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CHARACTERIZATION OF TIGHT WAVELET
FRAMES WITH COMPOSITE DILATIONS IN L

2(Rn)

Owais Ahmad

Abstract. Tight wavelet frames are different from the orthonormal wavelets
because of redundancy. By sacrificing orthonormality and allowing redun-
dancy, the tight wavelet frames become much easier to construct than the or-
thonormal wavelets. Guo, Labate, Lim, Weiss, and Wilson [Electron. Res. An-
nounc. Am. Math. Soc. 10 (2004), 78–87] introduced the theory of wavelets
with composite dilations in order to provide a framework for the construction
of waveforms defined not only at various scales and locations but also at vari-
ous orientations. In this paper, we provide the characterization of composite
wavelet system to be tight frame for L2(Rn)

1. Introduction

Most of the signals in nature are non-stationary and a complete representation
of these signals requires frequency analysis that is local in time, resulting in the
time-frequency analysis of signals. Although time-frequency analysis of signals had
its origin almost 60 years ago, there has been a major development of the time-scale
and time-frequency analysis approach in the last few decades and many new trans-
forms have been introduced to analyze the non-stationary and multi-component
signals in the joint time-frequency domain. In the framework of mathematical
analysis and linear algebra, redundant representations are obtained by analysing
vectors with respect to an overcomplete system. Then the obtained vectors are
interpreted using the frame theory as introduced by Duffin and Schaeffer [12] and
recently studied at depth, see [9] and the compressive list of references therein. Most
commonly used coherent/structured frames are wavelet, Gabor, and wave-packet
frames which are a mixture type of wavelet and Gabor frames [9, 11]. Frames
provide a useful model to obtain signal decompositions in cases where redundancy,
robustness, over-sampling, and irregular sampling ploy a role. Today, the theory
of frames has become an interesting and fruitful field of mathematics with abun-
dant applications in signal processing, image processing, harmonic analysis, Banach
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space theory, sampling theory, wireless sensor networks, optics, filter banks, quan-
tum computing, and medicine.

Though the importance of wavelets in signal processing applications is widely
acknowledged, it is well-known that wavelets do not perform as well in higher di-
mensions. The situation is illustrated, for example, by the classical problem of
representing a natural image using a 2-D wavelet basis. Natural images exhibit
discontinuous and irregular edges along curves. Because these discontinuities are
spatially distributed, they interact extensively with the elements of the wavelet ba-
sis, and the wavelet representation is not sparse, that is, “many” wavelet coefficients
are needed to represent the edges accurately. This limitation has led to several new
constructions [21], in order to handle efficiently the geometric features of multi-
dimensional signals. These constructions include the ridgelets [5], the directional
wavelets [10] and the curvelets [6]. The main idea, in all of these constructions, is
that such representations must contain basis elements with more shapes and direc-
tions than the classical wavelet bases in order to obtain efficient representations of
multidimensional signals with spatially distributed discontinuities.

One of structured frames are wavelet frames which are obtained by translating
and dilating a finite number of functions. Wavelet frames are different from the
orthonormal wavelets because of redundancy. By sacrificing orthonormality and
allowing redundancy, wavelet frames become much easier to construct than the
orthonormal wavelets. An important problem in practice is therefore to determine
conditions on the wavelet function, dilation and translation parameters so that the
corresponding wavelet system forms a frame. In her famous book, Daubechies [11]
proved the first result on the necessary and sufficient conditions for wavelet frames,
and then, Chui and Shi [8] gave an improved result. After about ten years, Casazza
and Christenson [7] proved a stronger version of Daubechies’ sufficient condition
for wavelet frames in L2(R). The first author and his collaborators in the series of
papers [1–4,15–19] studied theory of frames in various domains.

In order to study efficient representations of multidimensional functions Guo
and his colleagues [13,14] introduced the concept of wavelet systems with composite
dilations as a directional representation system to fit into the framework of affine
systems and also allow a faithful implementation by a unified treatment of the
continuum and digital realm. These systems have the following form

WAB(ψ, j, k) =
{

DADBTkψ
ℓ : A ∈ A, B ∈ B, k ∈ Z

n, 1 6 ℓ 6 L
}

(1.1)

=
{

ψℓj,k(x) = qj/2ψ
(

AjBℓx− k
)

: j ∈ Z, k ∈ Z
n, 1 6 ℓ 6 L

}

where L = min{m : Bm = I, m > 1, m ∈ Z}, Tk are the translations, defined
by Tkf(x) = f(x − k), DA are the dilations, defined by DAf(x) = q1/2f(Ax),
q = | detA| and the sets A,B which are not necessarily commuting matrix sets are
countable subsets of GLn(R). Typically, more restraints are put on the sets A and
B. For instance, it is common for A to be a collection of invertible matrices with
eigenvalues |λ| > 1 and for B to be a group of matrices each with determinant 1.
However, in [22] it was shown that these constraints are not always necessary.
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The composite wavelet systemWAB(ψ, j, k) is called a composite wavelet frame,
if there exist constants C and D, 0 < C 6 D <∞ such that

(1.2) C‖f‖22 6
L
∑

ℓ=1

∑

j∈Z

∑

k∈Zn

|〈f, ψℓj,k〉|
2 6 D‖f‖22,

holds for every f ∈ L2(Rn). We call the optimal constants C and D the lower
frame bound and the upper frame bound, respectively. A tight composite wavelet

frame refers to the case when C = D, and a Parseval frame refers to the case when
C = D = 1.

Motivated and Inspired by the recent work of Srivastava and Shah [20], we in
this paper, establish the characterization of composite wavelet system to be tight
frame for L2(Rn).

2. Characterization of composite tight wavelet frames in L
2(Rn)

We shall use the following conventions throughout the paper. We adopt the
notation that the time domain is represented by R

n, and its elements will be column
vectors denoted by letters of the Roman alphabet, x = (x1, x2, . . . , xn)

t ∈ R
n. The

elements of the frequency domain will be row vectors, ξ = (ξ1, ξ2, . . . , ξn) ∈ R
n.

We denote by T n = [−1/2, 1/2]n the n-dimensional torus and hence, the subsets of
R
n are invariant under Zn translations and the subsets of T n are often identified.

We use the Fourier transform in the form

(2.1) f̂(ξ) =

∫

Rn

f(x)e−2πiξxdx.

The Fourier transform of the composite wavelet system WAB(ψ, j, k) is given by

ψ̂ℓj,k(ξ) = q−j/2ψ̂(A∗−jB∗−ℓξ)e−2πiB−ℓA−jkξ,

whereA∗ and B∗ denotes the transpose ofA andB, respectively. Before proceeding,
it is useful to state a basic lemma whose proof can be found in Christensen [9].

Lemma 2.1. Suppose that {ϕk}∞k=1 is a family of elements in a Hilbert space

H such that there exist constants 0 < C 6 D <∞ satisfying

(2.2) C‖ϕ‖22 6

∞
∑

k=1

|〈ϕ, ϕk〉|
2
6 D‖ϕ‖22,

for all ϕ belonging to a dense subset D of H. Then, the same inequalities (2.2) are
true for all ϕ ∈ H, that is, {ϕk}∞k=1 is a frame for H.

In view of Lemma 2.1, we will consider the following set of functions:

D = {ϕ ∈ L2(Rn) : ϕ̂ ∈ L∞(Rn) and ϕ̂ has compact support in R
n
r {0}}.

It is clear that D is a dense subspace of L2(Rn). Therefore, it is enough to verify
that the composite wavelet systemWAB(ψ, j, k) given by (1.1) is a frame for L2(Rn)
if (1.2) hold for all ϕ ∈ D.

We first state a lemma whose proof can be found in [20] which will be used in
the proofs of the main result.
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Lemma 2.2. Suppose that the composite wavelet system WAB(ψ, j, k) is defined

by (1.1). If ϕ ∈ D and ess sup
{
∑L

ℓ=1

∑

j∈Z
|ψ̂((A∗)−j(B∗)−ℓξ)|2 : 1 6 ξ 6 q

}

<
∞, then

(2.3)

L
∑

ℓ=1

∑

j∈Z

∑

k∈Zn

|〈ϕ, ψℓj,k〉|
2 =

∫

Rn

|ϕ̂(ξ)|2
L
∑

ℓ=1

∑

j∈Z

|ψ̂((A∗)j(B∗)ℓξ)|2dξ + Sψ(ϕ),

where

(2.4) Sψ(ϕ) =
L
∑

ℓ=1

∑

j∈Z

∑

s∈Znr{0}

∫

Rn

ϕ̂(ξ)ψ̂((A∗)−j(B∗)−ℓξ)ϕ̂(ξ + (A∗)j(B∗)ℓs)

× ψ̂((A∗)−j(B∗)−ℓξ + s)dξ.

Furthermore, the iterated series in (2.4) is absolutely convergent.

Now we proceed to establish our main result concerning the characterization
of composite wavelet system WAB(ψ, j, k) is defined by (1.1) to be tight frame
for L2(Rn).

Theorem 2.1. The composite wavelet system WAB(ψ, j, k) is defined by (1.1)
is a tight wavelet frame for L2(Rn) if and only if ψ satisfies

L
∑

ℓ=1

∑

j∈Z

|ψ̂((A∗)−j(B∗)−ℓξ)|2 = 1, for a.e. ξ ∈ T
n,(2.5)

L
∑

ℓ=1

∑

j∈N0

ψ̂((A∗)−j(B∗)−ℓξ)ψ̂((A∗)−j(B∗)−ℓ(ξ +m)) = 0,(2.6)

for a.e. ξ ∈ T
n, m ∈ qN0 +∆, where ∆ = {1, 2, . . . , q − 1}.

Proof. Let

tψ(m, ξ) =

L
∑

ℓ=1

∑

k∈Zn

ψ̂((A∗)−k(B∗)−ℓξ)ψ̂((A∗)−k(B∗)−ℓ(ξ +m)).

Assume ϕ ∈ D, then for each l ∈ Z
n, there exists k ∈ Z

n and a unique m ∈ qZn+∆
such that l = ((A∗)−k(B∗)−ℓm. Thus, by virtue of (2.1) we have that {l}l∈Zn =
{(A∗)−k(B∗)−ℓm}(k,m)∈Zn×{qZn+∆}. Since the series in (2.3) is absolutely conver-
gent, we can estimate Sψ(ϕ) as follows:

Sψ(ϕ)=
L
∑

ℓ=1

∑

j∈Z

∫

Rn

ϕ̂(ξ)ψ̂((A∗)−j(B∗)−ℓξ)

{

∑

l∈Zn

ϕ̂(ξ + (A∗)j(B∗)ℓl)ψ̂((A∗)−j(B∗)−ℓξ + l)

}

dξ

=

L
∑

ℓ=1

∑

j∈Z

∫

Rn

ϕ(ξ)ψ̂((A∗)−j(B∗)−ℓξ)

{

∑

k∈Zn

∑

m∈qZn+∆

ϕ(ξ + (A∗)−j−k(B∗)ℓm)

× ψ̂((A∗)−j(B∗)−ℓξ + (A∗)−k(B∗)−ℓm)

}

dξ
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=

∫

Rn

ϕ(ξ)

{ L
∑

ℓ=1

∑

k∈Zn

∑

m∈qZn+∆

∑

j∈Z

ϕ(ξ + (A∗)j(B∗)ℓm)ψ̂((A∗)j−k(B∗)−ℓξ)

× ψ̂((A∗)j−k(B∗)−ℓξ + (A∗)−k(B∗)−ℓm)

}

dξ

=

∫

Rn

ϕ(ξ)

{ L
∑

ℓ=1

∑

j∈Z

∑

m∈qZn+∆

ϕ(ξ + (A∗)j(B∗)ℓm)
∑

k∈Zn

ψ̂((A∗)j−k(B∗)−ℓξ)

× ψ̂((A∗)−k(B∗)−ℓ((A∗)−j(B∗)−ℓξ +m))

}

dξ

=

∫

Rn

ϕ(ξ)

{ L
∑

ℓ=1

∑

j∈Z

∑

m∈qZn+∆

ϕ(ξ + (A∗)j(B∗)ℓm)tψ(m, (A
∗)−j(B∗)−ℓξ)

}

dξ.

Let us collect the results we have obtained, suppose ψ ∈ L2(Rn) and ϕ ∈ D, then

(2.7)
L
∑

ℓ=1

∑

j∈Z

∑

k∈Zn

|〈ϕ, ψℓj,k〉|
2 =

∫

Rn

|ϕ(ξ)|2
L
∑

ℓ=1

∑

j∈Z

|ψ̂((A∗)−j(B∗)−ℓξ)|2dξ

+

∫

Rn

ϕ(ξ)

L
∑

ℓ=1

∑

j∈Z

∑

m∈qZn+∆

ϕ(ξ + (A∗)j(B∗)ℓm)

× tψ(m, (A
∗)−j(B∗)−ℓξ)dξ.

The last integrand is integrable and so is the first when

L
∑

ℓ=1

∑

j∈Z

|ψ̂((A∗)−j(B∗)−ℓξ)|2

is locally integrable in R
n
r
⋃

j∈Z
Ecj . Further, (2.6) implies that

tψ(m, ξ) = 0 for all m ∈ qZn +∆.

Combining all together with (2.5) and (2.6) gives

L
∑

ℓ=1

∑

j∈Z

∑

k∈Zn

|〈ϕ, ψℓj,k〉|
2 = ‖ϕ‖22, ∀ ϕ ∈ D

Since D is dense in L2(Rn), hence the composite wavelet system WAB(ψ, j, k)
is defined by (1.1)) is a tight frame for L2(Rn).

Conversely, suppose that the composite wavelet system WAB(ψ, j, k) is defined
by (1.1) is a tight wavelet frame for L2(Rn), then we need to show that the two
equations (2.5) and (2.6) are satisfied.

Since {ψj,k(x) : j ∈ Z, k ∈ Z
n} is a tight wavelet frame for L2(Rn), then we

have

(2.8)
∑

j∈Z

L
∑

ℓ=1

∑

k∈Zn

|〈ϕ, ψℓj,k〉|
2 = ‖ϕ‖22, ∀ ϕ ∈ D
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Since
∑L

ℓ=1

∑

j∈Z
|ψ̂((A∗)−j(B∗)−ℓξ)|2 is locally integrable in R

n\ ∪j∈Z E
c
j .

Therefore, for each ξ0 ∈ R
n\ ∪j∈Z E

c
j , we consider ϕ1(ξ) = qM/21M (ξ − ξ0) where

ϕ = ϕ1 and 1M (ξ−ξ0) is the fact characteristic function of ξ0+T
M . Then, it follows

that for l ∈ Z
n
r {0}, ϕ(ξ)ϕ(ξ +(A∗)j(B∗)ℓl) ≡ 0, since ξ and ξ+ (A∗)j(B∗)ℓl can

not be in ξ0 + T
M simultaneously and hence, ‖ϕ1‖

2
2 = 1. Furthermore, we have

L
∑

ℓ=1

∑

j∈Z

∑

k∈Zn

|〈ϕ, ψℓj,k〉|
2 = ‖ϕ1‖

2
2 = ‖ϕ1‖

2
2 = 1

=

∫

ξ0+TM

L
∑

ℓ=1

∑

j∈Z

qM |ψ̂((A∗)−j(B∗)−ℓξ)|2dξ + Sψ(ϕ1).

By letting M → ∞, we obtain

(2.9) 1 =

L
∑

ℓ=1

∑

j∈Z

|ψ̂((A∗)−j(B∗)−ℓξ)|2 + lim
M→∞

Sψ(ϕ1).

Now, we estimate Sψ(f1) as:

Sψ(f1) =

L
∑

ℓ=1

∑

j∈Z

∫

Rn

ϕ1(ξ)ψ̂((A
∗)−j(B∗)−ℓξ)

×

{

∑

l∈N

ϕ1(ξ + (A∗)j(B∗)ℓl)ψ̂((A∗)−j(B∗)−ℓξ + l)

}

dξ

6

L
∑

ℓ=1

∑

j∈Z

∑

l∈Zn

∫

Rn

|ϕ1(ξ)ψ̂((A
∗)−j(B∗)−ℓξ)ϕ1(ξ + (A∗)j(B∗)ℓl)

× ψ̂((A∗)−j(B∗)−ℓξ + l)|dξ

=
L
∑

ℓ=1

∑

j∈Z

∑

l∈Zn

qj
∫

Rn

|ϕ1(A
∗)j(B∗)ℓξ)ϕ1((A

∗)j(B∗)ℓ(ξ + l))ψ̂(ξ)ψ̂(ξ + l)|dξ.

Note that
∣

∣ψ̂(ξ)ψ̂(ξ + l)
∣

∣ 6 1
2

(∣

∣|ψ̂(ξ)
∣

∣|2 +
∣

∣|ψ̂(ξ + l)
∣

∣|2
)

. Therefore, we have

(2.10) |Sψ(ϕ1)| 6
L
∑

ℓ=1

∑

j∈Z

∑

l∈Zn

qj
∫

Rn

|ϕ1((A
∗)j(B∗)ℓξ)ϕ1((A

∗)j(B∗)ℓ(ξ + l)||ψ̂(ξ)|2dξ.

Since l 6= 0, (l ∈ Z
n) and ϕ1 ∈ D, there exists a constant J > 0 such that

ϕ1((A
∗)j(B∗)ℓt)ϕ1((A

∗)j(B∗)ℓt+ (A∗)j(B∗)ℓl)) = 0, ∀ |j| > J.

On the other hand, for each |j| 6 J, there exists a constant L such that

ϕ1((A
∗)j(B∗)ℓt+ (A∗)j(B∗)ℓl)) = 0, ∀ l > L.

This means that only finite terms of the series on the R.H.S of (2.10) are non-zero.
Consequently, there exits a constant C such that

|Sψ(ϕ1)| 6 C‖ϕ1‖
2
∞‖ψ̂‖22 = Cqm‖ψ̂‖22
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which implies limM→∞ |Sψ(ϕ1)| = 0. Hence equation (2.9) becomes

L
∑

ℓ=1

∑

j∈Z

|ψ̂((A∗)−j(B∗)−ℓξ0)|
2 = 1.

Finally, we must show that if (2.8) holds for all ϕ ∈ D, then equation (2.6) is true.
From equalities (2.7), (2.8) and just established equality (2.5), we have

L
∑

ℓ=1

∑

j∈Z

∑

m∈qZn+∆

∫

Rn

ϕ(ξ)ϕ(ξ+(A∗)j(B∗)ℓm)tψ(m, (A
∗)−j(B∗)−ℓξ)dξ = 0, ∀ f ∈ D

Also by polarization, we then have

(2.11)
L
∑

ℓ=1

∑

j∈Z

∑

m∈qZn+∆

∫

Rn

ϕ(ξ)ĝ(ξ + (A∗)j(B∗)ℓm)tψ(m, (A
∗)−j(B∗)−ℓξ)dξ = 0, ∀ f, g ∈ D

Let us fix m0 ∈ qZn + ∆ and ξ0 ∈ R
n
r

⋃

j∈Z
Ecj such that neither ξ0 6= 0 nor

ξ0 +m0 6= 0. Setting ϕ = ϕ1 and g = g1 such that ϕ1(ξ) = qM/21M (ξ − ξ0) and
ĝ1(ξ) = ϕ1(ξ−m0). Then, we have ϕ1(ξ)ĝ1(ξ+m0) = qM1M (ξ−ξ0). Now, equality
(2.11) can be written as

0 = qM
∫

ξ0+TM

tψ(m0, ξ)dξ + J1,

where

J1 =
L
∑

ℓ=1

∑

j∈Z

∑

m∈qZn+∆

(j,m) 6=(0,m0)

∫

Rn

ϕ1(ξ)ĝ1(ξ + (A∗)j(B∗)ℓm)tψ(m, (A
∗)−j(B∗)−ℓξ)dξ.

Since the first summand tends to tψ(m0, ξ0) as M → ∞. Therefore, we shall
prove that limM→∞ J1 = 0.

Since m 6= 0, (m ∈ Z
n) and ϕ1, g1 ∈ D, there exists a constant J0 > 0 such

that

ϕ1(ξ) ĝ1(ξ + (A∗)j(B∗)ℓm) = 0 ∀ j > J0.

Therefore, we have

J1 =

L
∑

ℓ=1

∑

j6J0

∑

m∈qZn+∆

∫

Rn

ϕ1(ξ)ĝ1(ξ + (A∗)j(B∗)ℓm)tψ(m, (A
∗)−j(B∗)−ℓξ)dξ

|J1| 6
L
∑

ℓ=1

∑

j6J0

∑

m∈qZn+∆

qj
∫

Rn

|ϕ1((A∗)j(B∗)ℓξ)ĝ1((A
∗)j(B∗)ℓ(ξ +m))||tψ(m, ξ)|dξ.

Since

2|tψ(m, ξ)| 6
L
∑

ℓ=1

∑

k∈Zn

|ψ̂((A∗)−k(B∗)−ℓξ)|2 +
L
∑

ℓ=1

∑

k∈Zn

|ψ̂((A∗)−k(B∗)−ℓ(ξ +m))|2,
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hence |J1| 6 J
(1)
1 + J

(2)
1 where

J
(1)
1 =

L
∑

ℓ=1

∑

j6J0

∑

m∈qZn+∆

qj
∫

Rn

|ϕ1((A
∗)j(B∗)ℓξ)||ĝ1((A

∗)j(B∗)ℓ(ξ +m))|[σ(ξ)]2dξ,

with
∫

Rn

[σ(ξ)]2dξ =
1

2

L
∑

ℓ=1

∑

k∈Zn

∫

Rn

|ψ̂((A∗)−k(B∗)−ℓξ)|2dξ = ‖ψ̂‖22 <∞,

and

J
(2)
1 =

L
∑

ℓ=1

∑

j6J0

∑

m∈qZn+∆

qj
∫

Rn

|ϕ1((A
∗)j(B∗)ℓξ)||ĝ1((A

∗)j(B∗)ℓ(ξ +m))|[σ(ξ +m)]2dξ,

=
L
∑

ℓ=1

∑

j6J0

∑

m∈qZn+∆

qj
∫

Rn

|ϕ1((A
∗)j(B∗)ℓ(η −m))||ĝ1((A

∗)j(B∗)ℓη)|[σ(η)]2dη.

Thus J
(2)
1 has the same form as J

(1)
1 with the roles of ϕ1 and ĝ1 interchanged. As

ϕ1(ξ) = qM/21M (ξ − ξ0), therefore, we deduce that

J
(1)
1 =

L
∑

ℓ=1

∑

j6J0

∑

m∈qZn+∆

qjqM/2

∫

(A∗)j(B∗)ℓξ0+T−j+M

|ĝ1((A
∗)j(B∗)ℓ(ξ +m))|[σ(ξ)]2dξ.

Now, if ĝ1((A
∗)j(B∗)ℓ(ξ +m)) 6= 0, then we must have

(A∗)j(B∗)ℓξ + (A∗)j(B∗)ℓm ∈ ξ0 + T
M +m0

and |(A∗)j(B∗)ℓm| 6 q−M , hence |m| 6 q−M−j . Thus,

J
(1)
1 =

L
∑

ℓ=1

∑

j6J0

qjqM/2

∫

(A∗)j(B∗)ℓξ0+T−j+M

[σ(ξ)]2
∑

m∈qN0+∆

|ĝ1((A
∗)j(B∗)ℓ(ξ +m))|dξ

6

L
∑

ℓ=1

∑

j6J0

qjqM/2

∫

(A∗)j(B∗)ℓξ0+T−j+M

[σ(ξ)]2q−M−jqM/2dξ

=

L
∑

ℓ=1

∑

j6J0

∫

(A∗)j(B∗)ℓξ0+T−j+M

[σ(ξ)]2dξ.

For given ξ0 6= 0, we choose qJ0 < |ξ0| = q−M . Then, we have

(2.12) (A∗)j(B∗)ℓξ0 + T
−j+M ⊂ T

−J0+M ∀ j 6 J0,

as |p−jξ0| = qjq−M 6 qJ0q−M and T
−j+M ⊂ T

−J0+M .
On the other hand, for any j1 < j2 6 J0, we claim that

(2.13)
{

(A∗)j1 (B∗)ℓξ0 + T
−j1+M

}

∩
{

(A∗)j2(B∗)ℓξ0 + T
−j2+M

}

= ∅.

In fact, for any x ∈ (A∗)j1(B∗)ℓξ0 + T
−j1+M and y ∈ (A∗)j2 (B∗)ℓξ0 + T

−j2+M ,
write x = (A∗)j1(B∗)ℓξ0 + x1 and y = (A∗)j2 (B∗)ℓξ0 + y1; then

|x− y| = max{(A∗)j1 (B∗)ℓξ0 − (A∗)j2(B∗)ℓξ0|, |x1 − y1|} = qj2−M 6= 0.



CHARACTERIZATION OF TWF WITH COMPOSITE DILATIONS IN L2(Rn) 129

This shows that (2.13) holds. Applying (2.12) and (2.13) to the last inequality for

J
(1)
1 , we obtain

J
(1)
1 6

∫

T−J0+M

[σ(ξ)]2dξ → 0 as M → ∞. �
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