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ON TWO COMMUTATIVITY CRITERIA

FOR δ-PRIME RINGS

Kamil Kular and Marcin Skrzyński

Abstract. The note concerns the commutativity of associative rings (possibly
nonunital) endowed with a derivation. Our focus is on δ-prime rings. We give a
new proof of Hirano and Tominaga’s result that a δ-prime ring is commutative
whenever the derivation δ is nonzero and commuting on a nonzero two-sided
δ-ideal. We also provide some further generalizations of Herstein’s classical
theorem on a prime ring admitting a nonzero derivation with commutative
range.

1. Preliminaries and introduction

Throughout the present note, R stands for an associative ring (possibly without
identity) and N for the set of non-negative integers. Recall that the ring R is said to
be 2-torsion free, if it has no element of additive order 2 (this is equivalent to saying
that 2x 6= 0 for any x ∈ R r {0}). The commutator [x, y] of elements x, y ∈ R is
defined by [x, y] = xy − yx. We use the standard notation Z(R) to represent the
center of the ring R. It is worth noticing that

Z(R) = {x ∈ R : [x, y] = 0 for any y ∈ R}.

Consider now a set E ⊆ R and a mapping ϕ : R → R. The set E is called
ϕ-invariant, if ϕ(E) ⊆ E. The mapping ϕ is said to be commuting on E, if
[ϕ(a), a] = 0 for any a ∈ E (in other words, a and ϕ(a) commute whenever a ∈ E).
The left and right annihilators of E are defined by

annℓ
R(E) = {x ∈ R : xa = 0 for any a ∈ E},

annr
R(E) = {x ∈ R : ax = 0 for any a ∈ E},

respectively.
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Let us next recall that an additive mapping δ : R → R is said to be a derivation
of the ring R, if it satisfies the Leibniz rule

∀ x, y ∈ R (δ(xy) = δ(x)y + xδ(y)).

The constant mapping R ∋ x 7→ 0 ∈ R is a derivation of R referred to as the
zero derivation. More generally, ∂c : R ∋ x 7→ [c, x] ∈ R is a derivation of R for
any element c ∈ R. This derivation is called the inner derivation induced by c.
We denote the set of all derivations of the ring R by Der(R). For an arbitrary
δ ∈ Der(R) and an arbitrary k ∈ N we define δk to be the kth iterate of δ. In other
words,

δk =

{

idR, if k = 0,

δ ◦ · · · ◦ δ
︸ ︷︷ ︸

k

, if k > 1.

The following lemma gathers some well-known simple properties of derivations
and commutators. We will use these properties in the next section.

Lemma 1.1. Let δ ∈ Der(R) and x, y, c ∈ R. Moreover, let k ∈ N. Then

(i) [c, xy] = [c, x]y + x[c, y],
(ii) δ([x, y]) = [δ(x), y] + [x, δ(y)],

(iii) δk(xy) =
∑k

ℓ=0

(
k

ℓ

)
δk−ℓ(x)δℓ(y).

Consider once again a derivation δ ∈ Der(R). A left, right or two-sided ideal
of the ring R is said to be a δ-ideal, if it is δ-invariant. Let F be the family of all
left δ-ideals of R which contain a set E ⊆ R. Then

⋂
F is also a left δ-ideal of R.

This intersection is obviously called the left δ-ideal of R generated by the set E. In
the same way one can define the right and two-sided δ-ideals generated by E.

The present note deals mainly with δ-prime rings. Recall that given a derivation
δ ∈ Der(R), the ring R is said to be δ-prime (or prime with respect to δ), if it
is nonzero and the product of any two of its nonzero two-sided δ-ideals is again
nonzero. Recall also that the ring is said to be δ-semiprime, if it has no nonzero
nilpotent two-sided δ-ideals. Obviously, each δ-prime ring is δ-semiprime. It should
be noticed that the word “two-sided” in the definitions of a δ-prime ring and a δ-
semiprime ring can be replaced by “left” or by “right”.

The δ-primeness extends the standard notion of a prime ring. To be more
precise, the following conditions are equivalent for a ring R:

• it is prime in the standard sense,
• it is prime with respect to the zero derivation,
• it is prime with respect to any derivation δ ∈ Der(R).

Notice that the above equivalence remains true, if the word “prime” is replaced
by “semiprime”. Let us also point out that there exist rings which are prime with
respect to some nonzero derivation, although they are not even semiprime in the
standard sense (see, for instance, [4, Example 3.5]).

The two results below play a very important role in the note. The first one is
a part of the comprehensive characterization of δ-prime rings presented in [4]. The
second one is taken from [5].
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Theorem 1.1. Let R be a nonzero ring and δ ∈ Der(R). Then the following
conditions are equivalent:

(1) R is δ-prime,
(2) for any elements x, y ∈ R r {0} there exists k ∈ N such that xRδk(y) 6= {0}

(by xRδk(y) we simply mean {xzδk(y) : z ∈ R}),
(3) annℓ

R(I) = {0} for any nonzero left δ-ideal I of the ring R,
(4) annr

R(J) = {0} for any nonzero right δ-ideal J of the ring R.

Lemma 1.2. Let δ, d ∈ Der(R) and I be a nonzero left or right δ-ideal of the
ring R. Suppose that R is δ-prime. Then

(i) d is the zero derivation whenever it vanishes on I,
(ii) R is commutative whenever so is I.

For further information about noncommutative rings, ideals and derivations we
refer to [2].

Various criteria for commutativity of associative rings have been attracting the
attention of mathematicians since the 1950s. Pinter-Lucke’s survey article [7] offers
a valuable insight into the topic.

There are a lot of interesting commutativity criteria which involve derivations.
A nice result of this type can be found in [3] (Lemma 7). It says that a δ-prime
ring is commutative whenever the derivation δ is nonzero and commuting on some
nonzero two-sided δ-ideal. However, regarding the proof, the authors give only a
one-sentence comment. Our first goal is therefore to provide an elementary and
self-contained proof of the Hirano-Tominaga criterion.

A classical theorem of Herstein states, among other things, that a 2-torsion free
prime ring admitting a nonzero derivation with commutative range is itself com-
mutative (see [1, Theorem 2]). In [5] the first named author of the present note
generalized this result to δ-prime rings. He also observed that a δ-prime ring (not
necessarily 2-torsion free) with commutative range of δ is itself commutative when-
ever δ3 is a nonzero mapping. Our second goal here is to enhance the generalized
Herstein theorem and to give a new proof of it.

Some of the facts and ideas discussed in the note come from the first named
author’s doctoral thesis.

The remainder of the note is organized as follows. In Section 2 we prove the
Hirano-Tominaga criterion. In Section 3 we present an extension of Herstein’s result
about the subring generated by the range of a derivation. Finally, in Section 4 we
discuss some further generalizations of the Herstein commutativity criterion and
provide a few additional remarks related to Section 3.

2. Hirano–Tominaga criterion

We start with two purely technical lemmas.

Lemma 2.1. Let δ ∈ Der(R) and E ⊆ R be a δ-invariant set. Suppose that δ

is commuting on E. Then δm is commuting on E for any m ∈ N.

Proof. We will proceed by induction on m. The assertion is obvious whenever
m 6 1. Now assume that the mappings δk and δk−1 are commuting on E for
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some integer k > 1. Let a ∈ E. To complete the proof we need to show that
[δk+1(a), a] = 0. Since E is a δ-invariant set, we have δ(a) ∈ E. Lemma 1.1 (ii)
and the induction hypothesis therefore yield

0 = δ([δk(a), a]) = [δk+1(a), a] + [δk(a), δ(a)]

= [δk+1(a), a] + [δk−1(δ(a)), δ(a)] = [δk+1(a), a]. �

The next lemma is a bit more complicated. To prove the lemma we will use
induction again.

Lemma 2.2. Let δ ∈ Der(R) and S be a δ-invariant subring of the ring R.
Suppose that δ is commuting on S. Then [a, bδn(a)] = 0 for any a, b ∈ S and any
n ∈ N r {0}.

Proof. Let x, y ∈ S and m ∈ N. Since x + y ∈ S, it follows from Lemma 2.1
that

0 = [δm(x + y), x + y] = [δm(x), x] + [δm(x), y] + [δm(y), x] + [δm(y), y]

= [δm(x), y] + [δm(y), x] = [δm(x), y] − [x, δm(y)].

We have therefore shown that

(2.1) ∀ x, y ∈ S ∀ m ∈ N ([δm(x), y] = [x, δm(y)]).

Let a, b ∈ S. Then we have ba ∈ S. Notice also that δ(a)a = aδ(a) (because δ is
commuting on S). Using Lemma 1.1 (i) and formula (2.1), we thus obtain

[a, δ(b)a] = [a, δ(b)]a + δ(b)[a, a] = [δ(a), b]a = δ(a)ba − bδ(a)a

= δ(a)ba − baδ(a) = [δ(a), ba] = [a, δ(ba)] = [a, δ(b)a] + [a, bδ(a)].

Consequently, [a, bδ(a)] = 0. This means that the assertion of the lemma holds true
if n = 1. Now pick some k ∈ Nr {0, 1} and assume that

∀ x, y ∈ S ∀ ℓ ∈ Nr {0} (ℓ < k ⇒ [x, yδℓ(x)] = 0).

Let again a, b ∈ S. To complete the proof we must show that [a, bδk(a)] = 0. Since
S is a δ-invariant set, we have δk−ℓ(b) ∈ S for any integer ℓ satisfying ℓ 6 k. Lemma
2.1 yields δk(a)a = aδk(a). So, making use of Lemma 1.1, formula (2.1) and the
induction hypothesis we get

[a, δk(b)a] = [a, δk(b)]a + δk(b)[a, a] = [δk(a), b]a = δk(a)ba − bδk(a)a

= δk(a)ba − baδk(a) = [δk(a), ba] = [a, δk(ba)] =

[

a,

k∑

ℓ=0

(
k

ℓ

)

δk−ℓ(b)δℓ(a)

]

= [a, δk(b)a] + [a, bδk(a)] +

k−1∑

ℓ=1

(
k

ℓ

)

[a, δk−ℓ(b)δℓ(a)] = [a, δk(b)a] + [a, bδk(a)].

Therefore [a, bδk(a)] = 0. �
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If δ ∈ Der(R) and S is a δ-invariant subring of the ring R, then the restriction
δ|S : S → S is a derivation of S. This obvious remark enables us to recall a useful
fact concerning δ-prime rings. Notice that the fact generalizes one of the basic
properties of standard prime rings.

Proposition 2.1. Let δ ∈ Der(R) and I be a nonzero two-sided δ-ideal of the

ring R. Suppose that R is δ-prime. Then as a ring, I is δ̃-prime, where δ̃ = δ|I .

Proof. Let x ∈ I and y ∈ I r {0} be elements with the property that

(2.2) ∀ k ∈ N (xIδk(y) = {0}).

In virtue of Theorem 1.1 and the definition of δ̃, we will have completed the proof,
if we show that x = 0. Let J be the totality of sums of the form

∑n

j=1 ajδmj (y),

where n ∈ N r {0}, a1, . . . , an ∈ I and m1, . . . , mn ∈ N. Since I is a left δ-ideal of
the ring R, so is J . Combining the δ-primeness of R with condition (4) in Theorem
1.1 and the fact that I is a nonzero right δ-ideal of R, we next obtain Iz 6= {0}
for any z ∈ R r {0}. In particular Iδ0(y) = Iy 6= {0}, and hence J is a nonzero
left δ-ideal of the ring R. But from property (2.2) it follows that x ∈ annℓ

R(J).
Condition (3) in Theorem 1.1 therefore yields x = 0. �

With the above three results in hand we are ready to recall and prove the
Hirano-Tominaga criterion.

Theorem 2.1. Let δ ∈ Der(R) be a nonzero derivation. Suppose that the ring
R is δ-prime and that δ is commuting on some nonzero two-sided δ-ideal I of R.
Then the ring R is commutative.

Proof. Let a, b ∈ I and n ∈ Nr {0}. Lemmas 2.1 and 2.2 guarantee that the
elements δn(a) and bδn(a) commute with a. We therefore get

[a, b]δn(a) = abδn(a) − baδn(a) = bδn(a)a − bδn(a)a = 0.

In other words,

(2.3) ∀ a, b ∈ I ∀ n ∈ N r {0} ([a, b]δn(a) = 0).

Let x, y, z ∈ I and n ∈ N r {0}. Since yz ∈ I, formula (2.3) and Lemma 1.1 (i)
yield

0 = [x, yz]δn(x) = [x, y]zδn(x) + y[x, z]δn(x) = [x, y]zδn(x).

So we have proved that

(2.4) ∀ x, y ∈ I ∀ k ∈ N ([x, y]Iδk(δ(x)) = {0}).

Consider now the set I0 = {x ∈ I : δ(x) = 0}. The facts that the ring R is δ-prime,
δ is a nonzero derivation and I is a nonzero δ-ideal, together with Lemma 1.2 (i),
yield I0 6= I. Let x ∈ I r I0. It follows from Proposition 2.1 that I (regarded as a
ring) is δ̃-prime, where δ̃ = δ|I . Combining the δ̃-primeness of I and formula (2.4)
with Theorem 1.1, we get [x, y] = 0 for any y ∈ I. So in other words x ∈ Z(I). We
have therefore shown that I = I0 ∪ Z(I). But I0 and Z(I) are additive subgroups
of I. Hence the equality I = I0 ∪ Z(I) and the fact that I0 6= I together imply
I = Z(I). This means that I is a nonzero commutative δ-ideal of the ring R. The
commutativity of R now follows from Lemma 1.2 (ii). �
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3. A structure of the subring generated by the range of a derivation

The following result extends Theorem 1 of Herstein’s paper [1]. It should be
mentioned that [5] offers a slight modification of the theorem.

Theorem 3.1. Let δ ∈ Der(R) and S denote the subring of R generated by
δ(R). Then

(i) S contains a nonzero left δ-ideal and a nonzero right δ-ideal of the ring R

whenever δ2 is a nonzero mapping,
(ii) S contains a nonzero two-sided δ-ideal of the ring R whenever δ3 is a nonzero

mapping.

Proof. Suppose that δ2 is a nonzero mapping. Let I and J be, respectively,
the left and right δ-ideals of the ring R generated by δ2(R). Then I 6= {0} and
J 6= {0}. Observe that I is the same thing as the totality of finite sums whose
terms belong to δ2(R) ∪ {aδ2(x) : a, x ∈ R}. Analogously, J is the same thing as
the totality of finite sums whose terms belong to δ2(R)∪{δ2(x)a : a, x ∈ R}. Since
δ2(R) = δ(δ(R)) ⊆ S, to complete the proof of assertion (i), we must show that for
any a, x ∈ R the products aδ2(x) and δ2(x)a lie in S. But if a, x ∈ R, then

δ(aδ(x)) = δ(a)δ(x) + aδ2(x),

δ(aδ(x)) ∈ S, δ(a)δ(x) ∈ S

which immediately yields aδ2(x) ∈ S. An analogous argument shows that δ2(x)a ∈
S for any a, x ∈ R.

Assertion (ii) is proved in [5] (see Proposition 1 therein). �

As an immediate corollary to the above theorem we obtain a quite interesting
remark on derivations of the division rings and, more generally, simple rings. Before
stating the remark, notice that a division ring has no nontrivial one-sided ideals.

Corollary 3.1. Let δ ∈ Der(R). Suppose that one of the following conditions
is satisfied:

(a) R is a division ring and δ2 is a nonzero mapping,
(b) R is a simple ring and δ3 is a nonzero mapping.

Then R is generated (as a ring) by δ(R).

Let us now introduce some additional notation. Given an integer n > 1 and
a ring R, we will denote the full ring of n × n matrices over R and the ring of all
strictly upper triangular n × n matrices over R by Mn(R) and T

0
n(R), respectively.

The zero matrix belonging to Mn(R) will be denoted by On×n.
It is worth pointing out that Theorem 3.1 provides only sufficient conditions for

the existence of nonzero δ-ideals contained in the subring generated by the range
of a derivation δ.

Example 3.1. Let R be a nonzero ring with identity. Recall that

Z(T0
3(R)) =











0 0 x

0 0 0
0 0 0



 : x ∈ R






,
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and consider an arbitrary noncentral element P of the ring T
0
3(R). Since AB ∈

Z(T0
3(R)) for all A, B ∈ T

0
3(R), the range of the inner derivation ∂P : T

0
3(R) →

T
0
3(R) is a nonzero additive subgroup of Z(T0

3(R)). But if A ∈ T
0
3(R) and C ∈

Z(T0
3(R)), then AC = O3×3. It follows that each additive subgroup of Z(T0

3(R)) is
a two-sided ideal of T0

3(R). Consequently, the range of ∂P is a nonzero two-sided
∂P -ideal of the ring T

0
3(R) though ∂2

P is the zero mapping.

To conclude the section, we need an example showing that if the assumptions
of Theorem 3.1 are not satisfied, the subring generated by the range of δ may not
contain nonzero δ-ideals of the ring R. The example below has been developed on
the basis of an example given in [1].

Example 3.2. Once again, let R be a nonzero ring with identity. Consider the
derivation δ ∈ Der(M2(R)) defined by

δ

[
p q

r s

]

=

[
r s − p

0 −r

]

.

One can easily check that δ3 is the zero mapping. Since

∀ p, q, r, s ∈ R

(

δ2
[
p q

r s

]

=

[
0 −2r

0 0

])

,

the mapping δ2 is in turn nonzero if and only if char(R), the characteristic of the
ring R, is different from 2.

Let S denote the subring of M2(R) generated by δ(M2(R)). It is evident that
S consists of upper triangular matrices. Observe also that

S = δ(M2(R)) =

{[
x y

0 x

]

: x, y ∈ R

}

whenever char(R) = 2.
Finally, since for any x, y, z ∈ R we have

(3.1)

[
0 0
1 0

] [
x y

0 z

]

=

[
0 0
x y

]

,

[
x y

0 z

] [
0 0
1 0

]

=

[
y 0
z 0

]

,

the set {A ∈ M2(R) : A is upper triangular}, and hence the subring S, contains
no nonzero two-sided ideal of M2(R). Equalities (3.1) also yield that the set

{[
x y

0 x

]

: x, y ∈ R

}

contains no nonzero one-sided ideal of M2(R). Therefore if char(R) = 2, no nonzero
one-sided ideal of the ring M2(R) is contained in S.

It seems to be worth noticing that δ is in fact the inner derivation induced by
the nilpotent matrix

Q =

[
0 1
0 0

]

.
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4. Further generalizations of the Herstein commutativity criterion

We are now ready to state and prove the announced enhancement of the gen-
eralized Herstein commutativity criterion.

Theorem 4.1. Let δ ∈ Der(R). Suppose that the ring R is δ-prime and admits
a two-sided δ-ideal I with the following properties:

(a) δ2(z) 6= 0 for some z ∈ I,
(b) δ(x)δ(y) = δ(y)δ(x) for any x, y ∈ I.

Then R is commutative.

Proof. Recall first that δ̃ = δ|I is a derivation of I. Let S be the subring
of I generated by δ̃(I). Property (a) means that δ̃2 is a nonzero mapping. Hence

in virtue of Theorem 3.1, the subring S contains a nonzero one-sided δ̃-ideal of I.
Let us denote this δ̃-ideal by J . It follows from property (b) that the subring S is

commutative. Therefore so is J . But Proposition 2.1 guarantees the δ̃-primeness
of I (as a ring). Since J is a nonzero commutative one-sided δ̃-ideal of I, Lemma
1.2 (ii) yields that I is itself commutative. So, applying the lemma to I and the
whole ring R completes the proof. �

In the rest of the note we will use a well known fact about rings of matrices
(see, for instance, [6, Theorem 4.28]; the proof given there can be easily adapted
to nonunital rings and to the semiprime case).

Proposition 4.1. Let R be an arbitrary ring and n ∈ N r {0}. Then the
following conditions are equivalent:

(1) R is prime,
(2) the full matrix ring Mn(R) is prime.

Moreover, the equivalence remains true if both occurrences of the word “prime” are
replaced by “semiprime”.

This fact enables us to give an example showing that property (a) in Theorem
4.1 generally cannot be weakened to “I 6= {0} and δ is a nonzero derivation” (cf.
Theorem 2.1 and Lemma 1.2 (i)).

Example 4.1. Let R be an integral domain of characteristic 2. Then by Propo-
sition 4.1 the ring M2(R) is prime, and hence d-prime for any d ∈ Der(M2(R)).
Consider now the derivation δ defined in Example 3.2. It is easy to see that the
elements of the set

δ(M2(R)) =

{[
x y

0 x

]

: x, y ∈ R

}

pairwise commute. In other words, δ(A)δ(B) = δ(B)δ(A) for any A, B ∈ M2(R).
But the ring M2(R) is noncommutative.

It turns out that property (a) can be weakened in the case where the ring is
2-torsion free. This is a consequence of the following result due to Hirano and
Tominaga (see [3, Lemma 5]).
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Lemma 4.1. Let δ ∈ Der(R) be a nonzero derivation and let I be a nonzero
two-sided δ-ideal of the ring R. Suppose that R is δ-prime and 2-torsion free. Then
δ2(z) 6= 0 for some z ∈ I.

We therefore obtain a bit different enhancement of the generalized Herstein
criterion.

Corollary 4.1. Let δ ∈ Der(R) be a nonzero derivation. Suppose that the
ring R is δ-prime and 2-torsion free. Moreover, suppose that it admits a nonzero
two-sided δ-ideal I satisfying the condition

∀ x, y ∈ I (δ(x)δ(y) = δ(y)δ(x)).

Then R is commutative.

Now we will go back to subrings generated by ranges of derivations. Before
stating some additional remarks, let us discuss a property of δ-semiprime rings.
The lemma below, as well as its proof, was sketched by the anonymous referee of
the earlier version of the note.

Lemma 4.2. Let δ ∈ Der(R). Suppose that the ring R is δ-semiprime and
2-torsion free. Then δ2 is a nonzero mapping whenever so is δ.

Proof. Assume that δ2 is the zero mapping. Hence for all a, b ∈ R we have

0 = δ2(ab) = δ2(a)b + 2δ(a)δ(b) + aδ2(b) = 2δ(a)δ(b).

Combining the above equalities with the fact that R is 2-torsion free gives

(4.1) ∀ a, b ∈ R (δ(a)δ(b) = 0).

Let J be the right δ-ideal of the ring R generated by δ(R). Evidently,

J =

{

δ(a) +

n∑

i=1

δ(bi)ci : n ∈ N r {0} and a, b1, . . . , bn, c1, . . . , cn ∈ R

}

.

Consider next any n ∈ Nr {0} and any a, b1, . . . , bn, c1, . . . , cn ∈ R. It follows from
the Leibniz rule that

δ(a) +

n∑

i=1

δ(bi)ci = δ(a) +

n∑

i=1

(δ(bici) − biδ(ci)) = δ(p) −

n∑

i=1

biδ(ci),

where p = a +
∑n

i=1 bici. So if m ∈ Nr {0} and x, y1, . . . , ym, z1, . . . , zm ∈ R, then
using property (4.1) we get
(

δ(a) +

n∑

i=1

δ(bi)ci

)(

δ(x) +

m∑

j=1

δ(yj)zj

)

=

(

δ(p) −

n∑

i=1

biδ(ci)

)(

δ(x) +

m∑

j=1

δ(yj)zj

)

= δ(p)δ(x) +

m∑

j=1

δ(p)δ(yj)zj −

n∑

i=1

biδ(ci)δ(x) −

n∑

i=1

m∑

j=1

biδ(ci)δ(yj)zj = 0.

But this means that J2 = {0}. Consequently, the δ-semiprimeness of the ring R

yields J = {0}. We therefore have δ(R) = {0}. In other words, δ is the zero
derivation. �
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Lemma 4.2 and Theorem 3.1 together imply the following useful fact.

Corollary 4.2. Let δ ∈ Der(R) be a nonzero derivation and let S denote
the subring of R generated by δ(R). Suppose that the ring R is δ-semiprime and
2-torsion free. Then S contains a nonzero left δ-ideal and a nonzero right δ-ideal
of R.

It is worth noticing here that Lemma 1.2 (i) does not work in δ-semiprime rings
(even if R is 2-torsion free and I is a two-sided δ-ideal). Let us recall a standard
example.

Example 4.2. Consider Z15, the ring of integers modulo 15, and some n ∈
N r {0, 1}. Since Z15 is semiprime, Proposition 4.1 yields that so is the ma-
trix ring Mn(Z15). Consequently, Mn(Z15) is δ-semiprime for any derivation δ ∈
Der(Mn(Z15)). Notice also that the ring Mn(Z15) is 2-torsion free. Let I be the
set of all n × n matrices whose elements belong to {0, 5, 10}. One can easily check
that I is a two-sided ideal of Mn(Z15). However, if all elements of a nonscalar
matrix T ∈ Mn(Z15) are divisible by 3, then ∂T : Mn(Z15) → Mn(Z15) is a nonzero
derivation vanishing on I.

We conclude the section with a remark about division rings. Notice that every
division ring is prime and that a prime ring R with identity is 2-torsion free if and
only if char(R) 6= 2. Recall also that an element of a ring is noncentral if and only if
the inner derivation induced by this element is nonzero. Hence combining Lemma
4.1 or Lemma 4.2 with Corollary 3.1 gives the fact stated below.

Corollary 4.3. Let R be a division ring of characteristic different from 2.
Moreover, let δ ∈ Der(R) and a ∈ R. Then

(i) R is generated (as a ring) by δ(R) if and only if δ is a nonzero derivation,
(ii) R is generated (as a ring) by {[a, x] : x ∈ R} if and only if a is a noncentral

element.
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