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CERTAIN ALMOST KENMOTSU METRICS

SATISFYING THE VACUUM STATIC EQUATION

Arindam Bhattacharyya, Dhriti Sundar Patra,

and Manjusha Tarafdar

Abstract. We characterize the solutions of the vacuum static equation on a
class of almost Kenmotsu manifolds. First, we prove that if the vacuum static
equation has a non-trivial solution on (κ, µ)′-almost Kenmotsu manifold, then
it is locally isometric to some warped product spaces. Next, we prove that the
vacuum static equation have only trivial solution on generalized(κ, µ)-almost
Kenmotsu manifold. At last, we consider the vacuum static equation on an
almost Kenmotsu manifold with conformal Reeb foliation. We also provide
some important examples of almost Kenmotsu manifolds that satisfies the
vacuum static equation.

1. Introduction

Let (M, g) be a Riemannian manifold of dimension n and f be a smooth func-
tion on M . For the cosmological constant Λ to maintain the mass-energy density
to be non-negative, a static space-time metric ḡ = −f2dt2 + g on a Lorentzian
manifold M̄ = R×M satisfies the Einstein equation

Ricḡ − 1
2rḡ ḡ + Λḡ = −8πGT,

where Ricḡ, rḡ are the Ricci tensor and scalar curvature of ḡ respectively and
G denotes the the gravitational constant. Here T = µf2dt2 + pg is the energy-
momentum-stress tensor of the perfect fluid, where µ and p are non-negative,
time independent mass-energy density and pressure of the perfect fluid respectively.
Static space-times are important global solutions to Einstein equations in general
relativity. Static space-times carrying a perfect fluid matter field (see [11,15]). On
the other hand, a complete Riemannian manifold (M, g) is said to be a static space
with perfect fluid if there exists a nontrivial smooth function f on M such that

Dgdf − f
(

Ricg −
rg

n− 1
g
)

=
1

n

( rg

n− 1
+ ∆gf

)

g,(1.1)
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where Dgdf is the Hessian of f and ∆g is the negative Laplacian of f . Vacuum
static spaces are static space with particular property

rg
n−1 +∆gf = 0. In this case,

(M, g) is said to be a vacuum static space and the Eq. (1.1) transform into

(1.2) Dgdf − f
(

Ricg −
rg

n− 1
g
)

= 0,

and this is call as the vacuum static equation. These spaces are studied by Qing
and Yuan (see [24, 25]). Recently, Hawan and Yun [12] consider vacuum static
spaces with the complete divergence of the Bach tensor and Weyl tensor and also
find a sufficient condition for the metric to be Bach-flat for vacuum static spaces.
Note that, it was also considered by Fischer and Marsden in their study of the
surjectivity of the scalar curvature function from the space of Riemannian metrics
(see [4,8,9,14,22,26]). In [8], Fischer and Marsden conjectured that a compact
Riemannian manifold (Mn, g) that admits a nontrivial solution of the vacuum static
equation is necessarily an Einstein manifold, and therefore, Obata’s theorem [17]
shows that M must be a standard sphere or a Ricci flat space.

It is important to note that if a complete Riemannian manifold (M, g) has a
non-trivial solution f of the vacuum static equation, then the scalar curvature r

of g is constant (see [3] and [8]). Further, Kobayashi [14] and Lafontaine [16]
proved that if M is conformally flat and has a non trivial solution of the equation
(1.2), then M is isometric to one of (a) Euclidean sphere Sn; (b) Finite quotient of
(S1, dt2) × (Sn−1, g0), where g0 is the canonical metric; or (c) Finite quotient of a
product torus (S1×Sn−1, dt2+h2(t)g0). In [26], Shen proved that if a 3-dimensional
closed manifold (M, g) with positive scalar curvature has a non trivial solution to
the vacuum static equation, then M contains a totally geodesic 2-sphere. Further,
in [5], Corvino proved f is a nontrivial solution of (1.2) if and only if the warped
product metric g∗ = g− f2dt2 is Einstein. Recently, Patra et al. consider the same
special contact metrics that satisfy the Miao-Tam critical condition and the critical
point equation, see [21, 23]. Further, we mention that Patra–Ghosh prove the
Fischer–Marsden conjecture within the framework of K-contact and (κ, µ)-contact
manifolds (see [22]). Motivated by the above works, we characterize the solutions
of the vacuum static equation on almost contact metric structures, specially, on
almost Kenmotsu manifolds.

The organization of the paper is as follows. In Section 2, we provide some
preliminaries and examples of almost Kenmotsu manifolds that satisfy the vacuum
static equation. In Section 3, we prove that if the vacuum static equation has a
non-trivial solution on (κ, µ)′-almost Kenmotsu manifold, then it is locally isometric
to some warped product spaces. Next, we prove that the vacuum static equation
has only trivial solution on generalized(κ, µ)-almost Kenmotsu manifold. At last,
we consider the vacuum static equation on an almost Kenmotsu manifold with
conformal Reeb foliation.

2. Notes on almost contact metric manifolds

In this section, we recall some basic definitions and formulas on almost Ken-
motsu manifold and some nullity distributions. A (2n + 1)-dimensional smooth
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manifold M is said to be an almost contact metric manifold if it admits a (1, 1)
tensor field ϕ, a unit vector field ξ (called the Reeb vector field) and a 1-form η

such that

(2.1) ϕ2X = −X + η(X)ξ, η(X) = g(X, ξ),

for any vector fields X on M . A Riemannian metric g is said to be an associated
(or compatible) metric if it satisfies g(ϕX,ϕY ) = g(X,Y )−η(X)η(Y ) for all vector
fields X , Y on M . Using this in (2.1) we have ϕ(ξ) = 0, η ◦ ϕ = 0 (see [2]). An
almost contact manifold M(ϕ, ξ, η) together with a compatible metric g is known
as almost contact metric manifold. On almost contact metric manifolds one can
always define a fundamental 2-form Φ by Φ(X,Y ) = g(X,ϕY ) for all vector fields
X , Y on M . An almost contact metric structure of M is said to be contact metric
if Φ = dη, and is said to be almost Kenmotsu manifold if dη = 0 and dΦ = 2η ∧Φ.
Further, an almost contact metric structure is said to be normal if

[ϕ, ϕ](X,Y ) + 2dη(X,Y )ξ = 0,

for all vector fields X , Y on M . A normal almost Kenmotsu manifold is said to
be a Kenmotsu manifold. In [13], Kenmotsu proved that a warped product of a
line and a Kählerian manifold admits a Kenmotsu structure. In fact, a Kenmotsu
manifold M2n+1 is locally a warped product I ×f M

2n, where I is an open interval
with coordinate t, f = cet is the warping function for some positive constant c and
M2n is a Kählerian manifold.

Let M2n+1(ϕ, ξ, η, g) be an almost Kenmotsu manifold. We now define two
operators h and l by h = 1

2£ξϕ and l = R(., ξ)ξ on M , where R denotes the
curvature tensor and £ is the Lie differentiation. On an almost Kenmotsu manifold
the following formulas are valid [6,7]:

∇Xξ = −ϕ2X − ϕhX,(2.2)

hξ = 0, lξ = 0, tr h = 0, tr(hϕ) = 0, hϕ = −ϕh,(2.3)

tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n− tr h2,(2.4)

for any vector fields X on M , where h′ = hoϕ, tr the trace operator, ∇ the operator
of covariant differentiation of g and Q the Ricci operator associated with the (0, 2)
Ricci tensor given by Ricg(Y, Z) = g(QY,Z) for all vector fields Y , Z on M .

An almost Kenmotsu manifold M2n+1(ϕ, ξ, η, g) is said to be a generalized
(κ, µ)-almost Kenmotsu manifold if ξ belongs to the generalized (κ, µ)-nullity dis-
tribution, i.e.,

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY },
for all vector fields X , Y on M , where κ, µ are smooth functions on M . An al-
most Kenmotsu manifold M2n+1(ϕ, ξ, η, g) is said to be a generalized (κ, µ)′-almost
Kenmotsu manifold if ξ belongs to the generalized (κ, µ)′-nullity distribution, i.e.,

(2.5) R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )h′X − η(X)h′Y },
for all vector fieldsX , Y onM , where κ, µ are smooth functions onM and h′ = hoϕ.
Moreover, if both κ and µ are constants in (2.5), then M is called a (κ, µ)′-almost
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Kenmotsu manifold. Classifications of almost Kenmotsu manifolds with ξ belong to
(κ, µ)-nullity distribution and (κ, µ)′-nullity distribution have been done by several
authors. For more details, we refer the reader to [6, 7, 27, 28]. For generalized
(κ, µ) or (κ, µ)′-almost Kenmotsu manifold with h 6= 0 the following equations
were proved

h′2 = (κ+ 1)ϕ2 or, equivalently h2 = (κ+ 1)ϕ2,(2.6)

Qξ = 2nκξ.(2.7)

Remark 2.1. If D = ker(η) is the distribution and X ∈ D is an eigenvector of
h′ with eigenvalue σ, then it follows from (2.6) that σ2 = −(κ+ 1). Hence κ 6 −1
and σ = ±

√
−κ− 1. The equality holds if and only if h = 0 (equivalently, h′ = 0).

Thus, h′ 6= 0 if and only if κ < −1. We know that on Kenmotsu manifold, h = 0
(equivalently, h′ = 0), and therefore, κ = −1.

Let (V, J, g̃) be an almost Hermitian manifold and consider the warped product
M = R ×f V with the metric g = g0 + f2g̃, where f is a positive function on R

and g0 is the standard metric on R. define η = dt, ξ = ∂
∂t

and the tensor field ϕ

is defined on R ×f V by ϕX = JX for any vector field X on V and ϕX = 0 if
X is tangent on R. Then it is easy to testify that M admits an almost contact
metric structure. An interesting characterization of an almost Kenmotsu manifold
through the warped product of a real line and an almost Hermitian manifold is
given by the following (see [1]).

Lemma 2.1. Let V be an almost Hermitian manifold. Then the warped prod-

uct R ×f V is a (0, β)-trans Sasakian manifold, with β = f ′

f
if and only if V is

Kählerian.

Now, we provide some examples of almost Kenmotsu manifolds satisfying the
vacuum static equation.

Example 2.1. Let (V, J, g̃) be a strictly almost Kähler Einstein manifold. We
set η = dt, ξ = ∂

∂t
and the tensor field ϕ is defined on R×fN by ϕX = JX for vector

field X on N and ϕX = 0 if X is tangent to R. Consider a metric g = g0 + f2g̃,
where f2 = ce2t, g0 is the Euclidean metric on R and c is a positive constant. Then
it is easy to verify (see [6]) that the warped product R ×f V , f2 = ce2t, with the
structure (ϕ, ξ, η, g) is an almost Kenmotsu manifold. Let f = cet on M . Then we
can easily show that f is a solution of the vacuum static equation.

Remark 2.2. Oguro and Sekigawa (see [18]) constructed a strictly almost
Kähler structure on the Riemannian product H3×R. By virtue of this it is possible
to obtain a 5-dimensional strictly almost Kenmotsu manifold on the warped product
R×f2 (H3 × R), where f2 = ce2t.

Example 2.2. Let (V 2n, J, g̃) be a Kähler Einstein manifold with negative

scalar curvature, i.e., S̃ = −2ng̃. Considering the warped product (M, g) = (R×f2

V, dt2 + f2 g̃) with coordinate t on R, where f = cosh t. Now, we prove that
the warped product R ×f2 V , with f = cosh t is an almost Kenmotsu manifold.
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Defining ξ, η and ϕ as in the Example 2.1, we see that (M, g) admits an almost
contact metric structure. Moreover, from Lemma 2.1, it is obvious that the warped
product under consideration is a β-Kenmotsu manifold with β = tanh t, which is
also an almost Kenmotsu manifold. Let f = b sinh t, b is a positive constant. Then
it follows that f is a solution of the vacuum static equation.

3. Main Results

Let (g, f) be a non-trivial solution of the vacuum static equation on an almost
Kenmotsu manifold M2n+1(ϕ, ξ, η, g). Then the vacuum static equation (1.2) can
be written as

(3.1) ∇XDf = f
{

QX − r

2n
X
}

,

for any vector fields X on M , where D is the gradient operator of g. The covariant
differentiation of (3.1) along an arbitrary vector field Y on M yields

∇Y (∇XDf) = (Y f)
{

QX − r

2n
X
}

+ f
{

(∇Y Q)X +Q(∇Y X)− r

2n
∇Y X

}

,

for any vector fields X on M . Repeated Application of the above equations in the
well known expression of the curvature tensor R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] we
obtain

R(X,Y )Df = (Xf)QY − (Y f)QX + f{(∇XQ)Y − (∇Y Q)X}(3.2)

− r

2n
{(Xf)Y − (Y f)X},

for all vector fields X , Y on M . Now we recall the following

Lemma 3.1. [28, Lemma 3.3]. Let M2n+1(ϕ, ξ, η, g) be a generalized (κ, µ)′-
almost Kenmotsu manifold with h′ 6= 0. For n > 1, the Ricci operator Q of M can

be expressed as

Q = −2nid+ 2n(κ+ 1)η ⊗ ξ + µh′ − 2(n− 1)h′,

Further, if κ and µ are constants and n > 1, then µ = −2 and hence

(3.3) Q = −2nid+ 2n(κ+ 1)η ⊗ ξ − 2nh′,

In both cases, the scalar curvature of M is 2n(κ− 2n).

Lemma 3.2. [7, Theorem 4.2]. Let M2n+1(ϕ, ξ, η, g) be a (κ,−2)′-almost Ken-

motsu manifold with h′ 6= 0. Then M2n+1 is locally isometric to the warped products

H
n+1(κ− 2γ)×f R

n, Bn+1(κ+ 2γ)×f ′ R
n, where f = ce(1−γ)t and f ′ = c′e(1+γ)t,

with c, c′ positive constants.

Lemma 3.3. [3] and [8, p. 481]. If a Riemannian metric g satisfies the vacuum

static equation, then its scalar curvature is constant.

According to Proposition 4.1 of Dileo and Pastore [7], on a non-Kenmotsu
(κ, µ)′-almost Kenmotsu manifold, µ = −2. Now we consider the vacuum static
equation non-Kenmotsu (κ, µ)′-almost Kenmotsu manifold and prove our main re-
sult.
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Theorem 3.1. If (g, f) be a non-trivial solution of the vacuum static equation

on non-Kenmotsu (κ, µ)′-almost Kenmotsu manifold, then M3 is locally isometric

to the Riemannian product H2(−4)×R, and for n > 1, M2n+1 is locally isometric

to the warped products H
n+1(α) ×f R

n, Bn+1(α′) ×f ′ R
n, where H

n+1(α) is the

hyperbolic space of constant curvature α = −1 − 2
n
− 1

n2 , B
n+1(α′) is a space of

constant curvature α′ = −1 + 2
n
− 1

n2 , f = ce(1−
1

n
)t and f ′ = c′e(1+

1

n
)t, with c, c′

positive constants.

Proof. Firstly, replacing X by ξ in (2.5) and then taking the scalar product
of the resulting Eq. with Df and using g(X,Df) = Xf and µ = −2 gives

(3.4) g(R(ξ, Y )Df, ξ) = κg(Df − (ξf)ξ, Y )− 2g(Df, h′Y ),

for any vector fields Y on M . As the scalar curvature (from Lemma 3.1) is 2n(κ−
2n), (3.2) reduces for the manifold M2n+1 to

R(X,Y )Df = (Xf)QY − (Y f)QX + f{(∇XQ)Y − (∇Y Q)X}(3.5)

+ (2n− κ){(Xf)Y − (Y f)X},

for all vector fields X , Y on M . Taking scalar product of (3.5) with ξ and using
(2.7) provides

(3.6) g(R(X,Y )Df, ξ) = {(2n− 1)κ+ 2n}{(Xf) η(Y )− (Y f) η(X)}
+ f{g(Y, (∇XQ)ξ)− g(X, (∇Y Q)ξ)},

for all vector fields X , Y on M . Taking covariant derivative of this along an
arbitrary vector field X on M we have (∇XQ)ξ+Q(∇Xξ) = 2nκ∇Xξ. Making use
of (2.2) we have from the last equation that

(3.7) (∇XQ)ξ = 2nκ(X − ϕhX)−Q(X − ϕhX),

for any vector fields X on M . Moreover, making use of (3.7) and ϕh = −hϕ, (3.6)
transforms into

(3.8) g(R(X,Y )Df, ξ) = {(2n− 1)κ+ 2n}{(Xf)η(Y )− (Y f)η(X)}
+ f{g(QϕhX, Y )− g(X,QϕhY )},

for all vector fields X , Y on M . Now, substituting ξ by X in the Eq. (3.8) and
applying hξ = 0, ϕξ = 0, Qξ = 2nκξ, we obtain

(3.9) g(R(ξ, Y )Df, ξ) = {(2n− 1)κ+ 2n}{(ξf)η(Y )− (Y f)}.

Combining (3.4) and (3.9), we have

(3.10) n(κ+ 1)(Df − (ξf)ξ)− h′Df = 0.

Now, operating the last equation by h′ and using h′ξ = 0 yields n(κ + 1)hDf +
h′2Df = 0. Now, By virtue of (3.10) and (2.6) the preceding equation provides

n2(κ+ 1)2(Df − (ξf)ξ) + (κ+ 1)ϕ2Df = 0.
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Moreover, making use of (2.1) and g(ξ,Df) = ξf , the last equation reduces to
(κ + 1){n2(κ + 1) + 1}(Df − (ξf)ξ) = 0. Taking into account the assumption
κ < −1, the foregoing equation gives

(3.11) {n2(κ+ 1) + 1}(Df − (ξf)ξ) = 0.

Since κ, µ are constants, we have either n2(κ+ 1) + 1 = 0, or n2(κ+ 1) + 1 6= 0.

Case I: In this case, we have κ = −1− 1
n2 . For n = 1, κ = µ = −2 and therefore

from Lemma 3.2, we conclude that M3 is locally isometric to the Riemannian
product H

2(−4) × R and for n > 1, M2n+1 is locally isometric to the warped
products Hn+1(α)×f R

n, Bn+1(α′)×f ′ R
n, where Hn+1(α) is the hyperbolic space

of constant curvature α = −1− 2
n
− 1

n2 , B
n+1(α′) is a space of constant curvature

α′ = −1 + 2
n
− 1

n2 , f = ce(1−
1

n
)t and f ′ = c′e(1+

1

n
)t, with c, c′ positive constants.

Case II: In this case, it follows from (3.11) that Df = (ξf)ξ. Taking covariant
derivative of Df = (ξf)ξ along an arbitrary vector field X on M and using (2.1),
(2.2), we have

∇XDf = X(ξf)ξ + (ξf){X − η(X)ξ − ϕhX}.
By virtue of (3.1), the foregoing equation reduces to

f QX = {(ξf) + (κ− 2n)f}X +X(ξf)ξ − (ξf){η(X)ξ − ϕhX},
for any vector fields X on M . Comparing this with (3.3) we deduce that

{κf + (ξf)}X − {(ξf) + 2n(κ+ 1)f}η(X)ξ(3.12)

+X(ξf)ξ + {2nf + (ξf)}h′X = 0,

for any vector fields X on M . Now, tracing (3.12) over X and noting that trh′ = 0,
we have

(3.13) (2n+ 1){κf + (ξf)} − {(ξf) + 2n(κ+ 1)f}+ ξ(ξf) = 0.

Next, substituting X by ξ in (3.1) and then taking its scalar product with ξ yields
ξ(ξf) = 2nκf + (2n− κ)f . By virtue of this, equation (3.13) gives

(3.14) κf + (ξf) = 0.

Therefore, operating (3.12) by ϕ and using (3.14) we get (2nf+(ξf))ϕh′X = 0 for
any vector fields X on M . Moreover, making use of (2.1), hϕ = −ϕh and hξ = 0,
the last Eq. transform into (2nf + (ξf))h′X = 0 for any vector fields X on M .
By virtue of (3.14), the equation (3.18) reduces to (2n− κ)fhX = 0 for any vector
fields X on M . Taking into account the assumption κ < −1, the foregoing equation
gives f = 0, a contraction. �

According to [20, Proposition 3.2], on a generalized (κ, µ)′-almost Kenmotsu
manifold M2n+1(ϕ, ξ, η, g) with h 6= 0 we have

(3.15) ξ(κ) = −2(κ+ 1)(µ+ 2).

It follows from Lemma 3.1 that the scalar curvature of M is 2n(κ − 2n). But
we know that the Riemannian metric satisfying the vacuum static equation has
constant scalar curvature (see Lemma 3.3), and therefore, κ is also constant. Hence
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from (3.15) we get (κ+1)(µ+2) = 0. Since h 6= 0, κ < −1, we must have µ = −2.
Thus, the generalized (κ, µ)′-almost Kenmotsu manifold reduces to (κ, µ)′-almost
Kenmotsu manifold. This shows that the last Theorem holds good for a generalized
(κ, µ)′-almost Kenmotsu manifold.

Corollary 3.1. Theorem 3.1 also holds for generalized (κ, µ)′-almost Ken-

motsu manifold with h′ 6= 0.

Lemma 3.4. [28, Lemma 3.4]. Let M2n+1(ϕ, ξ, η, g) be a generalized (κ, µ)-
almost Kenmotsu manifold with h′ 6= 0. For n > 1, the Ricci operator Q of M can

be expressed as

(3.16) Q = −2nid+ 2n(κ+ 1)η ⊗ ξ − 2(n− 1)h′ + µh.

Also, the scalar curvature of M is 2n(κ− 2n).

Theorem 3.2. The vacuum static equation have only trivial solution on gen-

eralized (κ, µ)-almost Kenmotsu manifold with h 6= 0.

Proof. Since the scalar curvature is constant (from Lemma 3.3) and from
Lemma 3.4, the scalar curvature of M is 2n(κ − 2n). Thus, κ is constant, and
equations (3.5) to (3.8) hold good here also. Making use of (3.16) and hϕ = −ϕh

we have fµh2ϕ2X = 0 for any vector field X on M . Using (2.1), the last equation
gives (κ + 1)fµh2X = 0 for any vector field X on M . Since h 6= 0, κ < −1, it
follows that fµ = 0.

Suppose f 6= 0 in some open set O. Thus, we have µ = 0 on O. All our next
discussion will be on O. Further, setting X = ξ in (3.16) and taking scalar product
of the resulting equation with Df and using h′ξ = 0 gives g(R(ξ, Y )Df, ξ) =
κg(Df − (ξf)ξ, Y ). By virtue of this, (3.9) reduces to (κ+1)(Df − (ξf)ξ) = 0. As
h 6= 0, κ < −1, it follows that Df − (ξf)ξ = 0. Taking covariant differentiation of
the last equation along an arbitrary vector field X on M together with (2.1), (2.2)
and (3.1) one can find

fQX = (κ− 2n)fX +X(ξf)ξ + (ξf)
{

X − η(X)ξ − ϕhX
}

.

By virtue of (2.7) and some straightforward calculation, the last equation transform
into

{(ξf) + 2n(κ+ 1)f}η(X)ξ − {κf + (ξf)}X −X(ξf)ξ(3.17)

− {2(n− 1)f + (ξf)}hϕX = 0.

Now, tracing this over X and using tr(hϕ) = 0, we have

(3.18) (ξf) + 2n(κ+ 1)f − (2n+ 1){κf + (ξf)} − ξ(ξf) = 0.

Next, the Eq. (3.1) yields ξ(ξf) = (2n− 1)κf + 2nf . In view of this, the equation
(3.18) reduces to

(3.19) κf + (ξf) = 0.

Moreover, operating ϕ in (3.17) and making use of (3.19) we obtain {2(n− 1)f +
(ξf)}ϕhϕX = 0. Also, using (2.1), hξ = 0 and hϕ = −ϕh, the last equation
provides {2(n − 1)f + (ξf)}hX = 0, for all vector field X on M . Making use of
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(3.19), the preceding equation becomes {κ− 2(n− 1)}fhX = 0. Since h 6= 0, the
foregoing equation gives {κ − 2(n − 1)}f = 0. As κ < −1, this shows that f is
trivial. �

In [19], Pastore and Saltarelli proved that the Reeb foliation on an almost
Kenmotsu manifold is conformal if and only if h = 0.

Theorem 3.3. Let M2n+1(ϕ, ξ, η, g) be an almost Kenmotsu manifold with

conformal Reeb foliation. If (g, f) is a non-trivial solution of the vacuum static

equation, then M is a manifold is of constant scalar curvature r = −2n(2n+ 1).

Proof. Since the Reeb foliation is conformal, using h = 0 in equation (3.10)
yields

(3.20) R(X,Y )ξ = η(X)(Y )− η(Y )(X),

for all vector fields X , Y on M . By virtue of this, from (2.3) we have Qξ = −2nξ,
Substituting ξ by X in (3.2) and taking the scalar product of this equation with ξ

and using the above equation we get

g(R(ξ, Y )Df, ξ) =
(

2n+
r

2n

)

{(Y f)− (ξf)η(Y )},

for all vector fields Y on M . Also, equation (3.20) gives

g(R(ξ, Y )Df, ξ) = (ξf) η(Y )− (Y f).

for all vector fields Y on M . Combining above two equations yields

(3.21)
(

2n+ 1 +
r

2n

)

{Df − (ξf)ξ} = 0.

Suppose that r 6= −2n(2n+ 1) and then from (3.21) we have Df = (ξf)ξ. Taking
covariant derivative of this along an arbitrary vector field X on M and using (2.1),
(2.2), we acquire ∇XDf = X(ξf)ξ + (ξf)(X − η(X)ξ − ϕhX). Since the Reeb
foliation is conformal, using h = 0 and (3.1) in the foregoing equation we get

fQX = {X(ξf)− (ξf)η(X)}ξ +
{

(ξf) +
rf

2n

}

X,

for all vector fields X on M . Making use of g(∇XDf, Y ) = g(∇Y Df,X) for all
vector fields X , Y on M and Df = (ξf)ξ in the last equation, we obtain

(3.22) fQX =
{

(ξf) +
rf

2n

}

X + {ξ(ξf)− (ξf)}η(X)ξ,

for any vector fields X on M . From (3.1) and (2.4), we have

(3.23) ξ(ξf) = − rf

2n
− 2nf.

Next, taking trace of (3.22), we obtain rf
2n + 2n(ξf) + ξ(ξf) = 0. Making use of

(3.23) in the last equation yields ξf = f . By virtue of this, equation (3.22) gives
{r+2n(2n+1)}f = 0. Since f is a non-trivial solution of the vacuum static equation,
it follows from the above equation that r = −2n(2n+ 1), a contradiction. �
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Remark 3.1. On any Kenmotsu manifold we obtain a result (see [10])

(∇ξQ)X = −2QX − 4nX,

for any vector field X on M . The g-trace of this gives ξr = −2(r + 2n(2n + 1)).
Thus, Lemma 3.3 shows that if a Kenmotsu metric g satisfies the vacuum static
equation, then the scalar curvature r of g is −2n(2n+ 1).
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