
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
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AN ALTERNATIVE PROOF OF THE SOMBOR INDEX

MINIMIZING PROPERTY OF GREEDY TREES

Ivan Damnjanović and Dragan Stevanović

Abstract. Recently, Gutman defined a new graph invariant which is named
the Sombor index SO(G) of a graph G and is computed via the expression

SO(G) =
∑

u∼v

√

deg(u)2 + deg(v)2,

where deg(u) represents the degree of the vertex u in G and the summing is
performed across all the unordered pairs of adjacent vertices u and v. Damnja-
nović et al. have implemented an earlier result obtained by Wang in order to
show that, among all the trees TD that have a specified degree sequence D,
the greedy tree must attain the minimum Sombor index. Here we provide
an alternative proof of this same result by constructing an auxiliary graph
invariant named the pseudo-Sombor index and without relying on any other
earlier results.

1. Introduction

We will consider all graphs to be undirected, finite, simple and non-null. Thus,
every graph will have at least one vertex and there shall be no loops or multiple
edges. For convenience we will take that each graph of order n has the vertex set
{1, 2, 3, . . . , n}.

Furthermore, for a given graph G of order n and any u = 1, n, we shall use
the notation deg(u) to signify the degree of the vertex u, i.e., the total number of
vertices adjacent to it. Taking this into consideration, it is possible to define the
Sombor index SO(G) of the graph G by using the expression

SO(G) =
∑

u∼v

√

deg(u)2 + deg(v)2,

where the summing is done across all the unordered pairs of adjacent vertices u

and v, as done so by Gutman [16]. Although it was defined very recently, the
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Sombor index has already managed to attract a lot of attention from researchers
— see [1–3,7–11,14,15,17–26,28,30,32,33] for a partial list of results on the
Sombor index.

For a given n ∈ N, let D = (d1, d2, . . . , dn) be an arbitrary non-increasing
sequence of n non-negative integers. We shall use TD to denote the set of all the
trees of order n such that D represents their degree sequence. For convenience, we
shall take into consideration only the trees such that du = deg(u) for each u = 1, n.
The reason why this can be done is clear—all the other trees that adhere to the
degree sequence D are surely isomorphic to at least one aforementioned tree.

6 7 8 9 10

2 3 4 5

1

Figure 1. The greedy tree GTD for D = (4, 3, 3, 2, 1, 1, 1, 1, 1, 1).

We define the greedy tree GTD as the unique rooted tree from TD such that its
breadth-first traversal yields the sequence (1, 2, 3, . . . , n). In other words, the root 1
has d1 children 2, 3, . . . , d1 + 1, its child 2 has d2 − 1 children d1 + 2, . . . , d1 + d2,
and so on. An example of a greedy tree is given in Figure 1 for the degree sequence
D = (4, 3, 3, 2, 1, 1, 1, 1, 1, 1). It is known that the greedy tree must attain the
minimum Sombor index among all the trees with a specified degree sequence, as
shown by Damnjanović et al. [13, Corollary 2] by implementing an earlier result
obtained by Wang [31]. This statement is provided in the form of the following
theorem.

Theorem 1.1. For any n ∈ N and any non-increasing degree sequence D ∈ N
n
0

such that TD 6= ∅, the greedy tree GTD attains the minimum Sombor index in TD.

Theorem 1.1 should not be that surprising, given the fact that the greedy
tree GTD often appears as an extremal tree in TD: for example, it minimizes the
Wiener index [4], the incidence energy [4] and the sum of vertex eccentricities [29],
while it maximizes the connectivity and sum-connectivity indices [31], the spectral
moments [5], the spectral radius of the generalized reverse distance matrix [12],
the number of pairs of vertices whose distance is at most k for arbitrary k [27] and
the number of subtrees of any given order [4,6].

In this paper, our goal will be to provide an alternative proof of Theorem 1.1
— one that does not depend on the previous result by Wang [31] and uses a vastly
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different idea altogether. The remainder of the paper shall be structured as follows.
In Section 2 we will define two auxiliary graph-related concepts: the vertex score
and the pseudo-Sombor index, and prove some of their basic properties. Section 3
will combine these two concepts with edge switching in order to complete the proof
of Theorem 1.1.

2. Vertex score and pseudo-Sombor index

In this and the next section, we assume that D = (d1, d2, . . . , dn) is a fixed
non-increasing sequence of non-negative integers for some n ∈ N, > 2, such that
TD 6= ∅. Recall that we assume deg(u) = du for each vertex u ∈ {1, . . . , n} of each
tree in TD. Given the fact that the set TD is finite, it is clear that the set

ZD = {SO(T ) : T ∈ TD}

must also be non-empty and finite. Let z
(1)
D

= minZD be its smallest element.

Now, we have two possibilities: either the set ZD contains only the element z
(1)
D

,
or it has at least two elements, in which case we will denote its second smallest

element via z
(2)
D

= min
(

ZD r
{

z
(1)
D

})

. By taking this into consideration, we are
able to define a sufficiently small constant qD > 0 via the expression

qD =















1

2n
, |ZD| = 1,

min

{

1

2n
,
z
(2)
D

− z
(1)
D

4n3
√
2

}

, |ZD| > 2.

Furthermore, we will rely on qD in order to define the vertex score scr(u) for
each vertex u in the following manner:

(2.1) scr(u) = deg(u)− u qD.

We can imagine the vertex score as a property very similar to the degree, albeit
slightly smaller. Unlike the degrees, the vertex scores satisfy the strict monotonicity
property that we shall heavily rely on afterwards. This conclusion is disclosed in
the following lemma.

Lemma 2.1. For each tree in TD we have scr(1) > · · · > scr(n) > 0.

Proof. Let u and v be two distinct vertices of the given tree such that u < v.
Directly from the definition of the set TD, we obtain that deg(u) > deg(v). By
virtue of Eq. (2.1), we see that scr(u)−scr(v) = (deg(u)−deg(v))+(v−u) qD . Given
the fact that v − u > 0 and qD > 0, it immediately follows that scr(u) > scr(v).

In order to finalize the proof, it is sufficient to show that scr(n) > 0. However,
since n > 2, it is clear that deg(n) > 1, as well as qD 6 1

2n , which further implies

scr(n) = deg(n)− n qD > 1− n · 1

2n
=

1

2
> 0,

as desired. �
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In fact, the whole point of using vertex scores instead of their degrees is to
avoid having the same value corresponding to two different vertices. By relying on
a vertex score instead of its degree, we define the auxiliary pseudo-Sombor index
pSO(T ) of an arbitrary tree T ∈ TD as follows:

pSO(T ) =
∑

u∼v

√

scr(u)2 + scr(v)2.

Due to the fact that the positive constant qD is chosen to be fairly small, it makes
sense that the difference between the pseudo-Sombor index and the Sombor index
is also relatively small. We demonstrate this fact in the following lemma.

Lemma 2.2. If |ZD| > 2, then for any tree T ∈ TD we have

SO(T )− 1

2

(

z
(2)
D

− z
(1)
D

)

< pSO(T ) < SO(T ).

Proof. Given the fact that all the vertex scores are positive and smaller than
the corresponding degrees, the inequality pSO(T ) < SO(T ) is obvious. Hence, we

only need to prove that SO(T )− pSO(T ) < 1
2

(

z
(2)
D

− z
(1)
D

)

.

To start, it is easy to see that for any vertex u = 1, n, we necessarily have

deg(u)− scr(u) = u qD 6 n
z
(2)
D

− z
(1)
D

4n3
√
2

6
z
(2)
D

− z
(1)
D

4n2
√
2

,

as well as deg(u) + scr(u) 6 2 deg(u) < 2n, which immediately gives

(2.2) deg(u)2 − scr(u)2 = (deg(u)− scr(u))(deg(u) + scr(u)) <
z
(2)
D

− z
(1)
D

2n
√
2

.

Furthermore, for any two vertices u and v, we quickly obtain
√

deg(u)2 + deg(v)2 +
√

scr(u)2 + scr(v)2 >
√

deg(u)2 + deg(v)2

>
√
2,

(2.3)

given the fact that no vertex degree can be less than one.
Now, for any two adjacent vertices u ∼ v, we conclude that

√

deg(u)2 + deg(v)2 −
√

scr(u)2 + scr(v)2 =

=
(deg(u)2 + deg(v)2)− (scr(u)2 + scr(v)2)
√

deg(u)2 + deg(v)2 +
√

scr(u)2 + scr(v)2

=
(deg(u)2 − scr(u)2) + (deg(v)2 − scr(v)2)
√

deg(u)2 + deg(v)2 +
√

scr(u)2 + scr(v)2
.

By implementing both Eq. (2.2) and Eq. (2.3), we promptly reach

√

deg(u)2 + deg(v)2 −
√

scr(u)2 + scr(v)2 <

z
(2)
D

− z
(1)
D

2n
√
2

+
z
(2)
D

− z
(1)
D

2n
√
2√

2

=
z
(2)
D

− z
(1)
D

2n
.
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Finally, we get

SO(T )− pSO(T ) =
∑

u∼v

(

√

deg(u)2 + deg(v)2 −
√

scr(u)2 + scr(v)2
)

<
∑

u∼v

z
(2)
D

− z
(1)
D

2n
=

z
(2)
D

− z
(1)
D

2n
(n− 1) <

z
(2)
D

− z
(1)
D

2
. �

The approximation obtained in Lemma 2.2 can now be used to show a key
property of the pseudo-Sombor index that plays a central role in the proof of The-
orem 1.1. This property is given in the next lemma.

Lemma 2.3. If a tree T has the minimum pseudo-Sombor index in TD, then T

also has the minimum Sombor index in TD.

Proof. First of all, in case we have |ZD| = 1, it can immediately be seen that
all the trees in TD must have the same Sombor index, hence any tree attains the
minimum Sombor index value. In the remainder of the proof, we will suppose that
|ZD| > 2.

Let T be a tree that attains the minimum pseudo-Sombor index in TD, and
let T ′ be a tree that attains the minimum Sombor index in TD. From Lemma 2.2,

we know that pSO(T ′) < SO(T ′) = z
(1)
D

, which further implies that pSO(T ) 6

pSO(T ′) < z
(1)
D

. From Lemma 2.2 we also have SO(T )− 1
2

(

z
(2)
D

− z
(1)
D

)

< pSO(T ),
which means that

SO(T ) < z
(1)
D

+
z
(2)
D

− z
(1)
D

2
=

z
(2)
D

+ z
(1)
D

2
< z

(2)
D

.

Since z
(1)
D

is the only possible value of Sombor index from ZD that is smaller than

z
(2)
D

, we obtain that SO(T ) = z
(1)
D

, meaning that T has the minimum Sombor index
in TD. �

3. Greedy trees

As a direct consequence of Lemma 2.3, we see that in order to demonstrate
that GTD attains the minimum value of Sombor index, it is sufficient to prove that
GTD attains the minimum value of the pseudo-Sombor index. In this section we
do that by showing that for any tree T ∈ TD with T 6∼= GTD there is another tree
T ′ ∈ TD such that pSO(T ′) < pSO(T ).

For convenience, we will assume that all of the trees from TD are rooted, with
the root fixed at the vertex 1. In this case, the root must have the highest score
and no two vertices can have the same score, as shown in Lemma 2.1. The level

of a vertex will denote its distance to the root 1. Bearing this in mind, we now
disclose three helpful lemmas that together show that, apart from GTD, no other
tree can attain the minimum value of the pseudo-Sombor index in TD.

Lemma 3.1. Let T ∈ TD be a tree containing four distinct vertices u, v, w, t

such that u ∼ v, w ∼ t, u ≁ w, v ≁ t. Suppose that the graph obtained from T
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by deleting the edges {u, v} and {w, t} and adding the edges {u,w} and {v, t} is a

tree, and denote it by T1. In that case we have T1 ∈ TD, as well as

pSO(T ) > pSO(T1) ⇐⇒ (scr(u)− scr(t))(scr(w) − scr(v)) > 0.

Proof. First of all, given the fact that T1 is guaranteed to be a tree and T and
T1 obviously have the same degree sequence, it is clear that T1 ∈ TD. Furthermore,
pseudo-Sombor indices of these two trees will have the same summands, except
for the terms that correspond to the deleted and newly added edges. With this in
mind, we quickly get

pSO(T )− pSO(T1) =
√

scr(u)2 + scr(v)2 +
√

scr(w)2 + scr(t)2

−
√

scr(u)2 + scr(w)2 −
√

scr(v)2 + scr(t)2.

It follows that pSO(T ) > pSO(T1) is equivalent to
√

scr(u)2 + scr(v)2 +
√

scr(w)2 + scr(t)2 >

>
√

scr(u)2 + scr(w)2 +
√

scr(v)2 + scr(t)2,

which, after squaring, becomes equivalent to

(scr(u)2 + scr(v)2)(scr(w)2 + scr(t)2) > (scr(u)2 + scr(w)2)(scr(v)2 + scr(t)2).

Expanding the above expressions, we conclude that pSO(T ) > pSO(T1) is equiva-
lent to

scr(u)2 scr(w)2 + scr(v)2 scr(t)2 > scr(u)2 scr(v)2 + scr(w)2 scr(t)2,

which is, in turn, equivalent to (scr(u)2 − scr(t)2)(scr(w)2 − scr(v)2) > 0. Since
all vertex scores are positive, it is trivial to see that the last expression is further
equivalent to

(scr(u)− scr(t))(scr(w) − scr(v)) > 0. �

We can now use the switching mechanism from Lemma 3.1 to construct a
tree with a smaller pseudo-Sombor index whenever we are given a tree different
from GTD. The necessary constructions are given in the following two lemmas.

Lemma 3.2. If a tree T ∈ TD contains vertices α and β such that α is at

a greater level than β, but scr(α) > scr(β), then T cannot attain the minimum

pseudo-Sombor index in TD.

Proof. Let j be the minimum index such that each vertex on level k, for each
0 6 k 6 j − 1, has a higher score than any vertex belonging to a level greater
than k, but such that there exists a vertex β on level j and a vertex α on a level
greater than j with scr(β) < scr(α). Since the root 1 has the highest score, we have
that j ≧ 1, so that β has a parent, which we denote by γ. In order to make the
proof more concise, we will divide it into two cases depending on whether β is the
parent of α.

Case β is the parent of α. In this case, we clearly have that deg(β) > 2. Since
scr(α) > scr(β), Lemma 2.1 tells us that α < β, hence deg(α) > 2 as well. (Recall
that the degrees are ordered in a non-increasing order in D.) This means that the
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vertex α must have at least one child, which we shall denote via δ. We now get
that α ∼ δ, β ∼ γ, γ ≁ α, β ≁ δ. If we construct a graph T1 from T by deleting the
edges {α, δ} and {β, γ} and adding the new edges {γ, α} and {β, δ}, we see that
this graph must be a tree from the set TD. According to Lemma 3.1, we obtain

pSO(T ) > pSO(T1) ⇐⇒ (scr(α) − scr(β))(scr(γ)− scr(δ)) > 0.

We have scr(α) > scr(β) by assumption, while scr(γ) > scr(δ) also holds since γ is
from level j − 1 and δ is from a greater level than γ. Thus, pSO(T1) < pSO(T ), so
T cannot attain the minimum pseudo-Sombor index in TD.

Case β is not the parent of α. In this case, let δ be the parent of α that is located
on some level greater than j − 1. Here, it is clear that the vertices α, β, γ, δ are all
mutually distinct. Moreover, we have that α ∼ δ and β ∼ γ, but γ ≁ α. However,
δ and β may or may not be adjacent. It is easy to see that these two vertices are
adjacent if and only if β is the parent of δ. These two scenarios shall yield two
different construction patterns for T1. For this reason, we shall divide the given
case into two further subcases.

Subase β is not the parent of δ. In this subcase, we get α ∼ δ, β ∼ γ, γ ≁ α,
β ≁ δ. As in the previous case, if we construct a graph T1 from T by deleting the
edges {α, δ} and {β, γ} and adding the new edges {γ, α} and {β, δ}, it can be easily
seen that this graph must be a tree from the set TD. By virtue of Lemma 3.1, we
have

pSO(T ) > pSO(T1) ⇐⇒ (scr(α) − scr(β))(scr(γ)− scr(δ)) > 0.

As in the previous case, we have that scr(α) > scr(β), and scr(γ) > scr(δ) must also
be true since γ is from level j − 1 and δ is from a greater level. Thus, pSO(T1) <
pSO(T ).

Subcase β is the parent of δ. In this subcase, we have that γ is the parent of β,
which is the parent of δ, which is the parent of α. Since deg(β) ≧ 2 and α < β, it
follows that deg(α) > 2, as already observed. Thus, α must have at least one child,
and we will name one of them as ε. Now, we have α ∼ ε, β ∼ γ, γ ≁ α, β ≁ ε. If
we construct a graph T1 from T by deleting the edges {α, ε} and {β, γ} and adding
the new edges {γ, α} and {β, ε}, it can be quickly noticed that this graph must be
a tree from the set TD. Furthermore, Lemma 3.1 gives us

pSO(T ) > pSO(T1) ⇐⇒ (scr(α)− scr(β))(scr(γ)− scr(ε)) > 0.

Now, it is clear that scr(γ) > scr(ε), since γ is from level j − 1 and ε is from a
greater level, which again implies that pSO(T1) < pSO(T ). �

As a direct consequence of Lemma 3.2, we see that a tree T ∈ TD with the
minimum value of the pseudo-Sombor index satisfies the property that whenever a
vertex α is at a greater level than a vertex β, then scr(α) < scr(β). We will now
show that the scores of vertices at the same level are aligned according to the scores
of their parents.

Lemma 3.3. If a tree T ∈ TD contains two vertices α and β on the same

level with scr(α) > scr(β), such that α has a child γ and β has a child δ with

scr(γ) < scr(δ), then T cannot attain the minimum pseudo-Sombor index in TD.
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Proof. It is clear that α ∼ γ, β ∼ δ, α ≁ δ, β ≁ γ. If T1 is obtained from T by
deleting the edges {α, γ} and {β, δ} and adding the new edges {α, δ} and {β, γ},
then it is easy to see that T1 is a tree from TD as well. From Lemma 3.1

pSO(T ) > pSO(T1) ⇐⇒ (scr(α) − scr(β))(scr(δ)− scr(γ)) > 0,

which by the above assumptions implies that pSO(T1) < pSO(T ). Hence T does
not attain the minimum pseudo-Sombor index in TD. �

Taking into consideration both Lemma 3.2 and Lemma 3.3, we see that the
only way for a tree T ∈ TD to attain the minimum pseudo-Sombor index is if
the children of the root have the highest possible scores, then the children of the
highest-scored child have the highest possible scores, etc. In other words, if we select
the children in such a way that the ones with the higher scores go first, the tree T

must be such that its breadth-first traversal yields a strictly decreasing sequence of
scores. Recalling that scr(1) > · · · > scr(n) by Lemma 2.1, we see that such tree is
actually the greedy tree GTD, and this is the only tree that attains the minimum
pseudo-Sombor index in TD. We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. If n = 1, then D = (0) is the only non-increasing
sequence of non-negative integers in N

1
0 for which TD 6= ∅. In such a case we

actually have TD = {K1}. Since K1 is also a greedy tree, the minimum Sombor
index is clearly attained by the greedy tree in this case.

For n ≧ 2, suppose that D ∈ N
n
0 is an arbitrarily chosen non-increasing se-

quence of non-negative integers such that TD 6= ∅. Now, Lemmas 3.2 and 3.3
guarantee that the greedy tree GTD attains the minimum pseudo-Sombor index
in TD. Lemma 2.3 then dictates that GTD must also attain the minimum Sombor
index in TD, which completes the proof. �
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24. J. Rada, J.M. Rodŕıguez, J.M. Sigarreta, General properties on Sombor indices, Discrete

Appl. Math. 299 (2021) 87–97.
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