘, T2y)a XN d((E, Tn(m)y), d(.’L‘, Tn(l)x)}
and let one of the following conditions hold.

(1) T is continuous.
(2) d has the Fatou property, in particular, d is continuous.

(3) xe[o0,L).

Then T has a unique fized point x*, and for all x € X, limy, 100 Tz = x*.

PROOF. Since A € [0, 1), there exists mq such that A™° < L. Let € X. For
all m € N, put

no = n(z), ny=n(T™x), ng=n(T™ "), ... Ny =n(Trotmt Trm-1g)

(2.3) S = inl
i=0

Now, fixing * = x¢ in (Z3]) and considering the sequence {T™xy}, we shall
prove that

(2.4) r(zo) < S max{d(zo,T™"x0) : 0 < m < Sy }
1 — K Amo
where r(zg) = sup{d(zo,T™z0) : m € N}. For each m > sy, there exists

p € {0,1,...,m} such that d(zo,TPz0) = max{d(zo,T?z0) : 0 < i < m}. To
prove (Z4]), we need to show that

(2.5) d(x0, TPx0) < - max{d(zo, T"20) : 0 < i < Sy}

K
1—rA™
Indeed, for the case p < 8y, since =y > 1, we find that (2.5]) holds. We
consider the case p > s,,,. Note that

(2.6) d(zo, T?x0) < kd(zo, T*™0x0) + K d(T* ™0z, TP20).
By using (2.2)), we have
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d(T*moxg, TPxg) = d(T™moT o1 gy, TTmo TP~ mogg)
< Amax{d(T*moxg, TP~ "m0 xq), d(T*m0~ xg, TP~ "m0 gg),
oo d(TPmo—txg, TPag), d(T o~ g, T¥moxg) }
= Nd(T*mo=xq, T"™0x)

for some imy € {P — Tmg,? — Mg + 1, -+ D, Smo } € {0,1,...,m}.
By using (2:2) again, we also have

d(Tsmo=2xg, T 0 xg) = d(T™mo= T mo=2 g, T mo=1Tlmo~"mo—1 )
< Amax{d(T5mo~2xq, Tmo~"mo=130), d(Tm0~2xq, T "mo-1T1gq),
ey d(TSmofzxo, TiSC()), d(TSm0721'0, TSmU*liL'())}
=A d(TSm0721'0, Timofll'o)

for some imy—1 € {img — Mmo—1,%mo — Mmo—1 + Ly« mgy Smo—1} C {0,1,...,m}.
Continuing the process, we find that

d(T*m0xg, TPxg) < Nd(T*m0~'zo, T"™0x()
<A d(Tsmo=2xg, Tmo-120) < -+ <K AN d(20, T 10)
for some i; € {0,1,...,m}. It implies that
(2.7) d(T*moxg, TPxg) < X d(x0, T o) < A™ d(xg, TP0).
It follows from (Z.6]) and (Z7) that
d(xo, TPx0) < kd(xo, T*™0x0) + K A™ d(20, TP20).
Note that 1 — K A" > 0. So we get

d(mo, Tpl'o) < d(mo, T°mo .To).

K
1— Kk Amo
This proves that (23] holds.

Now, we prove that the sequence {T™xo} is Cauchy. Let k,I > s,,. By

using (22)), we have
d(T*m xg, T'xo) = d(T" T o, T T ""m 1)
< )\max{d(TS’"*lxo,TF"mxo), d(TS’"*lxo,Tl*"’"on),
o d(T 2 xg, Thag), d(T**xo, T*™ 20) }
= \d(T*"'xo, T x0)
for some iy, € {l — Nyl — iy + 1,...,1, 8, }. By using ([2:2)) again, we also have
d(Tsm1 2o, T ag) = d(T™m— T =20, T2 Tim="m=15,)
< Amax{d(T*m—2xq, T'm " =1gq), d(T*"2xq, T'm~"m=1H ),
e d(Tm=220, T xg), d(T*™ =220, T 120)}
= \d(T* 2z, T 2)

for some 4y,—1 € {im — Nm—1,%m — Nm—1 + 1, ... im, Sm—1}-
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Continuing the process, we have
d(TSmJE(), Tll'o) <A d(T“Smf1 X0, Timl'o)
< A2d(TSm72SC0,Tim71£C0) <o <K /\md(l'o,TiOSCo)

for some 4o € {i1 — n1,4m — Nm—1 + 1,...,41,81}. It implies that
(2.8) d(T*mxo, T'xo) < A™d(20, T™20) < N7 (20).
Similarly, we also have

(2.9) d(T*mxg, T*x0) <A™ 7(20).

It follows from (2.8]) and (29)) that for all k,1 > s,
d(T'xo, T*x0) < K[d(T'xg, T*™x0) + d(T*™ xo, T"20)] < 26A™ r(0).

Combining this with ([24]), we find that the sequence {T™x¢} is Cauchy. Since
(X,d, k) is complete, there exists z* € X such that

(2.10) lim T7xy = x".

m—r+o0
By using (22]), we have for all m € N,
(2.11)  (TEDg* TrEDT (g0)) = d(T™E ) T (T™ )
< Amax {d(m*, T™xg),d(x*, TT"xg),...,d(x", T”(I*)meo), d(z*, T"(m*)x*)}
= Amax {d(:z:*, T™xo),d(x*, T™ M ay), ..., d(z*, T"(I*meo), d(m*,T"(m*)x*)}.
Now, if T is continuous, then
Tz* =T( lim T"x)= lm T""z=az"

This proves that x* is a fixed point of T'.
If d has the Fatou property, then letting m — +oo in (ZI1]) and using (Z10)
we get

(2.12) AT z* 2*) < liminf d(T™E )z TEDT™ ()

m——+oo
< Aliminf max {d(:z:*, T™xo),d(x*, T™ M ay), . . .,
m——+oo
d(SC*, Tn(:v*)+mx0)7 d(l'*, Tn(m*)l.*)}
(2.13) = Ad(z*, T "),

Since 0 < A < 1, we find that d(7™)z* 2*) = 0, that is, z* is a fixed point of
"),
If A € [0, %), then as in the proof of [12] Theorem 2.1], z* is a fixed point
of T7(=")
Now, for a fixed point z* of 7™ we find that for all m € N,
This proves that 7z* is a fixed point of 7(*7) for all m € N. So, if
d(z*, T92") = sup{d(z*, T™z") : m € N}
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then d(z*, T2*) = max{d(z*, T™z*) : 1 < m < n(z*)}. Therefore, we have

d(z*, T9z*)
— d(T”(I ) % LT r*)+q( )
< Amax {d(z*, T9"),d(z*, TT*) d(m*,T"(I*)qu*),d(m*,T"(l*)x*)}
= Amax {d(z*,T92"),d(a* THq:c) d(x*,T"(I*qu*),d(z*,T"(z*)x*)}
< Ad(zt, T,

Since 0 < A < 1, we find that d(z*, T%*) = 0. This proves that d(z*,T™z*) =0
for all m € N. So d(z*,Tz*) = 0, and «* is a fixed point of T

The above arguments show that 7" has a fixed point z*. Now, if y* is also a
fixed point of T', then we have

< Amax {d(z*,y"),d(z*, Ty"), ..., d(z*, T )y, d(m*,T"(z*)x*)}
= Amax {d(x*,y*), d(z*,y*),...,d(x*, y*),d(z*, %)} = Ad(z", y").

Since 0 < A < 1, we get that d(z*,y*) = 0. This proves that the fixed point of T’
is unique.

Finally, since x in (Z.I0) is arbitrary in X and z* is unique. So for all z € X,
we have lim,, 4o T2 = x*. O

Next, we show that the range [0, 1) of A in [12] Theorem 2.2] can be extended
to [0, 1).

THEOREM 2.2. Let (X,d,k) be a complete b-metric space, A € [0,1) and f :
X — X be a continuous map satisfying for each x € X, there exists a positive
integer n(x) such that for all y € X,

AT (2), T" ) (y)) < Amax {d(x,y), d(x, Ty), d(z, T?), .., d(z, T"")y),
(2.15) d(x, Tx),d(z, T?z), ..., d(z, T"(I)x)}.
Then T has a unique fized point x*, and for all x € X, limy, 00 Tz = x*.

PROOF. By using notations and arguments in the proof of Theorem 2] we
also get (2.6)), that is d(xg, TPxo) < kd(xo, T m0x0) + £ d(T*m0xg, TPx0). By us-
ing (2.15]), we have

d(T*moxg, TPxg) = d(Tmo T mo— gy, TTmo TP ™m0 x)
< Amax{d(T*mo=1zg, TP~ "m0 xq), d(T 0= 2o, TP~ "m0 ay),
L d(Tmo=t g, TPxg), d(T*m0~ g, TSm0 o),
. d(TsWU*1 g, T5mo xo)}
= Ad(T*mo~tzo, T z)
for some i,,, where

tme € P — Mmgy P — Mmg + 1, -+ -, Dy Smo—1, Smo—1+ 1, -y Smo } € {0,1,...,m}.
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Then, by doing similar as in the proof of Theorem 2] there exists z* € X
such that lim,, 1o T™x¢ = x*. Since T is continuous, we have

Tz* =T( lim T"z) = lim TT"z = lim Ty = 2"
m—r—+00 m——+0Q0 m—r—+00

Then x* is a fixed point of T'. By doing similar as in the proof of Theorem 211 z*
is the unique fixed point of T'. O

The following example shows that the continuity of the map T in Theorem
is essential.

EXAMPLE 2.2. Let X =[0,1] and for all z,y € X,

— if Z o if 1
d(z,y) = o=, 1 zy 70 and Tz =<2’ 1 z€(0.1]
2z —yl|, ifzy=0 1, ifz=0.

Then we have

(1) All assumptions of Theorem are satisfied except for the continuity of 7.
(2) T is fixed point free.

Proor. (). It follows from the definition of T that 7" is not continuous. It
follows from [13] Example 6] that (X, d, k) is a complete b-metric space with x = 2.
Let A = % € [%, 1) and n(z) = 2 for all . For the case x = 0, if y = 0, then
d(T™®) g, T™*)y) = 0. If y # 0, then
1
ATz, Ty) = d(T20,7%) = d(5.9) = |
For the case x # 0, if y #~ 0, then

Y 1 3 3
—Zl< =< = = - .
2‘ S5 < —d(0,1) d(z,Tx)

n(z), @),y — (72, 728 — (L Y :‘E_Q‘<
ATz, T"y) = (T2, T) = d(5, 2) 1l <
If y =0, then
d(z,y) = d(z,0) = 2x
d(z,Ty) = d(z,T0) = d(z,1) =1 — z.

So we have

1 1 3
ATz, T"@)y) = d(T2x, T20) = d(%, 5) - E — 5| < $max{d(@, ), d(x, Ty)}.
The above calculations show that (ZI5]) holds for all y € X.

@). Tt follows from the definition of T" that T is fixed point free. (I

In Theorem 2T if we replace the assumption b-metric with b-metric-like [I,
Definition 2.3], then the proof is similar, except for the arguments in proving (212
and (2I4). Indeed, in proving (2I12) and [2.1I4]), we need d(z*,z*) = 0 while, for
a b-metric-like d, we only have d(z,y) = 0 = x = y. So, the following question
remains open.

QUESTION 2.1. Do the conclusions of Theorems B.1l, and 22 hold if the as-
sumption b-metric is replaced by b-metric-like?
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