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wt0-DISTANCE AND BEST PROXIMITY POINTS

INVOLVING b-SIMULATION FUNCTIONS

Aleksandar Kostić, Hamidreza Rahimi,

and Ghasem Soleimani Rad

Abstract. We define wt0-distance which is a special type of wt-distance
and obtain some best proximity point theorems involving b-simulation func-
tions. Our results are significant, since we replace simulation function with
b-simulation function, metric space with b-metric space, and w0-distance and
wt-distance with wt0-distance. We also provide some examples to support our
results.

1. Introduction and preliminaries

Fixed point theory is an important and useful tool for different branches of
mathematical analysis and it has a wide range of applications in applied mathe-
matics and sciences. Also, it may be discussed as an essential subject of nonlinear
analysis. Since the first results of Banach in 1922, various authors have been study-
ing fixed points, and, in recent years, best proximity points of mappings in metric
spaces. Their discoveries are still being generalized in many directions such that
there has been a number of generalizations of the usual notion of a metric space.
One generalization is a w-distance introduced by Kada et al. [8] (also, see [7, 16]
and references therein).

Definition 1.1. Let (X, d) be a metric space. A function ρ : X×X → [0,+∞)
is called a w-distance on X if the following properties are satisfied:

(w1) ρ(x, z) 6 ρ(x, y) + ρ(y, z) for all x, y, z ∈ X ;
(w2) ρ is lower semi-continuous in its second variable;
(w3) for each ε > 0 there exists δ > 0 such that

ρ(z, x) 6 δ and ρ(z, y) 6 δ imply d(x, y) 6 ε.
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Very recently, Kostić et al. [11] introduced the concept of w0-distance, which is
slightly different to the original w-distance, in regard that the lower semicontinuity
with respect to both variables (when one of them is fixed) is supposed.

Definition 1.2. Let (X, d) be a metric space. Then a function p : X × X →
[0,∞) is called a w0-distance on X if the following are satisfied:

(p1) p(x, z) 6 p(x, y) + p(y, z), for any x, y, z ∈ X ,
(p2) for any x ∈ X , functions p(x, ·), p(·, x) : X → [0,∞) are lower semicontinuous,
(p3) for any ǫ > 0, there exists δ > 0 such that p(z, x) 6 δ and p(z, y) 6 δ imply

d(x, y) 6 ǫ.

Note that the notion of w0-distance is more general than the standard notion
of metric, but less general than the w-distance, as illustrated by the following
examples.

Example 1.1. [11] Let (X, d) be a metric space. A mapping p : X × X →
[0,∞) defined by p(x, y) = k > 0 for all x, y ∈ X is a w0-distance on X (see [8,
Example 2]). The mapping p is not a metric, since p(x, x) 6= 0 for any x ∈ X .

Example 1.2. [11] Let X = [0,∞) be endowed with the standard metric d.
Let p : X × X → R be defined as p(x, y) = c ∈ (0, 1) for all x, y ∈ X and let
α : X → [0,∞) be defined by

α(x) =
{

e−x, x > 0
2, x = 0

A function q : X × X → [0,∞) defined by q(x, y) = max{α(x), c} for all x, y ∈ X

is then a w-distance on X (see Example 1 and [8, Lemma 3]). However, q is not a
w0-distance on X , since for any sequence {xn} ⊂ (0,∞) such that xn → 0 we have

lim inf
n→∞

q(xn, y) = lim inf
n→∞

max{e−xn , c} = 1 < q(0, y) = max{α(0), c} = 2.

Another such generalization is a b-metric space defined by Bakhtin [2] and
Czerwik [4].

Definition 1.3. LetX be a nonempty set and b > 1 be a real number. Suppose
that the mapping d : X ×X → [0,∞) satisfies

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
(d3) d(x, z) 6 b[d(x, y) + d(y, z)] for all x, y, z ∈ X .

Then d is called a b-metric and (X, d) is called a b-metric space (or metric type
space).

Obviously, for b = 1, a b-metric space is a metric space. Also, for notions such
as convergent and Cauchy sequences, completeness, continuity and etc. in b-metric
spaces, we refer to [3,9].

In 2014, Hussain et al. [6] defined a wt-distance on b-metric spaces as an exten-
sion of w-distance on metric spaces and proved some fixed point theorems under
wt-distance in a partially ordered b-metric space.
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Definition 1.4. Let (X, d) be a b-metric space and b > 1 be a given real
number. A function ρ : X × X → [0,+∞) is called a wt-distance on X if the
following properties are satisfied:

(wt1) ρ(x, z) 6 b[ρ(x, y) + ρ(y, z)] for all x, y, z ∈ X ;
(wt2) ρ is b-lower semi-continuous in its second variable

i.e., if x ∈ X and yn → y in X then ρ(x, y) 6 b lim infn ρ(x, yn);
(wt3) for each ε > 0 there exists δ > 0 such that ρ(z, x) 6 δ and ρ(z, y) 6 δ

imply d(x, y) 6 ε.

Let us recall that a real-valued function f defined on a b-metric space X is
said to be lower b-semicontinuous at a point x0 in X if either lim infxn→x0

f(xn)
= ∞ or f(x0) 6 lim infxn→x0

bf(xn), whenever xn ∈ X and xn → x0. Obviously,
for b = 1, every wt-distance is a w-distance. But, a w-distance is not necessary a
wt-distance. Thus, each wt-distance is a generalization of w-distance.

Lemma 1.1. [6] Let (X, d) be a b-metric space with parameter b > 1 and let ρ

be a wt-distance on X. Let {xn} and {yn} be sequences in X, let {αn} and {βn}
be sequences in [0,+∞) converging to 0, and let x, y, z ∈ X. Then the following

hold:

(i) If ρ(xn, y) 6 αn and ρ(xn, z) 6 βn for any n ∈ N, then y = z. In particular,

if ρ(x, y) = 0 and ρ(x, z) = 0, then y = z;

(ii) if ρ(xn, yn) 6 αn and ρ(xn, z) 6 βn for any n ∈ N, then yn converges to z;

(iii) if ρ(xn, xm) 6 αn for any n,m ∈ N with m > n, then {xn} is a Cauchy

sequence;

(iv) if ρ(y, xn) 6 αn for any n ∈ N, then {xn} is a Cauchy sequence.

On the other hand, the notion of simulation function has been introduced and
studied by Khojasteh et al. [10].

Definition 1.5. Let ζ : [0,∞) × [0,∞) → R be a mapping. Then ζ is called
a simulation function if it satisfies the following conditions:

(ζ1) ζ(t, s) < s− t for all t, s > 0;
(ζ2) if {tn} and {sn} are two sequences in (0,∞) such that

limn→∞ tn = limn→∞ sn > 0, then lim supn→∞
ζ(tn, sn) < 0.

The set of all simulation functions will be denoted by Z.

Remark 1.1. Originally, simulation function was defined by Khojasteh et
al. [10] as a mapping ζ : [0,∞) × [0,∞) → R satisfying ζ(0, 0) = 0 alongside
the conditions (ζ1) and (ζ2). In this paper, a modified definition of Argoubi et
al. [1] is used.

Next, we give some examples of simulation functions.
Recently, Demma et al. [5] and Mongkolkeha et al. [12] introduced the b-simul-

ation function in the framework of b-metric spaces as follows.

Definition 1.6. A b-simulation function is a function ξ : [0,+∞)2 → R satis-
fying the following:
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(ξ1) ξ(bt, s) < s− bt for all t, s > 0;
(ξ2) if {tn}, {sn} are sequences in (0,+∞) such that

0 < lim
n→+∞

tn 6 lim
n→+∞

sn 6 lim
n→∞

sn 6 b lim
n→+∞

tn < +∞,

then lim
n→∞

ξ(btn, sn) < 0.

It is clear that if b = 1, then b-simulation function is in fact the simulation
function in the framework of (standard) metric space.

Example 1.3. [5] Let ξ : [0,+∞)2 → R be defined by

(i) ξ(t, s) = λs− t for all t, s ∈ [0,+∞), where λ ∈ [0, 1).
(ii) ξ(t, s) = ψ(s) − ϕ(t) for all t, s ∈ [0,+∞), where ϕ, ψ : [0,+∞) → [0,+∞)

are two continuous functions such that ψ(t) = ϕ(t) = 0 if and only if t = 0
and ψ(t) < t 6 ϕ(t) for all t > 0.

(iii) ξ(t, s) = s − f(t,s)
g(t,s) t for all t, s ∈ [0,+∞), where f, g : [0,+∞)2 → (0,+∞)

are two continuous functions with respect to each variable such that f(t, s) >
g(t, s) for all t, s > 0.

(iv) ξ(t, s) = s− ϕ(s) − t for all t, s ∈ [0,+∞), where ϕ : [0,+∞) → [0,+∞) is a
lower semi-continuous function such that ϕ(t) = 0 if and only if t = 0.

(v) ξ(t, s) = sϕ(s) − t for all t, s ∈ [0,+∞), where ϕ : [0,+∞) → [0, 1) is such
that limt→r+ ϕ(t) < 1 for all r > 0.

Each of the functions considered in (i)–(v) is a b-simulation function.

Recently, simulation functions and b-simulation functions have been used to
study the fixed point and best proximity points in metric spaces and b-metric
spaces (see [12–15,17,18]).

In this paper, we introduce a special type of wt-distance, which is called the
wt0-distance. Then we extend best proximity results of Tchier et al. [18] and
Kostić et al. [11] involving b-simulation functions instead of simulation function
via considering wt0-distance instead of metric space and w0-distance.

Let (X, d) be a b-metric space, A and B two nonempty subsets of X and
T : A → B a non-self mapping. In the sequel we will use the following notations

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}

d(y,A) = inf{d(x, y) : x ∈ A} = d({y}, A)

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}

Also, the set of all best proximity points of a non-self mapping T : A → B will be
denoted by

Best(T ) = {x ∈ A : d(x, Tx) = d(A,B)}.

If moreover g : A → A, then we have

B
g
est(T ) = {x ∈ A : d(gx, Tx) = d(A,B)}.
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2. Main results

Here we define the concept of wt0-distance, which is slightly different from the
original wt-distance of [6], in regard that the lower b-semicontinuity with respect
to both variables (when one of them is fixed) is supposed.

Definition 2.1. Let (X, d) be a b-metric space with parameter b > 1. Then
a function P : X × X → [0,∞) is called a wt0-distance on X if the following are
satisfied:

(P1) P (x, z) 6 b[P (x, y) + P (y, z)], for any x, y, z ∈ X ,
(P2) for any x ∈ X , functions P (x, ·), P (·, x) : X → [0,∞)

are lower b-semicontinuous,
(P3) for any ǫ > 0, there exists δ > 0 such that P (z, x) 6 δ and P (z, y) 6 δ

imply d(x, y) 6 ǫ.

Note that the notion of wt0-distance is more general than the standard notion
of b-metric, but less general than the wt-distance, as illustrated by the following
examples. Also, w0-distance is a wt0-distance with b = 1; but the converse does
not hold. Thus, the wt0-distance is a generalization of w0-distance.

Example 2.1. Let (X, d) be a b-metric space with b = 2, X = R and d(x, y) =
|x − y|2 for all x, y ∈ R and define wt0-distance by P (x, y) = |x|2 + |y|2 for all
x, y ∈ R (see [6]). The mapping P is not a metric, since P (x, y) = 0 only for
x = y = 0 (and not true for all x, y ∈ R).

Example 2.2. Let (X, d) and P be as in the previous example. Let the function
α : X → [0,∞) be defined as

α(x) =
{ 1, x 6= 0
c, x = 0

where c > 2. Then it can be proved that the function Q : X ×X → [0,∞) defined
as Q(x, y) = max{P (x, y), α(x)} for all x, y ∈ X is also a wt-distance on X .

However, Q is not a wt0-distance on X . Indeed, let {xn} be a sequence in X

such that xn 6= 0 for every n ∈ N and xn → 0 when n → ∞. Then we have

Q(0, 0) = max{P (0, 0), α(0)} = c > 2 = 2 lim inf
xn→0

Q(xn, 0)

which means that Q(·, 0) is not a lower 2-semicontinuous function.

Now, we introduce the notions of Z-P -proximal contractions and extend the
best proximity point results of Kostić et al. [11] and Tchier et al. [18] to b-metric
spaces with a wt0-distance.

Let (X, d) be a b-metric space, P : X × X → [0,∞) be a wt0-distance on X ,
and let A and B be two nonempty subsets of X (which need not be equal). Also,
for every x, y ∈ X , let ν(x, y) := max{P (x, y), P (y, x)}. It is easily checked that
the function ν : X ×X → [0,∞) has the following properties (for all x, y, z ∈ X):

(1) ν(x, y) = 0 ⇒ x = y; (2) ν(x, y) = ν(y, x); (3) ν(x, y) 6 b[ν(x, z) + ν(z, y)].
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Definition 2.2. A non-self-mapping T : A → B is said to be a Z-P -proximal
contraction of the first kind if there exists a b-simulation function ξ : [0,∞) ×
[0,∞) → R such that

d(u, Tx) = d(A,B)

d(v, T y) = d(A,B)

}

⇒ ξ(bν(u, v), ν(x, y)) > 0

for every u, v, x, y ∈ A.

Definition 2.3. A non-self mapping T : A → B is said to be a Z-P -proximal
contraction of the second kind if

d(u, Tx) = d(A,B)

d(v, T y) = d(A,B)

}

⇒ ξ(bν(Tu, T v), ν(Tx, T y)) > 0

for all u, v, x, y ∈ A, where ξ : [0,∞) × [0,∞) → R is a b-simulation function.

Remark 2.1. In the case P = d and b = 1 (i.e., when d is a standard metric),
the notions of Z-P -proximal contractions are reduced to Z-proximal contractions
of Tchier et al. [18]. We will apply the same terminology if P = d and b > 1.

In Definition 2.2, if the b-simulation function ξ is given by ξ(t, s) = αs − t for
some α ∈ [0, 1), the mapping T is called a P -proximal contraction of the first kind.
Additionally, if P = d and b = 1, T is a proximal contraction of the first kind.

We introduce the following notation:

GA,P = {g : (A, d) → (A, d) is continuous : P (x, y) 6 P (gx, gy), ∀x, y ∈ A}

Tg,P = {T : A → B : P (Tx, T y) 6 P (Tgx, T gy), ∀x, y ∈ A}.

In the case P = d and b = 1, GA,P is denoted by GA and Tg,P by Tg (see [18]).
Now, we state and prove our main results.

Theorem 2.1. Let A and B be two nonempty subsets of a complete b-metric

space (X, d) with a wt0-distance P , such that A0 is nonempty and closed. Suppose

that the mappings g : A → A and T : A → B satisfy the following conditions:

a) T is a Z-P -proximal contraction of the first kind;

b) g ∈ GA,P ; c) A0 ⊆ g(A0); d) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A0 such that d(gx, Tx) = d(A,B) and

P (x, x) = 0. Moreover, for any initial x0 ∈ A0 there exists a sequence {xn} ⊆ A0

converging to x, such that d(gxn+1, Txn) = d(A,B) for all n ∈ N ∪ {0}.

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0 and A0 ⊆ g(A0) there exists x1 ∈ A0

such that d(gx1, Tx0) = d(A,B). Similarly, for x1 ∈ A0 there exists x2 ∈ A0 such
that d(gx2, Tx1) = d(A,B). Continuing this process, for any xn ∈ A0 we can find
xn+1 ∈ A0 such that d(gxn+1, Txn) = d(A,B).

Now, if there exists n0 ∈ N such that ν(xn0
, xn0−1) = 0, then xn0−1 = xn0

.
Thus, d(gxn0−1, Txn0−1) = d(A,B), i.e. xn0−1 is a best proximity point of T under
mapping g and the proof is finalized. Hence, we assume that ν(xn, xn−1) > 0 for
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all n ∈ N. Then ν(gxn, gxn−1) > 0 for all n ∈ N because g ∈ GA,P . Since T is a
Z-P -proximal contraction of the first kind and g ∈ GA,P , we have

(2.1)

0 6 ξ(bν(gxn+1, gxn), ν(xn, xn−1))

< ν(xn, xn−1) − bν(gxn+1, gxn)

6 ν(xn, xn−1) − bν(xn+1, xn).

Therefore, ν(xn+1, xn) 6 bν(xn+1, xn) < ν(xn, xn−1) for all n ∈ N, which means
that the sequence {ν(xn, xn−1)} is decreasing. Hence, there exists r > 0 such that
limn→∞ ν(xn, xn−1) = r > 0. Suppose that r > 0. Also, by (2.1), we deduce
that ν(gxn+1, gxn) 6 bν(gxn+1, gxn) < ν(xn, xn−1) for every n ∈ N. On the other
hand, g ∈ GA,P and hence ν(xn+1, xn) 6 ν(gxn+1, gxn) 6 ν(xn, xn−1) for all n ∈ N.
This implies that limn→∞ ν(gxn+1, gxn) = r. Now, using the b-simulation function
property (ξ2), we obtain

0 6 lim sup
n→∞

ξ(bν(gxn+1, gxn), ν(xn, xn−1)) < 0,

which is a contradiction. Hence, we have r = 0 which implies that

(2.2) lim
n→∞

ν(xn, xn−1) = 0.

Now, let us prove that

(2.3) lim
m,n→∞

ν(xn, xm) = 0.

If (2.3) is not true, then there exist an ε > 0 and two sequences {mk}, {nk} ⊆ N∪{0}
with mk > nk > k such that

(2.4) ν(xnk
, xmk

) > ε

for all k ∈ N. We can assume that mk is a minimal index for which (2.4) holds.
Then we also have

(2.5) ν(xnk
, xmk−1) < ε

for any k ∈ N. Using the triangle inequality for ν, by (2.4) and (2.5) we get

ε 6 ν(xnk
, xmk

) 6 bν(xnk
, xmk−1) + bν(xmk−1, xmk

) < bε+ bν(xmk−1, xmk
).

Passing to the limit when k → ∞. By (2.2), we conclude that

(2.6) ε 6 lim
k→∞

ν(xnk
, xmk

) < bε.

Now, we claim that

(2.7) lim
k→∞

ν(xnk+1, xmk+1) < ε.

If limk→∞ ν(xnk+1, xmk+1) > ε, then there exist sequence {ks} and δ > 0 such that

(2.8) lim
s→∞

ν(xnks
+1, xmks

+1) = δ > ε.

Again, T is a Z-P -proximal contraction of the first kind and

d(gxnks
+1, Txnks

) = d(A,B) = d(gxmks
+1, Txmks

).
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Hence, by the property (ξ1), we obtain

(2.9)

0 6 ξ(bν(gxnks
+1, gxmks

+1), ν(xnks
, xmks

))

< ν(xnks
, xmks

) − bν(gxnks
+1, gxmks

+1)

6 ν(xnks
, xmks

) − bν(xnks
+1, xmks

+1)

6 ν(xnks
, xmks

) − ν(xnks
+1, xmks

+1)

for all k ∈ N. It follows from (2.6), (2.8) and (2.9) that

bδ = lim
s→∞

bν(xnks
+1, xmks

+1) < lim
s→∞

ν(xnks
, xmks

) < bε,

which implies (2.7). Thus, the sequences btks
= bν(xnks

+1, xmks
+1) and vks

=
ν(xnks

, xmks
) have the same positive limit and verify that tks

< vks
(by (2.9)).

By the property (ξ2) we conclude that 0 6 lim supk→∞
ξ(btks

, vks
) < 0 which is a

contradiction and hence (2.3) holds.
Now, using Lemma 1.1 (iii), {xn} is a Cauchy sequence in A0. Since (X, d) is a

complete b-metric space and A0 is a closed subset of X , there exists limn→∞ xn =
x ∈ A0. Moreover, by the continuity of g we have limn→∞ gxn = gx. Since gxn ∈
A0 for all n ∈ N and A0 is closed, we also have gx ∈ A0. On the other hand, since
x ∈ A0 and T (A0) ⊆ B0, for x there exists z ∈ A0 such that d(z, Tx) = d(A,B).

Let us prove that z = gx. If z = gxn for infinitely many n ∈ N, then z = gx.
Hence we assume that z 6= gx, in which case there exists n0 ∈ N such that z 6= gxn

for all n > n0. If ν(gxn, z) = 0 for some n > n0 then gxn = z, so it must be
ν(gxn, z) > 0 for all n > n0. Also there exists a subsequence {xnk

} of {xn} such
that ν(xnk

, x) > 0 for every k ∈ N (if that is not true, then there exists n1 ∈ N

such that ν(xn, x) = 0 for all n > n1, and hence ν(xn, xn−1) = 0 for all n > n1,
which is contradiction).

Since T is a Z-P -proximal contraction of the first kind and g ∈ GA,P , we get

0 6 ξ(bν(gxnk+1, z), ν(xnk
, x))

< ν(xnk
, x) − bν(gxnk+1, z)

6 ν(gxnk
, gx) − ν(gxnk+1, z),

which implies that

(2.10) ν(gxnk+1, z) < ν(gxnk
, gx)

for every k ∈ N such that nk > n0.
By a similar argument as before, we have limm,n→∞ ν(gxn, gxm) = 0. This

means that for any ǫ > 0 there exists a Nǫ ∈ N such that ν(gxn, gxm) < ǫ
b

for all
m > n > Nǫ. For a fixed n ∈ N with n > max{n0, Nǫ} the function P (gxn, ·) is
lower b-semicontinuous; hence, we obtain that

P (gxn, gx) 6 lim inf
m

bP (gxn, gxm) < ǫ.

Thus,

(2.11) lim
k→∞

P (gxnk
, gx) = 0.
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Similarly, lim
k→∞

P (gx, gxnk
) = 0 which combined with (2.11) yields lim

k→∞

ν(gxnk
, gx)

= 0. Now, from (2.10) we have

(2.12) lim
k→∞

ν(gxnk+1, z) = 0.

If k → ∞ in
ν(gxnk

, z) 6 bν(gxnk
, gxnk+1) + bν(gxnk+1, z),

then (2.2) and (2.12) imply that limk→∞ ν(gxnk
, z) = 0. Thus,

(2.13) lim
k→∞

P (gxnk
, z) = 0.

Now, using (2.11) and (2.13), Lemma 1.1 (i) implies that z = gx. Finally, from
d(z, Tx) = d(A,B) we get d(gx, Tx) = d(A,B).

To prove the uniqueness, let y be in A0 such that d(gy, T y) = d(A,B). Assume
that ν(gx, gy) > ν(x, y) > 0. Since g ∈ GA,P and T is a Z-P -proximal contraction
of the first kind, we obtain

0 6 ξ(bν(gx, gy), ν(x, y))

< ν(x, y) − bν(gx, gy)

6 ν(x, y) − ν(x, y) = 0,

which leads to a contradiction. Hence ν(x, y) = 0, which implies x = y.
By a similar argument we prove P (x, x) = 0. Suppose that ν(x, x)=P (x, x)>0.

Then ν(gx, gx) > 0 and we have

0 6 ξ(bν(gx, gx), ν(x, x))

< ν(x, x) − bν(gx, gx)

6 ν(x, x) − ν(x, x) = 0,

which is a contradiction. �

The next best proximity point result for Z-P -proximal contractions of the first
kind is an immediate consequence of Theorem 2.1 by setting g as the identity
mapping on A.

Corollary 2.1. Let A and B be two nonempty subsets of a complete b-metric

space (X, d) with a wt0-distance P , such that A0 is nonempty and closed. Suppose

that a mapping T : A → B satisfies the following conditions

a) T is a Z-P -proximal contraction of the first kind; b) T (A0) ⊆ B0.

Then there exists a unique best proximity point x ∈ A0 of the mapping T , such that

P (x, x) = 0, and for every x0 ∈ A0 there exists a sequence {xn} ⊆ A0 converging

to x, such that d(xn+1, Txn) = d(A,B) for all n ∈ N ∪ {0}.

Example 2.3. Let X = R be endowed with the 2-metric d(x, y) = |x− y|2 for
all x, y ∈ X and a wt0-distance P defined by P (x, y) = x2 + y2 for all x, y ∈ X .
Then we have ν(x, y) = max{P (x, y), P (y, x)} = x2 + y2 for all x, y ∈ X .

Let A = [−1, 0] and B = [1, 2], and let T : A → B be a mapping given by
Tx = 1 − x for all x ∈ A. Now it is easily obtained that d(A,B) = 1, and also
A0 = {0} and B0 = {1}, so that T (A0) = {1} = B0.
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Let the 2-simulation function ξ : [0,∞) × [0,∞) → R be defined with ξ(t, s) =
λs−t for all s, t ∈ [0,∞) (where λ ∈ [0, 1)). Now, d(u, Tx) = |u−Tx|2 = d(A,B) =
1 if and only if |u − Tx| = |u − 1 + x| = 1, which is only possible for u = x = 0,
since x, u ∈ [−1, 0], and similarly, d(v, T y) = d(A,B) is equivalent with v = y = 0.
Hence, for u = v = x = y = 0 we get ξ(2ν(u, v), ν(x, y)) = λ · 0 − 2 · 0 = 0 which
verifies that T is a Z-P -proximal contraction of the first kind.

We conclude that all conditions of Corollary 2.1 are satisfied, and indeed,
Best(T ) = {0} and P (0, 0) = 0.

From Theorem 2.1 we can also obtain an interesting g-best proximity point
result for a P -proximal contraction of the first kind.

Corollary 2.2. Let A and B be two nonempty subsets of a complete b-metric

space (X, d) with a wt0-distance P , such that A0 is nonempty and closed. Suppose

that the mappings T : A → B and g : A → A satisfy the following conditions

a) T is a P -proximal contraction of the first kind with respect to α ∈ [0, 1);

b) g ∈ GA,P ; c) T (A0) ⊆ B0; d) A0 ⊆ g(A0).

Then there exists a unique point x ∈ A0 such that d(gx, Tx) = d(A,B) and

P (x, x) = 0. Moreover, for every x0 ∈ A0 there exists a sequence {xn} ⊆ A0

converging to x, such that d(gxn+1, Txn) = d(A,B) for all n ∈ N ∪ {0}.

Proof. Note that a P -proximal contraction of the first kind with respect to
α ∈ [0, 1) is a Z-P -proximal contraction of the first kind with respect to the b-
simulation function ξ : [0,∞) × [0,∞) → R defined by ξ(t, s) = αs − t for all
t, s > 0. �

By taking d = P in Theorem 2.1, we obtain the same result in b-metric spaces.

Corollary 2.3. Let A and B be two nonempty subsets of a complete b-metric

space (X, d), such that A0 is nonempty and closed. Suppose that the mappings

T : A → B and g : A → A satisfy the following conditions.

a) T is a Z-proximal contraction of the first kind;

b) g ∈ GA; c) T (A0) ⊆ B0; d) A0 ⊆ g(A0).

Then there exists a unique point x ∈ A such that d(gx, Tx) = d(A,B). Moreover,

for every x0 ∈ A0 there exists a sequence {xn} ⊆ A0 such that d(gxn+1, Txn) =
d(A,B) for all n ∈ N ∪ {0}, and {xn} converges to x.

Remark 2.2. In Theorem 2.1 and its corollaries, set b = 1. Then we obtain the
main results of Kostić et al. [11] involving simulation functions with w0-distance
(in metric spaces) for a Z-p-proximal contraction of the first kind.

The next result is a g-best proximity point theorem for a Z-P -proximal con-
traction of the second kind.

Theorem 2.2. Let A and B be two nonempty subsets of a complete b-metric

space (X, d) with a wt0-distance P , such that T (A0) is nonempty and closed. Sup-

pose that the mappings T : A → B and g : A → A satisfy the following conditions
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a) T is a Z-P -proximal contraction of the second kind;

b) T is injective on A0; c) T ∈ Tg,P ; d) T (A0) ⊆ B0; e) A0 ⊆ g(A0).

Then there exists a unique x ∈ A0 such that d(gx, Tx) = d(A,B) and P (Tx, Tx) =
0. Moreover, for every x0 ∈ A0 there exists a sequence {xn} ⊆ A0 converging to x,

such that d(gxn+1, Txn) = d(A,B) for all n ∈ N ∪ {0}.

Proof. By following a similar reasoning to that in the proof of Theorem 2.1,
we can construct a sequence {xn} such that d(gxn+1, Txn) = d(A,B) for all n ∈
N ∪ {0}. In the constructive process of {xn}, if we have Txn = Txm for some
m > n, then we choose xm+1 = xn+1.

Since T is a Z-P -proximal contraction of the second kind, we have

ξ(bν(Tgxn, T gxn+1), ν(Txn−1, Txn)) > 0

for every n ∈ N. From T being injective on A0 and T ∈ Tg,P , using the property
(ξ1) of a b-simulation function we deduce that

(2.14)

0 6 ξ(bν(Tgxn, T gxn+1), ν(Txn−1, Txn))

< ν(Txn−1, Txn) − bν(Tgxn, T gxn+1)

6 ν(Txn−1, Txn) − ν(Txn, Txn+1)

for every n ∈ N. Hence we have ν(Txn, Txn+1) < ν(Txn−1, Txn) for all n ∈ N,
which implies that the sequence {ν(Txn−1, Txn)} is decreasing.

If there exists n0 ∈ N such that ν(Txn0−1, Txn0
) = 0, then Txn0−1 = Txn0

and by the injectivity of T on A0 follows xn0−1 = xn0
. But then d(gxn0−1, Txn0

) =
d(gxn0

, Txn0
) = d(A,B) and xn0

is the best proximity point of T under mapping
g; that is, xn0

∈ B
g
est(T ).

Now, let ν(Txn−1, Txn) > 0 for all n ∈ N. Hence, there exists

lim
n→∞

ν(Txn−1, Txn) = r > 0.

Suppose that r > 0. From (2.14) we can also deduce that

ν(Tgxn, T gxn+1) 6 bν(Tgn, T gxn+1) < ν(Txn−1, Txn).

On the other hand T ∈ Tg,P and hence

ν(Txn, Txn+1) 6 ν(Tgxn, T gxn+1) < ν(Txn−1, Txn)

for all n ∈ N. Passing to the limit when n → ∞ we obtain that

lim
n→∞

ν(Tgxn, T gxn+1) = r.

Now, by the property (ξ2) of a b-simulation function, we have

0 6 lim sup
n→∞

ξ(bν(Tgxn+1, T gxn), ν(Txn−1, Txn)) < 0

which is a contradiction, and hence r = 0.
We have shown that

(2.15) lim
n→∞

ν(Txn−1, Txn) = 0.
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Next, we prove that

(2.16) lim
m,n→∞

ν(Txn, Txm) = 0.

Assume that (2.16) is not true. Then there exist an ε > 0 and two sequences
{mk}, {nk} ⊆ N ∪ {0} with mk > nk > k such that

(2.17) ν(Txnk
, Txmk

) > ε

for all k ∈ N. We can assume that mk is a minimal index for which (2.17) holds.
Then we also have

(2.18) ν(Txnk
, Txmk−1) < ε

for any k ∈ N. Using the triangle inequality for ν, by (2.17) and (2.18) we have

ε 6 ν(Txnk
, Txmk

) 6 bν(Txnk
, Txmk−1) + bν(Txmk−1, Txmk

)

< bε+ bν(Txmk−1, Txmk
).

Passing to the limit when k → ∞. By (2.15), we conclude that

(2.19) ε 6 lim sup
k→∞

ν(Txnk
, Txmk

) < bε.

Now, we claim that

(2.20) lim
k→∞

ν(Txnk+1, Txmk+1) < ε.

If lim
k→∞

ν(Txnk+1, Txmk+1) > ε, then there exist sequence {ks} and δ > 0 such that

(2.21) lim
s→∞

ν(Txnks
+1, Txmks

+1) = δ > ε.

Again, T is a Z-P -proximal contraction of the first kind and

d(gxnks
+1, Txnks

) = d(A,B) = d(gxmks
+1, Txmks

).

Hence, by the property (ξ1), we obtain

(2.22)

0 6 ξ(bν(Tgxnks
+1, T gxmks

+1), ν(Txnks
, Txmks

))

< ν(Txnks
, Txmks

) − bν(Tgxnks
+1, T gxmks

+1)

6 ν(Txnks
, Txmks

) − bν(Txnks
+1, Txmks

+1)

6 ν(Txnks
, Txmks

) − ν(Txnks
+1, Txmks

+1)

for all k ∈ N. It follows from (2.19), (2.21) and (2.22) that

(2.23) bδ = lim
s→∞

bν(Txnks
+1, Txmks

+1) < lim
s→∞

ν(Txnks
, Txmks

) < bε,

which implies (2.20). Thus, the sequences btks
= bν(Txnks

+1, Txmks
+1) and vks

=
ν(Txnks

, Txmks
) have the same positive limit and verify that tks

< vks
(by (2.22)).

By the property (ξ2), we conclude that 0 6 lim supk→∞
ξ(btks

, vks
) < 0 which is a

contradiction and hence (2.16) holds.
Now, using Lemma 1.1 (iii), {Txn} is a Cauchy sequence. Since (X, d) is a com-

plete b-metric space and T (A0) is a closed subset of X , there exists limn→∞ Txn =
Tu ∈ T (A0) ⊆ B0. Moreover, there exists z ∈ A0 such that d(z, Tu) = d(A,B).
Since A0 ⊆ g(A0), we obtain that z = gx for some x ∈ A0, and hence
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(2.24) d(gx, Tu) = d(A,B).

If xn = x holds for infinite values of n ∈ N, then Tx = Tu. Therefore, we can
assume that there exists n0 ∈ N such that xn 6= x for all n > n0. Also, there exists
a subsequence {xnk

} of {xn} such that ν(Txnk
, Tu) > 0 for all k ∈ N. Again, since

T is a Z-P -proximal contraction of the second kind, we get

0 6 ξ(bν(Tgxnk+1, T gx), ν(Txnk
, Tu)) < ν(Txnk

, Tu) − bν(Tgxnk+1, T gx)

and hence

(2.25) ν(Txnk+1, Tx) 6 bν(Tgxnk+1, T gx) < ν(Txnk
, Tu)

for all k ∈ N such that nk > n0, since T ∈ Tg,P .
From (2.16) we obtain that for any ǫ > 0 there exists a Nǫ ∈ N such that

ν(Txn, Txm) < ǫ
b

for every m > n > Nǫ. Then, using the property (P2) of a
wt0-distance we have

P (Txn, Tu) 6 lim inf
m→∞

bP (Txn, Txm) < ǫ

for any fixed n > max{n0, Nǫ}, which implies that

(2.26) lim
k→∞

P (Txnk
, Tu) = 0

and similarly limk→∞ P (Tu, Txnk
) = 0, hence limk→∞ ν(Txnk

, Tu) = 0. Combine
this and (2.25) to get limk→∞ ν(Txnk+1, Tx) = 0. Let k → ∞ in

ν(Txnk
, Tx) 6 bν(Txnk

, Txnk+1) + bν(Txnk+1, Tx)

. From (2.15) we obtain limk→∞ ν(Txnk
, Tx) = 0. Hence, we have

(2.27) lim
k→∞

P (Txnk
, Tx) = 0.

Thus, by (2.26) and (2.27) and Lemma 1.1 (i), we conclude that Tx = Tu. Now,
by substituting Tx = Tu in (2.24), we get d(gx, Tx) = d(A,B).

To show the uniqueness, let y be in A0 such that d(gy, T y) = d(A,B), i.e.,
y ∈ B

g
est(T ). Assume that ν(Tgx, T gy) > ν(Tx, T y) > 0. Since T ∈ Tg,P is a

Z-P -proximal contraction of the second kind, we have

0 6 ξ(bν(Tgx, T gy), ν(Tx, T y))

< ν(Tx, T y) − bν(Tgx, T gy)

6 ν(Tx, T y) − ν(Tx, T y) = 0,

which is a contradiction. Hence, ν(Tx, T y) = 0, which means that Tx = Ty.
Injectivity of T on A0 then yields x = y.

Finally, suppose that ν(Tx, Tx) = P (Tx, Tx) > 0. Then ν(Tgx, T gx) > 0.
Using a similar argument as above, we have

0 6 ξ(bν(Tgx, T gx), ν(Tx, Tx))

< ν(Tx, Tx) − bν(Tgx, T gx)

6 ν(Tx, Tx) − ν(Tx, Tx) = 0,

which is a contradiction. Therefore, P (Tx, Tx) = 0. �
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The following best proximity point result is a special case of Theorem 2.2 when
g is an identity map on A.

Corollary 2.4. Let A and B be two nonempty subsets of a complete b-metric

space (X, d) with a wt0-distance P , such that T (A0) is nonempty and close. Suppose

that the mapping T : A → B satisfies the following conditions

a) T is a Z-P -proximal contraction of the second kind;

b) T is injective on A0; c) T (A0) ⊆ B0.

Then there exists a unique best proximity point x ∈ A0 of T with P (Tx, Tx) = 0,

and for every x0 ∈ A0 there exists a sequence {xn} ⊆ A0 converging to x, such that

d(xn+1, Txn) = d(A,B) for all n ∈ N ∪ {0}.

By taking d = P in Theorem 2.2, we obtain the same result in b-metric spaces.

Corollary 2.5. Let A and B be two nonempty subsets of a complete b-metric

space (X, d), such that T (A0) is nonempty and closed. Suppose that the mappings

T : A → B and g : A → A satisfy the following conditions

a) T is Z-proximal contraction of the second kind;

b) T is injective on A0; c) T ∈ Tg; d) T (A0) ⊆ B0; e) A0 ⊆ g(A0).

Then there exists a unique point x ∈ A such that d(gx, Tx) = d(A,B). Moreover,

for every x0 ∈ A0 there exists a sequence {xn} ⊆ A such that d(gxn+1, Txn) =
d(A,B) for all n ∈ N ∪ {0} and limn→∞ xn = x.

Remark 2.3. In Theorem 2.2 and its corollaries, set b = 1. Then we obtain the
main results of Kostić et al. [11] involving simulation functions with w0-distance
(in metric spaces) for a Z-p-proximal contraction of the second kind.

Remark 2.4. In Corollaries 2.3 and 2.5, set b = 1. Then we obtain the main
results of Tchier et al. [18].

3. Conclusion and suggestions

We considered a special type of wt-distance and obtained some interesting
results about best proximity points, under which can be generalized, improved, en-
riched and unified a number of recently announced results in the existing literature
such as Kostić et al. [11], Tchier et al. [18] and others. Also, we consider some
various examples about our definitions and results to illuminate our work. Since
wt0-distance is a notion between b-metric spaces and wt-distances (similarly, w0-
distance is a notion between metric spaces and w-distances), we suggest to readers
and researchers to work on these distances (both w0 and wt0) in fixed point theory
and best proximity results as a new and different work.
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