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INVERSE THEOREM FOR CERTAIN

DIRECTIONAL GOWERS UNIFORMITY NORMS

Luka Milićević

Abstract. Let G be a finite-dimensional vector space over a prime field Fp

with some subspaces H1, . . . ,Hk. Let f : G → C be a function. Generalizing
the notion of Gowers uniformity norms, Austin introduced directional Gowers
uniformity norms of f over (H1, . . . ,Hk) as

∥

∥f
∥

∥

2k

U(H1,...,Hk)
= E

x∈G,h1∈H1,...,hk∈Hk

·∆h1
. . . ·∆hk

f(x)

where ·∆uf(x) : = f(x+ u)f(x) is the discrete multiplicative derivative.
Suppose that G is a direct sum of subspaces G = U1 ⊕ U2 ⊕ · · · ⊕ Uk. In

this paper we prove the inverse theorem for the norm

‖ · ‖U(U1,...,Uk,G,...,G),

with ℓ copies of G in the subscript, which is the simplest interesting un-
known case of the inverse problem for the directional Gowers uniformity norms.
Namely, writing ‖ · ‖U for the norm above, we show that if f : G → C is a func-
tion bounded by 1 in magnitude and obeying ‖f‖U > c, provided ℓ < p, one
can find a polynomial α : G → Fp of degree at most k + ℓ − 1 and functions
gi : ⊕j∈[k]r{i} Uj → {z ∈ C : |z| 6 1} for i ∈ [k] such that

∣

∣

∣

∣E
x∈G

f(x)ωα(x)
∏

i∈[k]

gi(x1, . . . ,xi−1, xi+1, . . . , xk)
∣

∣

∣

∣

>
(

exp(Op,k,ℓ(1))(Op,k,ℓ(c
−1))

)−1
.

The proof relies on an approximation theorem for the cuboid-counting function
that is proved using the inverse theorem for Freiman multi-homomorphisms.

1. Introduction

In his groundbreaking work [12] concerning Szemerédi’s theorem on arithmetic
progressions [35], Gowers introduced the following norms.

Definition 1.1 (Gowers uniformity norms). Let G be a finite abelian group
and let f : G→ C. The U

k norm of f is given by the formula
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∥∥f
∥∥2k
Uk = E

x,a1,...,ak∈G

∏

ε∈{0,1}k

Conj|ε| f
(
x−

k∑

i=1

εiai

)
,

where Conjl stands for the conjugation operator being applied l times and |ε| is
shorthand for

∑k
i=1 εi.

These norms measure quasirandomness of a function f in the sense that when-
ever f has small Uk norm, it behaves like a randomly chosen function when it
comes to counting objects of ‘complexity’ k − 1. We are deliberately vague about
what complexity means, but in the context of arithmetic progressions, where the
complexity of an arithmetic progression of length k is k − 2, this statement can be
formalized as follows.

Proposition 1.1 (Gowers [12]). Let N be a sufficiently large prime, let A ⊂
ZN be a set of size δN and suppose that ‖1A − δ‖Uk 6 ε. Then the number nAP

of arithmetic progressions of length k + 1 (and hence complexity k − 1) inside A
satisfies |N−2nAP − δk+1| = Ok(ε).

Thus, the problem of proving the existence of arithmetic progressions of length
k in a dense set A is reduced to describing functions with large ‖·‖Uk−1 . To complete
the proof of Szemerédi’s theorem on arithmetic progressions, Gowers obtained a
partial description of such functions.

Theorem 1.1 (Gowers [12], Local inverse theorem for uniformity norms). Let
f : ZN → D = {z ∈ C : |z| 6 1} be a function such that ‖f‖Uk > c. Then there exist
a polynomial ψ : ZN → ZN of degree at most k − 1 and an arithmetic progression
P of length NΩ(1) such that

∑
x∈P f(x) exp

(
2πi
N ψ(x)

)
= Ωc(|P |).

That result led to many other efforts to reach a better understanding of func-
tions with large Gowers uniformity norms. The overall goal was to replace the local
correlation (over the arithmetic progression P in the theorem above) by a global
correlation (that is, over the whole group) with an algebraically structured func-
tion. There are many results in this direction that are worth noting, but let us first
mention the remarkable results of Green, Tao and Ziegler [20] who proved a global
correlation result in the setting of ZN , while in the case of Fnp as the ambient group,
Bergelson, Tao and Ziegler obtained analogous result [4] (with a further refinement
by Tao and Ziegler [37]). In both settings, the structured functions that are suffi-
cient are explicitly described. In the case of ZN these are the so-called nilsequences
that are algebraically structured functions defined on nilmanifolds (we will not go
in further details here, as we are primarily interested in the finite vector spaces
case.) On the other hand, for Fnp the structured functions are a generalization of
the usual polynomials that Tao and Ziegler named non-classical polynomials. Let
us give a full definition here.

Let G and H be finite-dimensional vector spaces over a prime field Fp. Given
a function f : G → H , we write ∆af for the function ∆af(x) = f(x + a) − f(x).
We say that f is a non-classical polynomial of degree 6 d if ∆a1 . . .∆ad+1

f(x) = 0
holds for all a1, . . . , ad+1, x ∈ G.
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In particular, in the so-called ‘high-characteristic case’, which is the case when
k 6 p, the only non-classical polynomials are the usual polynomials and there-
fore polynomial phases are again sufficient in the inverse theorem. Let us men-
tion further works by Szegedy [34], by Camarena and Szegedy [6], by Candela,
González-Sánchez and Szegedy [7] and by Gutman, Manners and Varjú [21–23].

More recently, quantitative bounds were obtained. For the case of cyclic groups
ZN this was achieved by Manners in [27], while in the case of finite vector spaces Fnp
for fixed p and large characteristic, this was done by Gowers and the author in [14].

Having a reasonably good understanding of the theory of uniformity norms,
and recalling that these were used to count arithmetic progressions, it is natural to
go one step further and pose the general question of how to adapt this approach to
proving the multidimensional version of Szemerédi’s theorem, originally proved by
Furstenberg and Katznelson in [11]. Such considerations motivated Austin [1,2] to
generalize the notion of Gowers uniformity norms to that of the directional Gowers
uniformity norms. In this paper, we shall deal only with finite vector spaces, so
we give the definition only in that setting, although it can be stated for arbitrary
finite abelian group.

Definition 1.2. Let G,H1, . . . , Hr be a finite-dimensional vector spaces over
a prime field Fp. Let f : G → C be a function. We write ‖f‖U(H1,...,Hr) for the
non-negative real defined by

∥∥f
∥∥2r
U(H1,...,Hr)

= E
h1∈H1,...,hr∈Hr

E
x∈G

·∆h1 . . . ·∆hrf(x).

This indeed defines a norm when r > 2. This follows from standard and well-
known ideas, so we only include a short sketch proof of this fact and leave it to the
reader to fill in the details.

Sketch proof. Set H = H1 + · · · +Hr and let W 6 G be a subspace such
that G = H ⊕W . For each w ∈ W let fw : H → C be the function defined by

fw(h) = f(w + h). Notice that the power of the norm
∥∥f

∥∥2r
U(H1,...,Hr)

is just the

average Ew∈W ‖fw‖2
r

U(H1,...,Hr)
, from which it follows by Hölder’s inequality that

we may without loss of generality assume that G = H1 + · · ·+Hr.
Define a generalized inner product of functions fI : G→ C, where I ⊆ [r], by

〈fI〉I⊆[r] = E
h1,h′

1∈H1,...,hr,h′
r∈Hr

∏

I⊆[r]

Conjr−|I| fI

(∑

i∈I

hi +
∑

i∈[r]rI

h′i

)
.

Define auxiliary functions f̃I : H1 × · · · × Hk → C by f̃I(h1, . . . , hr) = fI(h1 +
· · · + hr). Then the inner product above equals the Gowers–Cauchy–Schwarz in-

ner product of the functions f̃I for I ⊆ [r]. We may use the Gowers–Cauchy–
Schwarz inequality (see Lemma 2.1) to bound the inner product from above by∏
I⊆[r] ‖f̃I‖�(H1,...,Hr), which turns out to be equal to

∏
I⊆[r] ‖fI‖U(H1,...,Hr). Us-

ing this bound to the inner product of 2r copies of f + g for the given functions
f, g : G→ C, the claim follows. �
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For an example of a directional Gowers uniformity norm, we remark that
in order to count squares in a set A ⊆ G × G, that is quadruples of the form(
(x, y), (x + a, y), (x, y + a), (x + a, y + a)

)
one needs to understand the direc-

tional norm ‖f‖U(H1,H2,H3) for the subgroups H1 = G × {0}, H2 = {0} × G and
H3 = {(x,−x) : x ∈ G}.

From this point on, we shall refer to the Gowers uniformity norms ‖ · ‖Uk as
the classical uniformity norms, and to the directional Gowers uniformity norms
simply as the directional uniformity norms. There is another notable subfamily
of directional uniformity norms, namely the (arithmetic1) box norms defined for
functions f : H1 × · · · ×Hk → D by

∥∥f
∥∥2k
�(H1,...,Hk)

= E
h1,a1∈H1,...,hk,ak∈Hk

·∆(a1,0,...,0) . . . ·∆(0,0,...,ak)f(h1, . . . , hk).

The inverse theorems are currently available only for the classical norms and for
the box norms, the latter inverse theorem being trivial.

Before stating our results in this paper, let us formulate the inverse conjecture
for the directional uniformity norms in the case of finite vector spaces. It is par-
tially motivated by Austin’s work [1,2] in which he described the functions with
directional uniformity norms equal to 1 (i.e., the solutions to the extremal case of
the inverse problem).

Conjecture 1.1 (Inverse conjecture for the directional uniformity norms).
Let p be a fixed prime. Suppose that G is a finite-dimensional vector space over the
field Fp with subgroups H1, . . . , Hr. We write Σ = Σ(H1, . . . , Hr) for all subgroups
of G that can be obtained as sums of the form Hi1 · · · + His for some indices
i1, . . . , is ∈ [r] and s > 1. For each K ∈ Σ we write d(K) for the number of Hi

that are contained in K.
Suppose that f : G→ D is a function such that ‖f‖U(H1,...,Hr) > c. Then there

exist functions uK : G→ Fp for K ∈ Σ such that uK is a non-classical polynomial
of degree at most d(K)− 1 on every coset of the group K in G and

∣∣∣∣E
x∈G

f(x)
∏

K∈Σ

uK(x)
∣∣∣∣ > Ωp,c,r(1).

Again, in the case of high characteristic, namely r > p, we get (classical)
polynomials instead of the non-classical ones.

In the setting of cyclic groups we believe that non-classical polynomials of
degree d(K) − 1 can be replaced by appropriate nilsequences–for the subgroup
K, the structured functions should be the nilsequences appearing in the inverse
theorem for Ud(K) norm on each coset of K. However, it is possible that one would
like to use more general sets than just subgroups for the sets of directions in that
setting, for example, generalized arithmetic progressions of bounded dimension.

1We stress that this is the definition in the arithmetic setting, as the box norms can be
defined more generally for functions on products of sets, without additional algebraic structure.
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Results. Compared to the full strength of Conjecture 1.1, our ambition in this
paper is more modest and we prove an inverse theorem for the norms that could be
seen as a combination of the box norms and the classical uniformity norms, which
is the simplest interesting case of the general inverse problem. More precisely, our
main result is the following.

Theorem 1.2. Let G1, . . . , Gk be finite-dimensional vector spaces over Fp. Let
G⊕ = G1 ⊕G2 ⊕ · · · ⊕Gk. We view each Gi as a subspace of G⊕ and misuse the
notation by writing Gi instead of {0} ⊕ · · · ⊕ Gi ⊕ · · · ⊕ {0} (where Gi appears at
ith place). Let r be a positive integer and suppose that f : G⊕ → D is a function
such that

‖f‖
U

(
G1,G2,...,Gk,G

⊕,...,G⊕

︸ ︷︷ ︸
r

) > c.

Assume that p > r. Then we may find a polynomial P on G⊕ of degree at most
k + r − 1 and functions gi : G[k]r{i} → D for i ∈ [k] such that

E
x[k]∈G⊕

f(x[k])ω
P (x[k])

( ∏

i∈[k]

gi(x[k]r{i})
)

>

(
exp(Ok,r(1))(Ok,r,p(c

−1))
)−1

.

Note that the bound in the theorem is quantitative.
We prove this theorem by proving an approximation result for the function

that counts cuboids. To state this result, we need a definition. Let (fI)I⊆[k] be a

collection of 2k functions fI : G1 × · · · ×Gk → D indexed by subsets I ⊆ [k]. We
define the cubical convolution of functions (fI)I⊆[k] to be the function�f· : G[k] → D

given by

�f·(a1, . . . , ak) = E
x1∈G1,...,xk∈Gk

∏

I⊆[k]

Conjk−|I| fI

(
(xi + ai) : i ∈ I, xi : i ∈ [k]r I

)
.

Observe that in the case when f is the indicator function of a set A ⊂ G1×· · ·×Gk,
the value |G1| · · · |Gk|�f·(a1, . . . , ak) is precisely the number of cuboids parallel
to principal directions with side-lengths a1, . . . , ak with all 2k points lying in the
set A, which is why we termed the function �f· the cubical convolution. The
approximation result we mentioned can be stated as follows.

Theorem 1.3. Let fI : G1 × · · · × Gk → D be a function for each subset I ⊆
[k]. Let ε > 0. Then, there are a positive integer m 6 exp(Ok(1))

(
Ok,p(ε

−1)
)
, a

multiaffine map α : G1 × · · · ×Gk → Fmp and a function c : Fmp → D such that
∥∥�f· − c ◦ α

∥∥
L2 6 ε.

We may think of this theorem as the direct generalization of the classical fact
that the convolution of two functions of a single variable can be approximated in L2

norm by a linear combination of linear phases. The proof of Theorem 1.3 depends
crucially on the inverse theorem for Freiman multi-homomorphism, which was the
main result of [14].

Once Theorem 1.3 is proved, we proceed to prove Theorem 1.2. We prove the
case r = 1 separately, and then use it to prove the general r > 1 case, similarly to
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that way the inverse theorem for the classical U2 norm is used in the proof of the
inverse theorem for classical uniformity norms. We then use a symmetry argument,
based on important ideas of Green and Tao [17], to finish the proof. However, given
a more complicated structure of directions in the current paper than that in the
case of classical uniformity norms, the symmetry argument is significantly subtler
than that in [14].

Large multilinear spectrum. There is another notion in this paper that
generalizes a classical one-dimensional counterpart, namely the large multilinear
spectrum of a function f : G1 × · · · ×Gk → D which we now define.

Definition 1.3. Let f : G1 × · · · × Gk → D be a function and let ε > 0. We
define ε-large multilinear spectrum of f to be the set

Specml
ε (f) =

{
µ ∈ ML(G[k] → Fp) : ‖fωµ‖�k > ε

}
,

where ML(G[k] → Fp) stands for the set of all multilinear forms on G1 × · · · ×Gk
and where ‖ · ‖�k stands for the box norm with respect to sets G1, . . . , Gk.

It generalizes the usual large spectrum of a function of a single variable rea-
sonably directly. The analogies between the usual spectrum and the multilinear
spectrum are explained more thoroughly later in the paper (see Definition 4.1 and
the discussion that follows it), but let us point out one of them here. As we have
already remarked, Theorem 1.3 is a generalization of the fact that the convolution
of two functions f, g : G→ D can be approximated by linear combinations of linear
phases. Actually, these linear phases come from the large spectrum of f (and g).
It turns out that the analogous phenomenon occurs in Theorem 1.3. Namely, the
multiaffine forms αi, i ∈ [m], appearing in that theorem, can be taken to lie the
large multilinear spectrum of the functions fI (see Proposition 5.1).

We do not use the multilinear spectrum directly in this paper, but it motivated
some of our steps in the proof of Theorem 1.2 and it seems to be closely related to
some of ideas in this paper. Therefore, we decided to explore the properties of the
large multilinear spectrum a bit further, which we do in the final section.

Organization of the paper. The paper is organized as follows. The next
preliminary section lists some useful auxiliary results. After that we devote the
following two sections to the proofs of Theorems 1.3 and 1.2, respectively. Finally,
in the last section we study the large multilinear spectrum.

Acknowledgements. This work was supported by the Serbian Ministry of
Science, Technological Development and Innovation through Mathematical Insti-
tute of the Serbian Academy of Sciences and Arts. I would like to thank Tim
Gowers for helpful discussions.

2. Preliminaries

Notation. As above, we write D = {z ∈ C : |z| 6 1} for the unit disk. We use
the standard expectation notation Ex∈X as shorthand for the average 1

|X|

∑
x∈X ,

and when the set X is clear from the context we simply write Ex. As in [14,28],
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we use the following convention to save writing in situations where we have many
indices appearing in predictable patterns. Instead of denoting a sequence of length
m by (x1, . . . , xm), we write x[m], and for I ⊂ [m] we write xI for the subsequence
with indices in I. This applies to products as well: G[k] stands for

∏
i∈[k]Gi and

GI =
∏
i∈I Gi. For example, instead of writing α :

∏
i∈I Gi → Fp and α(xi : i ∈ I),

we write α : GI → Fp and α(xI). This notation is particularly useful when I =
[k]r {d} as it saves us writing expressions such as (x1, . . . , xd−1, xd+1, . . . , xk) and
G1 × · · · ×Gd−1 ×Gd+1 × · · · ×Gk.

We extend the use of the dot product notation to any situation where we have
two sequences x = x[n] and y = y[n] and a meaningful multiplication between

elements xiyi, writing x · y as shorthand for the sum
∑n
i=1 xiyi. For example, if

λ = λ[n] is a sequence of scalars, and A = A[n] is a suitable sequence of maps, then

λ ·A is the map
∑n

i=1 λiAi.
Frequently we shall consider ‘slices’ of sets S ⊂ G[k], by which we mean sets

SxI = {y[k]rI ∈ G[k]rI : (xI , y[k]rI) ∈ S}, for I ⊂ [k], xI ∈ GI . (Here we are
writing (xI , y[k]rI) not for the concatenation of the sequences xI and y[k]rI but for
the ‘merged’ sequence z[n] with zi = xi when i ∈ I and zi = yi otherwise.) If I is
a singleton {i} and zi ∈ Gi, then we shall write Szi instead of Sz{i} . Sometimes,
the index i will be clear from the context and it will be convenient to omit it. For
example, f(x[k]r{i}, a) stands for f(x1, . . . , xi−1, a, xi+1, . . . , xk). If the index is not
clear, we emphasize it by writing it as a superscript to the left of the corresponding
variable, e.g., f(x[k]r{i},

i a).
More generally, when X1, . . . , Xk are finite sets, Z is an arbitrary set, f : X1 ×

· · · ×Xk = X[k] → Z is a function, I ( [k] and xi ∈ Xi for each i ∈ I, we define
a function fxI : X[k]rI → Z, by mapping each y[k]rI ∈ X[k]rI as fxI (y[k]rI) =
f(xI , y[k]rI). When the number of variables is small—for example, when we have a
function f(x, y) that depends only on two variables x and y instead of on indexed
variables—we also write fx for the map fx(y) = f(x, y).

Let G,G1, . . . , Gk be finite-dimensional vector spaces over a finite field Fp and
let ω = exp

(
2πi
p

)
. For maps f, g : G → C, we write f −∗ g for the function defined

by f −∗ g(x) =Ey∈G f(x+y)g(y). Fix a dot product · on G. The Fourier transform
of f : G→ C is the function f̂ : G→ C defined by f̂(r) =Ex∈G f(x)ω

−r·x.
The Lq norms have their usual meaning: for a function f : X → D we define

‖f‖Lq =
(
Ex∈X |f(x)|q

)1/q
. Frequently, when f(x) is an explicit and complicated

expression depending on the variable x, we write the dummy variable in the sub-
script ‖f(x)‖Lq,x to stress that Lq norm is calculated by averaging over x ∈ X .

Furthermore, for two such expressions f(x), g(x) we write f(x)
ε≈Lq,x g(x) to mean

that ‖f − g‖Lq 6 ε.

Useful lemmas and results. We recall the definition of the Gowers box
norms. Let X1, . . . , Xk be arbitrary sets. The Gowers box norm of a function
f : X1 × · · · ×Xk → C (Definition B.1 in the Appendix B of [19]) is defined by

‖f‖2k�k = E
x1,y1∈X1,...,xk,yk∈Xk

∏

I⊂[k]

Conj|I| f(xI , y[k]rI).
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The following lemma is the Gowers–Cauchy–Schwarz inequality for the box norm.

Lemma 2.1. Let fI : X1 × · · · ×Xk → C be a function for each I ⊂ [k]. Then
∣∣∣∣ E
x1,y1∈X1,...,xk,yk∈Xk

∏

I⊂[k]

Conj|I| fI(xI , y[k]rI)
∣∣∣∣ 6

∏

I⊂[k]

‖fI‖�k .

A particularly useful fact is the following corollary.

Corollary 2.1. Let fI : XI → C be a function for each I ⊂ [k]. Then
∣∣∣∣ E
x1∈X1,...,xk∈Xk

∏

I⊂[k]

fI(xI)
∣∣∣∣ 6 ‖f[k]‖�k .

The following lemma is a technical result that allows us to replace values in
the unit disk D by values of modulus exactly 1.

Lemma 2.2. Let X be a finite set. Suppose that f, g : X → D are two functions
such that

∣∣Ex∈X f(x)g(x)
∣∣ > c. Then, there is another function g̃ : G → D such

that |g(x)| = 1 for all x ∈ X and
∣∣Ex∈X f(x)g̃(x)

∣∣ > c as well.

Proof. Define g̃ : X → D by choosing each g̃(x) independently according to
the following probability distribution. If v = g(x) 6= 0, we set g̃(x) = v/|v| with
probability 1+|v|

2 , and g̃(x) = −v/|v| with probability 1−|v|
2 . If g(x) = 0, then we

simply set g̃(x) = 1 and g̃(x) = −1 with probabilities 1
2 each.

These distributions were chosen so that for each x we have E[f(x)g̃(x)] =

f(x)g(x). Taking the expectation we obtainE
[∑

x∈Xf(x)g̃(x)
]
=

∑
x∈Xf(x)g(x).

By triangle inequality it follows that

E
∣∣∣∣
∑

x∈X

f(x)g̃(x)
∣∣∣∣ >

∣∣∣∣
∑

x∈X

f(x)g(x)
∣∣∣∣.

In particular, there is a choice of g̃ such that
∣∣ 1
|X|

∑
x∈X f(x)g̃(x)

∣∣ > c, as desired.

�

Next we record a simple consequence of Hoeffding’s inequality that allows us
to approximate averages of long sequences by averages of short subsequences.

Lemma 2.3 (Random sampling approximation). Let a1, . . . , an ∈ D and let
k ∈ [n], ε > 0. Pick indices i1, . . . , ik ∈ [n] uniformly and independently at random.
Then

P

(∣∣∣∣
1

n

∑

j∈[n]

aj −
1

k

∑

j∈[k]

aij

∣∣∣∣ 6 ε
)

> 1− 4 exp
(
− ε2k

8

)
.

Proof. Write α = 1
n

∑
j∈[n] aj. For j ∈ [k], let Xj be the random variable

given by Reaij and let Yj be the random variable given by Im aij . Then, ran-
dom variables X1, . . . , Xk are independent and take values in [−1, 1]. Likewise,
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Y1, . . . , Yk are independent and take values in [−1, 1]. Notice that EXj = Reα
and E Yj = Imα. Applying Hoeffding’s inequality we obtain

P

(∣∣∣∣
1

k

∑

j∈[k]

Xj − Reα
∣∣∣∣ > ε/2

)
6 2 exp

(
− ε2k

8

)
,

P

(∣∣∣∣
1

k

∑

j∈[k]

Yj − Imα
∣∣∣∣ > ε/2

)
6 2 exp

(
− ε2k

8

)
.

The lemma follows after combining these two bounds. �

We need some standard elementary Fourier-analytic facts.

Lemma 2.4. Let f : G → D and let ε > 0. Write S = {r ∈ G : |f̂(r)| > ε}.
Then |S| 6 ε−2.

Proof. This follows from

ε2|S| 6
∑

r∈S

|f̂(r)|2 6
∑

r

|f̂(r)|2 =E
x

|f(x)|2 6 1. �

Lemma 2.5. Suppose that f, g : G→ D are two functions. Then
∥∥∥∥f

−∗ g(x)−
∑

r∈S

f̂(r)ĝ(r)ωr·x
∥∥∥∥
L2,x

6 2ε,

where S is a set such that {r ∈ G : |f̂(r)|, |ĝ(r)| > ε} ⊆ S.

Proof. This is a consequence of simple algebraic manipulation. Namely, ex-
panding out gives

∥∥∥∥f
−∗ g(x)−

∑

r∈S

f̂(r)ĝ(r)ωr·x
∥∥∥∥
2

L2,x

=E
x

∣∣∣
∑

r/∈S

f̂(r)ĝ(r)ωr·x
∣∣∣
2

=E
x

∑

r,s/∈S

f̂(r)ĝ(r)f̂(s)ĝ(s)ω(r−s)·x

=
∑

r,s/∈S

f̂(r)ĝ(r)f̂(s)ĝ(s)1(r = s)

=
∑

r/∈S

|f̂(r)|2|ĝ(r)|2

6 ε2
(∑

r

|ĝ(r)|2
)
+ ε2

(∑

r

|f̂(r)|2
)

6 2ε2,

from which the lemma follows. �

Lemma 2.6 (Gowers [12]). Let f, g : G→ C be two functions. Then
(
E
d

∣∣∣E
x

f(x+ d)g(x)
∣∣∣
2)2

6
∑

r

|f̂(r)|4.
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Proof. After manipulating the expression a bit and using the Cauchy–Schwarz
inequality, we have

E
d

∣∣∣∣E
x

f(x+ d)g(x)
∣∣∣∣
2

=E
d

|f −∗ g(d)|2 =
∑

r

∣∣[f −∗ g]∧(r)
∣∣2 =

∑

r

|f̂(r)|2|ĝ(r)|2

6

√∑

r

|f̂(r)|4
√∑

r

|ĝ(r)|4 6

√∑

r

|f̂(r)|4
√∑

r

|ĝ(r)|2 6

√∑

r

|f̂(r)|4.�

Next, we need some facts about multilinear forms. Let α : G[k] → Fp be a

multilinear form. The quantity Ex[k]
ωα(x[k]) is called the bias of α, written biasα,

and it measures the uniformity of the distribution of values of the form α. The
quantity − logp biasα was introduced as the analytic rank of α by Gowers and Wolf
in [15].

It turns out that the analytic rank is sub-additive, as proved by Lovett [26].

Lemma 2.7 (Lovett, Reformulation of Theorem 1.5 in [26]). Let α, β : G[k] →
Fp be two multilinear forms. Then bias(α+ β) > biasα · biasβ.

An interesting corollary of the result above is the correlation result for multi-
linear varieties.

Corollary 2.2 (Lovett, Claim 1.6 in [26]). Let U, V ⊂ G[k] be two multilinear
varieties. Then |G[k]| |U ∩ V | > |U | |V |.

When α : G1 × · · · × Gk → Fp is a multiaffine form, it we may still use the
definition of the bias above. Write α(x[k]) =

∑
I⊆[k] αI(xI) for some multilinear

forms αI : GI → Fp. We call the multilinear form α[k] the multilinear part of α. It
turns out that the bias of α can be related to the bias of α[k].

Lemma 2.8 (Lovett, Lemma 2.1 in [26]). Let α : G[k] → Fp be a multiaffine

form with multilinear part αml. Then
∣∣Ex[k]

ωα(x[k])
∣∣ 6 biasαml.

We also need the following two results from [28].

Lemma 2.9 (Approximating dense varieties externally, Lemma 12 in [28]). Let
A : G[k] → H be a multiaffine map. Then for every positive integer s there is a

multiaffine map φ : G[k] → Fsp such that A−1(0) ⊂ φ−1(0) and |φ−1(0)rA−1(0)| 6
p−s|G[k]|.

Theorem 2.1. Let α : G[k] → Fp be a multilinear form such that biasα > c.

Then there are a positive integer m 6 O
(
(logp c

−1)O(1)
)
, subsets ∅ 6= Ii ( [k] and

multilinear forms βi : GIi → Fp and γi : G[k]rIi → Fp for i ∈ [m] such that

α(x[k]) =
∑

i∈[m]

βi(xIi )γi(x[k]rIi ).

Remark. The least number m such that α can be expressed in terms of m pairs
of forms (βi, γi) as above is called the partition rank of α, and is denoted prankα.
This notion was introduced by Naslund in [30]. Thus, high bias, or equivalently low
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analytic rank, implies low partition rank. In a qualitative sense, this theorem was
first proved by Bhowmick and Lovett in [5], generalizing an approach of Green and
Tao [18]. An almost identical result (there is a slight difference in bounds) to the
one stated here was obtained independently by Janzer in [25] (who had previously
obtained tower-type bounds in this problem [24]). Very recently, Moshkovitz and
Zhu [29] improved the bound to be nearly linear in logp c

−1, but in this paper we
use the simpler shape of the bound in Theorem 2.1 as there is no significant effect
on the bounds in our main results. (See also a work of Cohen and Moshkovitz [9]
for a more algebro-geometric approach.)

The following result follows straightforwardly from Freiman’s theorem [10,16,
33] and Balog–Szemerédi–Gowers [3,12] theorem.

Theorem 2.2. Let G,H be finite-dimensional vector space over Fp. Let A ⊂ G
be a set of density δ. Suppose that φ : A→ H is a map which respects all additive
quadruples in the sense that whenever a, b, c, d ∈ A satisfy a − b + c − d = 0 then
one has φ(a)−φ(b)+φ(c)−φ(d) = 0. Then there is a global affine map Φ: G→ H

such that φ(x) = Φ(x) holds for at least exp(− logO(1) δ−1)|G| of x ∈ A.

A generalization of that theorem was proved by Gowers and the author in [14].

Theorem 2.3. Let G,H be finite-dimensional vector space over Fp. Suppose
that A ⊂ G[k] is a set of density δ > 0 and let φ : A → H be a Freiman multiho-
momorphism. Then there is a global multiaffine map Φ: G[k] → H which coincides

with φ on at least
(
exp(Ok,p(1))

(
Ok,p(δ

−1)
))−1|G[k]| of points in A.

We included Theorem 2.2 even though it is as special case of Theorem 2.3
since in that case very good bounds are available thanks to Sander’s proof of the
Bogolyubov–Ruzsa lemma [33].

3. Cubical convolutions

Let (fI)I⊆[k] be a collection of 2k functions fI : G[k] → D indexed by subsets
I ⊆ [k]. Recall from the introductory section that we write �f·(a[k]) for the value

E
x[k]

∏

I⊆[k]

Conjk−|I| fI((x + a)I , (x)[k]rI),

defining the cubical convolution of functions (fI)I⊆[k]. The main result of this sec-
tion is Theorem 1.3, whose statement is repeated below, says that cubical convolu-
tions are approximately constant on layers of a multiaffine map to a low-dimensional
space.

Theorem (Theorem 1.3). Let fI : G[k] → D be a function for each subset

I ⊆ [k]. Let ε > 0. Then, there are a positive integer m 6 exp(Ok(1))
(
Ok,p(ε

−1)
)
,

a multiaffine map α : G[k] → Fmp and a function c : Fmp → D such that

�f·(a[k])
ε≈L2,a[k]

c(α(a[k])).
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The main step in the proof of the above theorem is the following proposition,
which allows us to express�f· in terms of itself. The gain is that the terms involving
�f· appearing in the approximation sum involve a dummy variable in the argument,
and thus are simpler than the starting function.

Proposition 3.1. Let fI : G[k] → D be a function for each subset I ⊆ [k]. Let

ε > 0. Then, there are a positive integer m 6 exp(Ok(1))
(
Ok,p(ε

−1)
)
, constants

c1, . . . , cm ∈ D and multiaffine forms α1, . . . , αm, β1, . . . , βm : G[k] → Fp such that

�f·(a[k])
ε≈L2,a[k]

∑

i∈[m]

ciω
αi(a[k])E

dk

�f·(a[k−1], dk)ω
βi(a[k−1],dk).

Before proceeding with the proof of the proposition, we use it to prove Theo-
rem 1.3.

Proof of Theorem 1.3. By induction on ℓ ∈ [k], we show that for a pa-
rameter η > 0 there are a positive integer m 6 exp(Ok(1))

(
Ok,p(η

−1)
)
, constants

c1, . . . , cm ∈ D and multiaffine forms α
(1)
1 , . . . , α

(1)
m , . . . , α

(ℓ+1)
1 , . . . , α

(ℓ+1)
m : G[k] →

Fp such that

�f·(a[k])
η≈L2,a[k]

∑

i∈[m]
E

d[k−ℓ+1,k]

ciω
α

(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(ℓ+1)
i (a[k−ℓ],d[k−ℓ+1,k])

�f·(a[k−ℓ], d[k−ℓ+1,k]).(3.1)

The base case ℓ = 1 is exactly Proposition 3.1. Suppose now the claim holds for
some ℓ ∈ [k− 1]. Apply the inductive hypothesis for approximation parameter η/2
to get a positive integer m 6 exp(Ok(1))

(
Ok,p(η

−1)
)
, constants c1, . . . , cm ∈ D and

multiaffine forms α
(1)
1 , . . . , α

(1)
m , . . . , α

(ℓ+1)
1 , . . . , α

(ℓ+1)
m : G[k] → Fp such that (3.1)

holds (with η/2 instead of η), that is

�f·(a[k])
η/2≈ L2,a[k]

∑

i∈[m]
E

d[k−ℓ+1,k]

ciω
α

(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(ℓ+1)
i (a[k−ℓ],d[k−ℓ+1,k])

�f·(a[k−ℓ], d[k−ℓ+1,k]).(3.2)

Apply Proposition 3.1 to (fI)I⊆[k] but this time with a much smaller approximation

parameter 1
2mη to get a positive integer q 6 exp(Ok(1))

(
Ok,p(mη

−1)
)
, constants

c′1, . . . , c
′
q ∈ D and multiaffine forms β1, . . . , βq, γ1, . . . , γq : G[k] → Fp such that

(3.3)

�f·(a[k])
η/2m≈ L2,a[k]

∑

i∈[q]

c′iω
βi(a[k]) E

dk−ℓ

�f·(a[k]r{k−ℓ}, dk−ℓ)ω
γi(a[k]r{k−ℓ},dk−ℓ).

Use approximation (3.3) instead of f·(a[k−ℓ], d[k−ℓ+1,k]) terms on the right-hand-side

of (3.2). By the triangle inequality for L2 norms we have

�f·(a[k])
η≈L2,a[k]

∑

i∈[m]

ci E
d[k−ℓ+1,k]

ωα
(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(ℓ+1)
i (a[k−ℓ],d[k−ℓ+1,k])

∑

j∈[q]

c′jω
βj(a[k−ℓ],d[k−ℓ+1,k]) E

dk−ℓ

�f·(a[k−ℓ−1], d[k−ℓ,k])ω
γj(a[k−ℓ−1],d[k−ℓ,k])
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=
∑

i∈[m]
j∈[q]

E
d[k−ℓ,k]

cic
′
jω

α
(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(ℓ)
i (a[k−ℓ+1],d[k−ℓ+2,k])

ω

(
α

(ℓ+1)
i (a[k−ℓ],d[k−ℓ+1,k])+βj(a[k−ℓ],d[k−ℓ+1,k])

)
�f·(a[k−ℓ−1], d[k−ℓ,k]),

as claimed.
Using approximation (3.1) for ℓ = k and approximation parameter ε/2, we

get a positive integer m 6 exp(Ok(1))
(
Ok,p(ǫ

−1)
)
, constants c1, . . . , cm ∈ D and

multiaffine forms α
(1)
1 , . . . , α

(1)
m , . . . , α

(k+1)
1 , . . . , α

(k+1)
m : G[k] → Fp such that

(3.4) �f·(a[k])
ε/2≈ L2,a[k]

∑

i∈[m]
E
d[k]

ciω
α

(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(k+1)
i (d[k]) �f·(d[k]).

To finish the proof, we use random sampling to find a finite collection of d[k] so that
the approximation above is still accurate with only a finite number of terms. Let r

be a parameter to be chosen later. Pick points d̃
(i)
[k] ∈ G[k] for i = 1, . . . , r uniformly

and independently at random. By Lemma 2.3, for a[k] ∈ G[k] and i ∈ [m], with

probability at least 1− 4 exp
(
− rε2

128m2

)
we have that

∣∣∣∣E
d[k]

ωα
(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(k+1)
i (d[k]) �f·(d[k])

− 1

r

∑

ℓ∈[r]

ω
α

(1)
i (a[k])+α

(2)
i (a[k−1],d̃

(ℓ)
k )+···+α

(k+1)
i (d̃

(ℓ)

[k]
)
�f·(d̃

(ℓ)
[k] )

∣∣∣∣ 6
ε

4m
.

By the union bound, for each a[k] we have

∣∣∣∣
∑

i∈[m]
E
d[k]

ciω
α

(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(k+1)
i (d[k]) �f·(d[k])(3.5)

−
∑

i∈[m]

∑

ℓ∈[r]

1

r
ci�f·(d̃

(ℓ)
[k] )ω

α
(1)
i (a[k])+α

(2)
i (a[k−1],d̃

(ℓ)
k

)+···+α
(k+1)
i (d̃

(ℓ)

[k]
)
∣∣∣∣ 6

ε

4

with probability at least 1− 4m exp
(
− rε2

128m2

)
. We conclude that there is a choice

of d̃
(1)
[k] , . . . , d̃

(r)
[k] ∈ G[k] such that (3.5) holds for at least 1− 4m exp

(
− rε2

128m2

)
|G[k]|

of a[k] ∈ G[k]. Let A ⊂ G[k] be the set of such a[k]. Note on the other hand that if
a[k] /∈ A then trivially

∣∣∣∣
∑

i∈[m]
E
d[k]

ciω
α

(1)
i (a[k])+α

(2)
i (a[k−1],dk)+···+α

(k+1)
i (d[k]) �f·(d[k])(3.6)

−
∑

i∈[m]

∑

ℓ∈[r]

1

r
ci�f·(d̃

(ℓ)
[k] )ω

α
(1)
i (a[k])+α

(2)
i (a[k−1],d̃

(ℓ)
k )+···+α

(k+1)
i (d̃

(ℓ)

[k]
)
∣∣∣∣ 6 2m.
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Returning to approximation (3.4), we may use inequalities (3.5) and (3.6) to obtain

�f·(a[k])
ε′≈L2,a[k]

∑

i∈[m]

∑

ℓ∈[r]

1

r
ci�f·(d̃

(ℓ)
[k] )ω

α
(1)
i (a[k])+α

(2)
i (a[k−1],d̃

(ℓ)
k )+···+α

(k+1)
i (d̃

(ℓ)

[k]
)

(3.7)

where

ε′ =
ε

2
+

√
ε2

16
+ 4m exp

(
− rε2

128m2

)
· 4m2 6

3ε

4
+ 4m2 exp

(
− rε2

256m2

)
.

We may pick r = O(mO(1)ε−O(1)) so that ε′ 6 ε, which completes the proof. The
total number of summands in (3.7) is

rm 6 O
(
mO(1)ε−O(1)

)
6 exp(Ok(1))

(
Ok,p(ǫ

−1)
)
,

as required. �

We now prove Proposition 3.1. The method of the proof is similar to that of
the proofs of approximations results for mixed convolutions in [13] and [14].

Proof of Proposition 3.1. Fix a[k−1] ∈ G[k−1] and consider the sliced func-
tion (�f·)a[k−1]

: ak 7→ �f·(a[k]). Note that (�f·)a[k−1]
is given by an average of

(single-variable) convolutions

(�f·)a[k−1]
(bk) =E

x[k−1]

E
yk

( ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI
(yk + bk)

)

( ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI
(yk)

)
(3.8)

= E
x[k−1]

( ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

)

−∗
( ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

)
(bk).

Let ρ > 0 be a parameter to be specified later. For each x[k−1], a[k−1] ∈ G[k−1],
let Sx[k−1],a[k−1]

be the set of all r ∈ Gk such that
∣∣∣∣
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣ > ρ

∣∣∣∣
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣ > ρ,(3.9)

i.e., the large Fourier coefficients.
We now show that for each a[k−1] the only r that matter in the approximation

above are those such that r ∈ Sx[k−1],a[k−1]
for many x[k−1].

Step 1. Frequent large Fourier coefficients. Let ξ > 0 a parameter to be
chosen later. For a[k−1] ∈ G[k−1] define Ra[k−1]

⊂ Gk to be the set of all r ∈ Gk
such that for at least ξ|G[k−1]| of x[k−1] ∈ G[k−1] we have r ∈ Sx[k−1],a[k−1]

.
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Claim 3.1. Let R ⊂ Gk be an arbitrary subset and let a[k−1] ∈ G[k−1]. Then
∥∥∥∥
∑

r∈R
E
dk

ωr·(ak−dk)�f·(a[k−1], dk)
∥∥∥∥
L2,ak

6 1.

Moreover, if R is disjoint from Ra[k−1]
then we have a stronger bound

∥∥∥∥
∑

r∈R
E
dk

ωr·(ak−dk)�f·(a[k−1], dk)
∥∥∥∥
L2,ak

6 ρ2 + ξρ−2.

Proof. Expanding the expression we get
∥∥∥∥
∑

r∈R
E
dk

ωr·(ak−dk)�f·(a[k−1], dk)
∥∥∥∥
2

L2,ak

(3.10)

=E
ak

∣∣∣∣
∑

r∈R
E
dk

ωr·(ak−dk)�f·(a[k−1], dk)
∣∣∣∣
2

=
∑

r,s∈R
E

dk,ek,ak

ωr·(ak−dk)−s·(ak−ek)�f·(a[k−1], dk)�f·(a[k−1], ek)

=
∑

r,s∈R
E
dk,ek

(
E
ak

ω(r−s)·ak
)
ωs·ek−r·dk�f·(a[k−1], dk)�f·(a[k−1], ek)

=
∑

r∈R
E
dk,ek

ωr·ek−r·dk�f·(a[k−1], dk)�f·(a[k−1], ek)

=
∑

r∈R

∣∣∣∣E
dk

�f·(a[k−1], dk)ω
−r·dk

∣∣∣∣
2

.

It is now easy to finish the proof of the first claim. (We deliberately stopped the
argument here as we shall use (3.10) for the proof of the second part of the claim.)
The expression above is at most

∑

r∈Gk

∣∣∣∣E
dk

�f·(a[k−1], dk)ω
−r·dk

∣∣∣∣
2

=
∑

r∈Gk

E
dk,ek

ωr·ek−r·dk�f·(a[k−1], dk)�f·(a[k−1], ek)

=E
dk

∣∣�f·(a[k−1], dk)
∣∣2 6 1.

For the second claim, return to (3.10). We have
∥∥∥∥
∑

r∈R
E
dk

ωr·(ak−dk)�f·(a[k−1], dk)
∥∥∥∥
2

L2,ak

=
∑

r∈R

∣∣∣∣E
dk

�f·(a[k−1], dk)ω
−r·dk

∣∣∣∣
2

=
∑

r∈R

∣∣∣∣E
dk
E
x[k−1]

E
yk

( ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI
(yk + dk)

)

( ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI
(yk)

)
ω−r·dk

∣∣∣∣
2
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=
∑

r∈R

∣∣∣∣ E
x[k−1]

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

=
∑

r∈R

∣∣∣∣ E
x[k−1]

(
1(r ∈ Sa[k−1],x[k−1]

) + 1(r /∈ Sa[k−1],x[k−1]
)
)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

6 2
∑

r∈R

∣∣∣∣ E
x[k−1]

1(r ∈ Sa[k−1],x[k−1]
)
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

+ 2
∑

r∈R

∣∣∣∣ E
x[k−1]

1(r /∈ Sa[k−1],x[k−1]
)
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

6 2
∑

r∈R

∣∣∣∣ E
x[k−1]

1(r ∈ Sa[k−1],x[k−1]
)
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

+ 2
∑

r∈R
E
x[k−1]

1(r /∈ Sa[k−1],x[k−1]
)
∣∣∣∣
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

6 2
∑

r∈R

∣∣∣∣ E
x[k−1]

1(r ∈ Sa[k−1],x[k−1]
)
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

+ 2ρ2.
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It remains to bound
∑

r∈R

∣∣∣∣ E
x[k−1]

1

(
r ∈ Sa[k−1],x[k−1]

)[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣
2

.(3.11)

To that end, for r ∈ Gk we set

vr = E
x[k−1]

1

(
r ∈ Sx[k−1],a[k−1]

)[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r).

Note that vr ∈ D holds for all r and that we also have
∑

r∈Gk

|vr| 6
∑

r∈Gk

E
x[k−1]

1

(
r ∈ Sx[k−1],a[k−1]

)

∣∣∣∣
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧
(r)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧
(r)

∣∣∣∣

6 E
x[k−1]

∣∣Sx[k−1],a[k−1]

∣∣ 6 ρ−2,

where we used Lemma 2.4 in the last step. Using this, we may bound the expres-
sion (3.11) from above by

∑

r∈R

|vr |2 6
∑

r∈R

|vr|
(
E
x[k−1]

1

(
r ∈ Sx[k−1],a[k−1]

))
6 ξ

∑

r∈R

|vr| 6 ξρ−2,

completing the proof. �

Step 2. Multilinear structure in Ra[k−1]
. Let Φ be a function defined on a

subset of G[k−1] such that Φ(a[k−1]) ∈ Sx[k−1],a[k−1]
for at least ξ|G[k−1]| of x[k−1] ∈

G[k−1]. We claim that Φ is in fact a multi-2-homomorphism on a somewhat smaller

subset ofG[k−1]. By a d-additive quadruple we mean a quadruple (x
(1)
[k−1], . . . , x

(4)
[k−1])

of points in G[k−1] such that x
(1)
i = · · · = x

(4)
i for each i 6= d and x

(1)
d −x(2)d +x

(3)
d −

x
(4)
d = 0.

Similarly to [13] and [14], we use a Fourier-analytic technique invented by
Gowers in [12].

Claim 3.2. Let A ⊂ G[k−1] be a set of density η and let Φ: A → Gk be a
function such that for each a[k−1] ∈ A we have Φ(a[k−1]) ∈ Sx[k−1],a[k−1]

for at least
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ξ|G[k−1]| of x[k−1] ∈ G[k−1]. Let d ∈ [k− 1] be a direction. Then Φ respects at least

ξ2η2ρ4|G[k−1]||Gd|2 d-additive quadruples in A.

Proof. We prove the claim for d = k− 1 which is clearly sufficient. Recalling
the definining property (3.9) of Sx[k−1],a[k−1]

, we have that

ξηρ2 6 E
a[k−1]

A(a[k−1]) E
x[k−1]

∣∣∣∣
[ ∏

I⊆[k−1]

Conjk−1−|I|(fI∪{k})(x+a)I ;x[k−1]rI

]∧(
Φ(a[k−1])

)

[ ∏

I⊆[k−1]

Conjk−1−|I|(fI)(x+a)I ;x[k−1]rI

]∧(
Φ(a[k−1])

)∣∣∣∣
2

6 E
a[k−1],x[k−1]

A(a[k−1])
∣∣∣∣E
yk,zk

( ∏

I⊆[k−1]

Conjk−1−|I| fI∪{k}((x+ a)I , x[k−1]rI , yk)
)

( ∏

I⊆[k−1]

Conjk−|I| fI((x+ a)I , x[k−1]rI , zk)
)
ω(zk−yk)·Φ(a[k−1])

∣∣∣∣
2

= E
a[k−1],x[k−1]

A(a[k−1]) E
yk,y′k,zk,z

′
k

( ∏

I⊆[k−1]

Conjk−1−|I| fI∪{k}((x+ a)I , x[k−1]rI , yk)
)

( ∏

I⊆[k−1]

Conjk−|I| fI∪{k}((x+ a)I , x[k−1]rI , y
′
k)
)

( ∏

I⊆[k−1]

Conjk−|I| fI((x + a)I , x[k−1]rI , zk)
)

( ∏

I⊆[k−1]

Conjk−1−|I| fI((x + a)I , x[k−1]rI , z
′
k)
)
ω(zk−yk−z

′
k+y

′
k)·Φ(a[k−1]).(3.12)

Write p for the shorthand for the sequence of parameters
(
a[k−2], x[k−2], yk, y

′
k,

zk, z
′
k

)
. For any fixed value of p, we define functions Fp : Gk−1 → D and Gp : Gk−1

→ D by

Fp(w) =
( ∏

k−1∈I⊆[k−1]

Conjk−1−|I| fI∪{k}((x + a)Ir{k−1}, x[k−2]rI , yk,
k−1 w)

)

( ∏

k−1∈I⊆[k−1]

Conjk−|I| fI∪{k}((x+ a)Ir{k−1}, x[k−2]rI , y
′
k,
k−1 w)

)

( ∏

k−1∈I⊆[k−1]

Conjk−|I| fI((x + a)Ir{k−1}, x[k−2]rI , zk,
k−1 w)

)

( ∏

k−1∈I⊆[k−1]

Conjk−1−|I| fI((x + a)Ir{k−1}, x[k−2]rI , z
′
k,
k−1 w)

)
,

Gp(w) = A(a[k−2],
k−1 w)ω(zk−yk−z

′
k+y

′
k)·Φ(a[k−2],

k−1 w).
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Using this notation and applying triangle inequality in (3.12), we get

ξηρ2 6E
p
E
xk−1

∣∣∣∣E
ak−1

Fp(xk−1 + ak−1)Gp(ak−1)
∣∣∣∣.

By Cauchy–Schwarz inequality we get

ξ2η2ρ4 6E
p
E
xk−1

∣∣∣∣E
ak−1

Fp(xk−1 + ak−1)Gp(ak−1)
∣∣∣∣
2

which can be bounded from above using Lemma 2.6 by

E
p

∑

rk−1

∣∣Ĝp(rk−1)
∣∣4

= E
a[k−2],yk,y

′
k,zk,z

′
k

∑

rk−1

∣∣∣E
wk−1

A(a[k−2], wk−1)ω
(zk−yk−z

′
k+y

′
k)·Φ(a[k−2],wk−1)−rk−1·wk−1

∣∣∣
4

= E
a[k−2]

yk,y
′
k,zk,z

′
k

∑

rk−1

E
uk−1,vk−1
wk−1,tk−1

A(a[k−2], uk−1)A(a[k−2], vk−1)A(a[k−2], wk−1)A(a[k−2], tk−1)

ω(zk−yk−z
′
k+y

′
k)·(Φ(a[k−2],uk−1)−Φ(a[k−2],vk−1)+Φ(a[k−2],wk−1)−Φ(a[k−2],tk−1))

ω−rk−1·(uk−1−vk−1+wk−1−tk−1)

= E
a[k−2]

E
uk−1,vk−1
wk−1,tk−1

|Gk−1|A(a[k−2], uk−1)A(a[k−2], vk−1)A(a[k−2], wk−1)A(a[k−2], tk−1)

1

(
Φ(a[k−2], uk−1)− Φ(a[k−2], vk−1) + Φ(a[k−2], wk−1)− Φ(a[k−2], tk−1) = 0

)

1

(
uk−1 − vk−1 + wk−1 − tk−1 = 0

)
,

which is exactly the density of additive (k − 1)-quadruples whose points lie in A
and are respected by Φ. �

Now combine the claim we have just proved with Theorem 2.2 for each direction
in [k − 1] to deduce that Φ is a Freiman multi-homomorphism on a subset A′ ⊂ A
of somewhat smaller density. Once we find a part of Φ which is a Freiman multi-
hmomorphism, we apply Theorem 2.3 to pass to a global multiaffine map.

Claim 3.3. Let A ⊂ G[k−1] be a set of density η and let Φ: A → Gk be a
function such that for each a[k−1] ∈ A we have Φ(a[k−1]) ∈ Sx[k−1],a[k−1]

for at least

ξ|G[k−1]| of x[k−1] ∈ G[k−1]. Then Φ coincides with a global multiaffine map on a

set of size
(
exp(Ok(1))

(
Ok,p(η

−1ξ−1ρ−1)
))−1|G[k−1]|.

Proof. We first show inductively that for each i ∈ [0, k − 1] there is a subset

Ai ⊆ A of size at least |Ai| > Ωk,p
(
exp(− logO(i)(ξ−1η−1ρ−1))

)
|Gk−1| on which Φ is

a Freiman homomorphism in directions 1, . . . , i. The base case i = 0 is trivial as we
may simply take A0 = A. Suppose now that the claim holds for some 0 6 i 6 k− 2
and let Ai be the set given by the induction hypothesis. Let ηi be the density of
Ai ∈ G[k−1]. Claim 3.2 applies to the set Ai in direction i+ 1 and we deduce that

Φ respects at least ξ2η2i ρ
4|G[k−1]||Gi+1|2 of (i+1)-additive quadruples with points

in Ai. By averaging, we get a set X ⊂ G[k−1]r{i+1} of density at least 1
2ξ

2η2i ρ
4
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such that for each x[k−1]r{i+1} ∈ X , the map Φ respects at least 1
2ξ

2η2i ρ
4|Gi+1|3

(i+ 1)-additive quadruples with vertices in Ai ∩ ({x[k−1]r{i+1}}×Gi+1). For each
x[k−1]r{i+1} ∈ X apply Theorem 2.2 to deduce that there is a subset Yx[k−1]r{i+1}

⊆
(Ai)x[k−1]r{i+1}

of size

|Yx[k−1]r{i+1}
| > Ωk,p

(
exp(− logO(1)(ξ−1ρ−1η−1

i ))
)
|Gi+1|

on which the sliced function Φx[k−1]r{i+1}
is a Freiman homomorphism. Finally set

Ai+1 =
⋃

x[k−1]r{i+1}∈X

{x[k−1]r{i+1}} × Yx[k−1]r{i+1}
,

completing the inductive step.

Let Ak−1 be the set obtained in the case i = k − 1. Then Φ|Ak−1
is a Freiman

multi-homomorphism so we may apply Theorem 2.3 to finish the proof. �

Let ξ′ > 0 be a positive parameter to be specified later. We iteratively apply
Claim 3.3 to find a subset B ⊂ G[k−1] of size at least (1−ξ′)|G[k−1]| and global mul-

tiaffine maps Ψ1, . . . ,Ψm : G[k−1] → Gk, wherem 6 exp(Ok(1))
(
Ok,p(ε

−1ξ−1ξ′−1)
)
,

such that whenever a[k−1] ∈ B and r ∈ Ra[k−1]
then in fact r ∈ {Ψ1(a[k−1], . . . ,

Ψm(a[k−1])}. We begin this procedure by gathering all pairs (a[k−1], r) ∈ G[k−1] ×
Gk such that r ∈ Ra[k−1]

into the set L, which we shall modify by removing some

pairs in each step. More precisely, at ith step we shall find a global multiaffine map
Φi : G[k−1] → Gk and remove all pairs of the form (x[k−1],Φi(x[k−1])) from L.

Suppose that we are in ith step, and that we have defined maps Φ1, . . . ,Φi−1

so far. As long as there is a set X ⊂ G[k−1] of size at least ξ′|G[k−1]| such that
for each x[k−1] ∈ X there is a pair (x[k−1], r) still in L, we may define a map
Ψ: X → Gk so that (x[k−1],Ψ(x[k−1])) ∈ L. By Claim 3.3, there is a further subset

X ′ ⊂ X of size
(
exp(Ok(1))

(
Ok,p(ξ

−1ξ′−1ρ−1)
))−1|G[k−1]| and a global multiaffine

map Φi : G[k−1] → Gk such that Ψ|X′ = Φi|X′ . Thus, removing all pairs of the
form (x[k−1],Φi(x[k−1])) form L decreases the size of L by at least |X ′|.

This procedure has to terminate in m 6 exp(Ok(1))
(
Ok,p(ε

−1ξ−1ξ′
−1

)
)
steps

as the initial size of L is at most

∑

a[k−1]

|Ra[k−1]
| 6

∑

a[k−1]

∑

x[k−1]

ξ−1

|G[k−1]|
|Sx[k−1],a[k−1]

| 6 ξ−1ρ−2|G[k−1]|,

where we used Lemma 2.4 in the last step.

We now return to (3.8). We have the following identity for each a[k]

�f·(a[k]) =
∑

r∈Gk

ωr·ak E
dk

ω−dk·r�f·(a[k−1], dk).

Using the stronger conclusion of Claim 3.1 for every a[k−1] ∈ B to see that
∥∥∥∥

∑

r/∈{Φ1(a[k−1]),...,Φm(a[k−1])}
E
dk

ωr·(ak−dk)�f·(a[k−1], dk)
∥∥∥∥
L2,ak

6 ρ2 + ξρ−2,
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and the weaker conclusion for a[k−1] rB to see that
∥∥∥∥

∑

r/∈{Φ1(a[k−1]),...,Φm(a[k−1])}
E
dk

ωr·(ak−dk)�f·(a[k−1], dk)
∥∥∥∥
L2,ak

6 1,

Moreover, if R is disjoint from Ra[k−1]
then we have a stronger bound we obtain

approximation

(3.13) �f·(a[k])
ρ2+ξρ−2+ξ′1/2≈L2, a[k] ∑

r∈{Φ1(a[k−1]),...,Φm(a[k−1])}

ωr·ak E
dk

ω−dk·r�f·(a[k−1], dk).

Step 3. Inclusion-exclusion argument. Like in [13] and [14], we now have to
be careful about whether some values among Ψ1(a[k−1], . . . ,Ψm(a[k−1]) are equal.
To this end, we make the convention that the term coming from r = Φi(a[k−1])

ωΦi(a[k−1])·ak E
dk

ω−dk·Φi(a[k−1])�f·(a[k−1], dk)

contributes only when Φi(a[k−1]) /∈ {Φ1(a[k−1]), . . . ,Φi−1(a[k−1])}. Algebraic ma-
nipulation (which is essentially the Inclusion-Exclusion principle) yields

∑

r∈{Φ1(a[k−1]),...,Φm(a[k−1])}

ωr·ak E
dk

ω−dk·r�f·(a[k−1], dk)

=
∑

i∈[m]

1

(
Φi(a[k−1]) /∈ {Φ1(a[k−1]), . . . ,Φi−1(a[k−1])}

)

ωΦi(a[k−1])·ak E
dk

ω−dk·Φi(a[k−1])�f·(a[k−1], dk)

=
∑

i∈[m]

1

(
Φi(a[k−1]) 6= Φ1(a[k−1])

)
· · ·1

(
Φi(a[k−1]) 6= Φi−1(a[k−1])

)

ωΦi(a[k−1])·ak E
dk

ω−dk·Φi(a[k−1])�f·(a[k−1], dk)

=
∑

i∈[m]

(
1− 1

(
Φi(a[k−1]) = Φ1(a[k−1])

))
· · ·

(
1− 1

(
Φi(a[k−1]) = Φi−1(a[k−1])

))

ωΦi(a[k−1])·ak E
dk

ω−dk·Φi(a[k−1])�f·(a[k−1], dk)

=
∑

i∈[m]

∑

I⊂[i−1]

(−1)|I|1
(
(∀j ∈ I)Φj(a[k−1]) = Φi(a[k−1])

)

ωΦi(a[k−1])·ak E
dk

ω−dk·Φi(a[k−1])�f·(a[k−1], dk).

We need to approximate varieties {a[k−1] ∈ G[k−1] : (∀j ∈ I)Φj(a[k−1]) =
Φi(a[k−1])} by varieties of low codimension. To this end, we apply Lemma 2.9
with approximation parameter ξ′′ > 0 (to be specified later) to obtain some si,I 6

logp ξ
′′−1

and a multiaffine map τi,I : G[k−1] → F
si,I
p such that
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{
a[k−1] ∈ G[k−1] : (∀j ∈ I)Φj(a[k−1]) = Φi(a[k−1])

}

⊆
{
a[k−1] ∈ G[k−1] : τi,I(a[k−1]) = 0

}
,

∣∣{a[k−1] ∈ G[k−1] : τi,I(a[k−1]) = 0
}

r
{
a[k−1] ∈ G[k−1] : (∀j ∈ I)Φj(a[k−1]) = Φi(a[k−1])

}∣∣ 6 ξ′′|G[k−1]|.
Finally, recalling (3.13), we end up with approximation

�f·(a[k])
ε′≈L2,a[k]

∑

i∈[m]

∑

I⊂[i−1]

(−1)|I|1
(
τi,I(a[k−1]) = 0

)
ωΦi(a[k−1])·ak

E
dk

ω−dk·Φi(a[k−1])�f·(a[k−1], dk)

=
∑

i∈[m]

∑

I⊂[i−1]

(−1)|I|p−si,I
∑

λ∈F
si,I
p

ωλ·τi,I(a[k−1])ωΦi(a[k−1])·ak

E
dk

ω−dk·Φi(a[k−1])�f·(a[k−1], dk),

where ε′ = ρ2 + ξρ−2 + ξ′1/2 + 2mξ′′1/2.
After a slight change of notation, we may rewrite the approximation sum as

∑

i∈[m′]

ciω
αi(a[k])E

dk

�f·(a[k−1], dk)ω
βi(a[k−1],dk),

for some m′ 6 2mξ′′−1, constants ci ∈ D and multiaffine forms αi, βi : G[k] → Fp.
To complete the proof, we pick parameters ρ, ξ, ξ′, ξ′′ to be

ρ =
ε

4
, ξ =

ε3

64
, ξ′ =

ε2

16
, ξ′′ =

ε2

22m+4
. �

4. Inverse theorem for some directional Gowers uniformity norms

Recall that we are interested in the norm

U
(
G1, G2, . . . , Gk, G

⊕, . . . , G⊕

︸ ︷︷ ︸
r

)
,

where G⊕ = G1 ⊕ · · · ⊕Gk appears r times in the norm subscript for some r ∈ N.2

To simplify the notation slightly, we write U
(
G1, G2, . . . , Gk, G

⊕ × r
)
instead. In

this section we prove the inverse theorem for this norm, stated in the introductory
section as Theorem 1.2, which is the main result of this work.

We prove the theorem by induction on r. We prove the base case separately,
as it will have an important role in the proof of the general case.

2When we view G1 × · · · ×Gk as an abelian group, we denote this product by G⊕. This is
a different viewpoint from the previous parts of the paper where G1 × · · · ×Gk was abbreviated
as G[k] and meant the set of k-tuples where ith element belongs to Gi.
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Inverse theorem for U(G1,G2, . . . ,Gk,G
⊕) norm. In this short subsection

we use Theorem 1.3 which concerns approximating cubical convolutions to prove
the base case of Theorem 1.2.

Proposition 4.1 (Inverse theorem for U(G1, G2, . . . , Gk, G
⊕) norm). Suppose

that f : G⊕ → D is a function such that ‖f‖UG1,G2,...,Gk,G⊕ > c. Then there exists
a multilinear form µ : G1 × · · · ×Gk → Fp and maps ui : G[k]r{i} → D for i ∈ [k]
such that

E
x[k]∈G⊕

f(x)ωµ(x[k])
∏

i∈[k]

ui(x[k]r{i}) >
(
exp(Ok(1))

(
Ok,p(c

−1)
))−1

.

Proof. Expanding out the definition of the norm, we obtain

c2
k+1

6 ‖f‖2k+1

U

(
G1,G2,...,Gk,G⊕

)(4.1)

= E
h1∈G1,...,hk∈Gk

E
x∈G⊕

·∆h1,...,hk
f(x)

(
E
a∈G⊕

·∆h1,...,hk
f(x− a)

)

= E
h1∈G1,...,hk∈Gk

E
x∈G⊕

·∆h1,...,hk
f(x)�f(h[k]).

Apply Theorem 1.3 to f viewed as a function on G1 × · · · ×Gk with approxi-

mation parameter 1
2c

2k+1

to obtain a positive integer m 6 exp(Ok(1))
(
Ok,p(c

−1)
)
,

a multiaffine map α : G[k] → Fmp and a function g : Fmp → D such that

�f·(h[k])
1
2 c

2k+1

≈ L2,a[k]
g(α(h[k])).

Going back to (4.1) and using Cauchy–Schwarz inequality, we obtain
∣∣∣∣ E
h1∈G1,...,hk∈Gk

E
x∈G⊕

·∆h1,...,hk
f(x)g(α(h[k]))

∣∣∣∣

>

∣∣∣∣ E
h1∈G1,...,hk∈Gk

E
x∈G⊕

·∆h1,...,hk
f(x)�f(h[k])

∣∣∣∣

−
∣∣∣∣ E
h1∈G1,...,hk∈Gk

E
x∈G⊕

·∆h1,...,hk
f(x)

(
�f(h[k])− g(α(h[k]))

)∣∣∣∣

> c2
k+1 − E

h1∈G1,...,hk∈Gk

∣∣(�f(h[k])− g(α(h[k]))
)∣∣

>
1

2
c2

k+1

.

Writing g(α(h[k])) as p
−m

∑
λ,µ∈Fm

p
g(λ)ωµ·(α(h[k])−λ), we get

1

2
c2

k+1

6 p−m
∑

λ,µ∈Fm
p

∣∣∣∣ E
h1∈G1,...,hk∈Gk

E
x∈G⊕

·∆h1,...,hk
f(x)g(λ)ω−µ·(α(h[k])−λ)

∣∣∣∣,
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from which it follows that we may find λ, µ ∈ Fmp such that

1

2pm
c2

k+1

6

∣∣∣∣ E
h1∈G1,...,hk∈Gk

E
x∈G⊕

·∆h1,...,hk
f(x)ω−µ·α(h[k])

∣∣∣∣.

Writing α(h[k]) =
∑

I⊆[k] αI(hI) in terms of its multilinear parts, which are multi-

linear maps each depending on a subset of variables, and expanding out, we get

1

2pm
c2

k+1

6

∣∣∣∣ E
h1∈G1,...,hk∈Gk

E
x∈G⊕

∏

I⊆[k]

Conjk−|I| f
(
(xi + hi)i∈I , (xi)i∈[k]rI

)
ω−µ·αI(hI)

∣∣∣∣.

Making a change of variables h′i = xi + hi to replace hi, we get that

1

2pm
c2

k+1

6

∣∣∣∣ E
h′
1∈G1,...,h′

k
∈Gk

E
x∈G⊕

∏

I⊆[k]

Conjk−|I| f
(
(h′i)i∈I , (xi)i∈[k]rI

)
ω−µ·αI((h

′−x)I)
∣∣∣∣.

By averaging, we find x ∈ G⊕ such that

1

2pm
c2

k+1

6

∣∣∣∣ E
h′
1∈G1,...,h′

k∈Gk

∏

I⊆[k]

Conjk−|I| f
(
(h′i)i∈I , (xi)i∈[k]rI

)
ω−µ·αI((h

′−x)I)
∣∣∣∣.

Note that the only term on the right-hand-side that depends on all variables
h′1, . . . , h

′
k is the one corresponding to I = [k]. Moreover we may expand

ω−µ·α[k]((h
′−x)[k]) =

∏

J⊆[k]

ω−(−1)k−|J|µ·α[k](h
′
J ,x[k]rJ),

out of which only ω−µα[k](h
′
[k]) depends on all of h′1, . . . , h

′
k. The claim follows after

straightforward algebraic manipulation which allows us to reorganize the expression
into the desired form. �

We now make a digression to compare this result with the classical univariate
case. Recall that in the classical theory of uniformity norms we have the funda-
mental fact that the large U2 norm corresponds to having large Fourier coefficients,
i.e., having non-empty large spectrum, and also recall that U2 norm is the base case
in the univariate setting for proving the general inverse theorems. The proposition
that we have just proved is a direct generalization of this fact to the multivariate
setting, in the sense that we now explain. Let us recall the definition of the large
multilinear spectrum of a function f : G[k] → D which was given in the introductory
section.

Definition 4.1 (Definition 1.3). Let f : G1 × · · · ×Gk → D be a function and
let ε > 0. We define ε-large multilinear spectrum of f to be the set

Specml
ε (f) =

{
µ ∈ ML(G[k] → Fp) : ‖fωµ‖�k > ε

}
,
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where ML(G[k] → Fp) stands for the set of all multilinear forms on G1 × · · · ×Gk
and where ‖ · ‖�k stands for the box norm with respect to sets G1, . . . , Gk.

To see why we may think of the large multilinear spectrum as the generaliza-
tion of the large Fourier spectrum of a function of a single variable, consider an
arbitrary function f : G1 → D. If r is an ε-large Fourier coefficient of f , we have
the correlation

∣∣Ex∈G1
f(x)ω−r·x

∣∣ > ε. We may set α(x) = −r ·x, which is a linear
form associated to r in a natural way. Furthermore, notice that the ‘box norm’ in
the case one variable3 would be given by expression

‖g‖2�1 = E
x,a∈G1

g(x+ a)g(x) =
∣∣∣∣E
x∈G1

g(x)
∣∣∣∣
2

,

which is just the absolute value of the expectation squared. Hence, we may interpret
the correlation

∣∣Ex∈G1
f(x)ω−r·x

∣∣ > ε as ‖fωα‖�1 > ε. More conceptually, the
spectrum consists of algebraically structured functions whose phases determine f
up to lower-order terms. (In the case of single variable, the lower-order terms are
exactly the constant functions.)

Proposition 4.1 can be rephrased as the fact that the large value of the U(G1,
G2, . . . , Gk, G

⊕) norm implies that the large multilinear spectrum is non-empty. It
turns out that the large multilinear spectrum has some further properties that are
analogous to those that hold for the usual Fourier spectrum. Once we complete
the proof of the inverse theorems, we shall return to the discussion of the large
multilinear spectrum.

Very brief overview of the proof. We now begin the proof of the inverse
theorem for the U

(
G1, G2, . . . , Gk, G

⊕ × r
)
norm in the general case. The proof

will consist of three steps, similarly to the univariate theory. In the first step we
find a multilinear form that is related to the given function. This is the content of
the next result.

Proposition 4.2. Let f : G⊕ → D be a function such that

‖f‖
U

(
G1,G2,...,Gk,G⊕×r

) > c.

Then we may find a multilinear form ψ : G⊕ × · · · ×G⊕

︸ ︷︷ ︸
r−1

×G1 × · · · ×Gk → Fp such
that

(4.2)
∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

b1∈G1,...,bk∈Gk

x∈G⊕

·∆a(1),...,a(r−1) ·∆b1,...,bkf(x)ω
ψ(a(1),...,a(r−1),b1,...,bk)

∣∣∣∣

>
(
exp(Ok,r(1))(Ok,r,p(c

−1))
)−1

.

The second step is to prove some symmetry properties of the multilinear form
ψ provided by Proposition 4.2, based on ideas of Green and Tao [17]. Finally, once
we have proved that ψ is sufficiently symmetric we may use a polarization identity
to produce the desired polynomial that f correlates with. However, even though
the overall structures of this proof and of that in the univariate setting are similar,

3In the case of single variable, the box norm is not defined.
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given the different roles that arguments a(i) and bi of ψ play, the multivariate case
is more subtle.

Correlation with multilinear form. This subsection is devoted to the proof
of Proposition 4.2.

Proof of Proposition 4.2. We shall use the base case of the inverse theo-
rem (Proposition 4.1) in this proof, but we first need to do some preparation. Let
us define the vector space H by

H = G1 ⊕ · · · ⊕Gk ⊕G⊕ ⊕ · · · ⊕G⊕

︸ ︷︷ ︸
r−1

.

Write
(i)

G⊕ for the subgroup given by ith copy of G⊕ in the space H , which is a

subgroup of the form
(i)

G⊕ = {0} × · · · × {0} ×G⊕ × {0} × · · · × {0}. Then, define
an auxiliary function f̃ : H → D by

f̃
(
x1, . . . , xk, y

(1)
[k] , . . . , y

(r−1)
[k]

)
= f

(
x1 +

∑

i∈[r−1]

y
(i)
1 , . . . , xk +

∑

i∈[r−1]

y
(i)
k

)

for all x1 ∈ G1, . . . , xk ∈ Gk, y
(1)
[k] , . . . , y

(r−1)
[k] ∈ G⊕. The relevance of the function

f̃ stems from the following equality of norms
∥∥f

∥∥
U(G1,...,Gk,G⊕×r)

=
∥∥f̃

∥∥
U(G1,...,Gk,

(1)

G⊕,...,
(r−1)

G⊕ ,H)
.

This equality follows from a straightforward algebraic manipulation (below we use
a more explicit notation and for example we write (0, 0, . . . , bk) for the element of
G[k] that has first k − 1 coordinates equal to 0 and the last one equal to bk):

∥∥f
∥∥2k+r

U(G1,...,Gk,G⊕×r)
= E

b[k]∈G[k]

a
(1)

[k]
,...,a

(r−1)

[k]
,d[k]∈G

⊕

x[k]∈G[k]

·∆(b1,0,...,0)

...
(0,0,...,bk)

·∆
a
(1)

[k]
,...,a

(r−1)

[k]
,d[k]

f(x1, . . . , xk)

= E
n[k]∈G[k]

a
(1)

[k]
,...,a

(r−1)

[k]
∈G⊕

x[k]∈G[k]

y
(1)

[k]
,...,y

(r−1)

[k]
∈G⊕

d
(0)

[k]
,...,d

(r−1)

[k]
∈G⊕

·∆(b1,0,...,0)

...
(0,0,...,bk)

·∆
a
(1)

[k]
,...,a

(r−1)

[k]
,d

(0)

[k]
+···+d

(r−1)

[k]

f
(
x1 +

∑

i∈[r−1]

y
(i)
1 , . . . , xk +

∑

i∈[r−1]

y
(i)
k

)

= E
b[k]∈G[k]

a
(1)

[k]
,...,a

(r−1)

[k]
∈G⊕

x[k]∈G[k]

y
(1)

[k]
,...,y

(r−1)

[k]
∈G⊕

·∆ (b1,0,...,0)

...
(0,0,...,bk,0,...,0)

·∆
(0[k],a

(1)

[k]
,0,...,0)

...
(0,...,0,a

(r−1)

[k]
)

·∆
(d

(0)
1 ,...,d

(0)
k ,d

(1)

[k]
,..., d

(r−1)

[k]
)
f̃
(
x1, . . . , xk, y

(1)
[k] , . . . , y

(r−1)
[k]

)

=
∥∥f̃

∥∥2k+r

U(G1,...,Gk,
(1)

G⊕,...,
(r−1)

G⊕, H)
.
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Wemay apply Proposition 4.1 to f̃ to obtain functions ui : G[k]r{i}×(G⊕)r−1 →
D for i ∈ [k], functions vi : G[k] × (G⊕)r−2 → D for i ∈ [r − 1] and a multilinear

form ψ : G1 ×G2 × · · · ×Gk ×G⊕ × · · · ×G⊕

︸ ︷︷ ︸
r−1

→ Fp such that

∣∣∣∣ E
x1,...,xk

y
(1)

[k]
,...,y

(r−1)

[k]

f̃(x1, . . . , xk, y
(1)
[k] , . . . , y

(r−1)
[k] )

∏

i∈[k]

ui(x[k]r{i}, y
(1)
[k] , . . . , y

(r−1)
[k] )

∏

i∈[r−1]

vi(x[k], y
(1)
[k] , . . . , y

(i−1)
[k] , y

(i+1)
[k] , . . . , y

(r−1)
[k] )ω

ψ(x1,...,xk,y
(1)

[k]
,...,y

(r−1)

[k]
)
∣∣∣∣

>
(
exp(Ok,r(1))

(
Ok,r,p(c

−1)
))−1

.

Notice that the only terms having all k + r − 1 variables x1, . . . , xk, y
(1)
[k] , . . . ,

y
(r−1)
[k] are f̃(x1, . . . , xk, y

(1)
[k] , . . . , y

(r−1)
[k] ) and ωψ(x1,...,xk,y

(1)

[k]
,...,y

(r−1)

[k]
). We may apply

Lemma 2.1 to deduce the bound∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

b1∈G1,...,bk∈Gk

x∈G⊕

·∆a(1),...,a(r−1) ·∆ (b1,0[2,k])

...
(0[k−1],bk)

f(x)ω
ψ(a1,...,ak,b

(1)

[k]
,...,b

(r−1)

[k]
)
∣∣∣∣

>
(
exp(Ok,r(1))

(
Ok,r,p(c

−1)
))−1

. �

Symmetry argument. We now focus on the symmetry properties of a mul-
tilinear form ψ : G⊕ × · · · ×G⊕

︸ ︷︷ ︸
r−1

×G1 × · · · ×Gk → Fp which obeys

(4.3) E
a(1),...,a(r−1)∈G⊕

d[k]∈G[k]

x∈G⊕

·∆a(1),...,a(r−1) ·∆ (d1,0[2,k])

...
(0[k−1],dk)

f(x)ωψ(a
(1),...,a(r−1),d1,...,dk) > ξ

for some ξ > 0. It turns out that such a form is approximately symmetric in the
variables a(1), . . . , a(r−1) and that is has another approximate symmetry property
which allows us to replace ith component of a(j) by di. These two properties are
articulated in the following two propositions respectively.

Proposition 4.3 (Symmetry I). Let ξ > 0 and suppose that a multilinear form
ψ : (G⊕)r−1×G[k] → Fp satisfies (4.3). Let i < j be two elements of [r−1]. Define

the multilinear map ψij : (G
⊕)r−1 ×G[k] → Fp by

ψij
(
a(1), . . . , a(r−1), d1, . . . , dk

)
(4.4)

= ψ
(
a(1), . . . , a(i−1), a(i), a(i+1), . . . , a(j−1), a(j), a(j+1), . . . , a(r−1),

d1, . . . , dk
)

− ψ
(
a(1), . . . , a(i−1), a(j), a(i+1), . . . , a(j−1), a(i), a(j+1), . . . , a(r−1),

d1, . . . , dk
)
,
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where the argument of the second form in the expression is obtained by swapping
a(i) and a(j). Then biasψij > ξ8.

Proposition 4.4 (Symmetry II). Let ξ > 0 and suppose that a multilinear
form ψ : (G⊕)r−1 ×G[k] → Fp satisfies (4.3). Let i ∈ [r− 1] and let j ∈ [k]. Define

the multilinear map ψ′
ij : (G

⊕)[i−1] ×Gj × (G⊕)[i+1,r−1] ×G[k] → Fp by

ψ′
ij

(
a(1), . . . , a(i−1), uj , a

(i+1), . . . , a(r−1), d1, . . . , dk
)

(4.5)

= ψ
(
a(1), . . . , a(i−1), (0[k]r{j},

j uj), a
(i+1), . . . , a(r−1),

d1, . . . , dj−1, dj , dj+1, . . . , dk
)

− ψ
(
a(1), . . . , a(i−1), (0[k]r{j},

j dj), a
(i+1), . . . , a(r−1),

d1, . . . , dj−1, uj , dj+1, . . . , dk
)
.

Then biasψ′
ij > ξ8.

Once these two propositions are proved, we shall show that the only sources of
the approximately symmetric functions in the sense above are functions with the
corresponding exact symmetry properties.

Proposition 4.5. Let ξ > 0. Assume that p > r+1. Suppose that ψ : (G⊕)r−1

×G[k] → Fp is a multilinear form. Let ψij and ψ′
ij be defined by (4.4) and by (4.5)

respectively. Suppose that for all i, j ∈ [r − 1] we have

(4.6) biasψij > ξ

and for each i ∈ [r − 1], j ∈ [k] we have

(4.7) biasψ′
ij > ξ.

Then there is another multilinear form ρ : (G⊕)r−1 ×G[k] → Fp such that

bias(ψ − ρ) > ξ4(k+r)!
4

and if ρij and ρ′ij are the multilinear forms defined by (4.4) and by (4.5) for ρ
instead of ψ, then ρij = 0 and ρ′ij = 0.

Proofs of approximate symmetry properties. We now proceed to prove
the stated results.

Proof of Proposition 4.3. It suffices to prove the claim for i = r − 2 and
j = r − 1. We start by expanding (4.3)

ξ 6 E
a(1),...,a(r−1)∈G⊕

E
x1,d1∈G1,...,xk,dk∈Gk( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−1)f

(
(xi + di)i∈I , x[k]rI

))
ωψ(a

(1),...,a(r−1),d[k]).

By averaging, there is x[k] ∈ G[k] such that

ξ 6
∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

E
d1∈G1,...,dk∈Gk

ωψ(a
(1),...,a(r−1),d[k])
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( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−1)f

(
(x+ d)I , x[k]rI

))∣∣∣∣

6 E
a(1),...,a(r−2)∈G⊕

E
d1∈G1,...,dk∈Gk

∣∣∣∣ E
a(r−1)∈G⊕

ωψ(a
(1),...,a(r−1),d[k])

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−1)f

(
(x+ d)I , x[k]rI

))∣∣∣∣.

Apply Cauchy–Schwarz inequality to obtain

ξ2 6 E
a(1),...,a(r−2)∈G⊕

E
d1∈G1,...,dk∈Gk

∣∣∣∣ E
a(r−1)∈G⊕

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−1)f

(
(x+ d)I , x[k]rI

))
ωψ(a

(1),...,a(r−1),d[k])
∣∣∣∣
2

6 E
a(1),...,a(r−2)∈G⊕

E
d1∈G1,...,dk∈Gk∣∣∣∣ E

a(r−1)∈G⊕

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−2)f

((
x+ d+ a(r−1)

)
I
,
(
x+ a(r−1)

)
[k]rI

))

ωψ(a
(1),...,a(r−1),d[k])

∣∣∣∣
2

= E
a(1),...,a(r−2)∈G⊕

E
d1∈G1,...,dk∈Gk

E
u,v∈G⊕

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−2)f

(
(x+ d+ u)I , (x + u)[k]rI

)

Conjk+1−|I|
·∆a(1),...,a(r−2)f

(
(x+ d+ v)I , (x+ v)[k]rI

))

ωψ(a
(1),...,a(r−2),u−v,d[k]).

Make a change of variables and replace a(r−2) by z = −u− v−a(r−2) to obtain

ξ2 6 E
a(1),...,a(r−3)∈G⊕

E
d1∈G1,...,dk∈Gk

E
u,v,z∈G⊕

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−3),−u−v−zf

(
(x+ d+ u)I , (x + u)[k]rI

)

Conjk+1−|I|
·∆a(1),...,a(r−3),−u−v−zf

(
(x + d+ v)I , (x+ v)[k]rI

))

ωψ(a
(1),...,a(r−3),−u−v−z,u−v,d[k])

= E
a(1),...,a(r−3)∈G⊕

E
d1∈G1,...,dk∈Gk
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E
u,v,z∈G⊕

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−3)f

(
(x+ d+ u)I , (x+ u)[k]rI

)

Conjk+1−|I|
·∆a(1),...,a(r−3)f

(
(x+ d− v − z)I , (x − v − z)[k]rI

)

Conjk+1−|I|
·∆a(1),...,a(r−3)f

(
(x+ d+ v)I , (x+ v)[k]rI

)

Conjk−|I|
·∆a(1),...,a(r−3)f

(
(x + d− u− z)I , (x− u− z)[k]rI

))

ω−ψ(a(1),...,a(r−3),u+z,u,d[k])ωψ(a
(1),...,a(r−3),v+z,v,d[k])

ωψ(a
(1),...,a(r−3),u,v,d[k])−ψ(a

(1),...,a(r−3),v,u,d[k]).

Recall the notation

ψr−2 r−1(a1, . . . , ar−3, u, v, d[k])

= ψ(a1, . . . , ar−3, u, v, d[k])− ψ(a1, . . . , ar−3, v, u, d[k]).

By Gowers–Cauchy–Schwarz inequality (Lemma 2.1) for the 2-dimensional box
norm with respect to variables u and v, we see that

ξ8 6 E
a(1),...,a(r−3)∈G⊕

E
d1∈G1,...,dk∈Gk

E
z∈G⊕

E
u,v∈G⊕

u′,v′∈G⊕

ωψr−2 r−1(a
(1),...,a(r−3),u,v,d[k])

ω−ψr−2 r−1(a
(1),...,a(r−3),u′,v,d[k])ω−ψr−2 r−1(a

(1),...,a(r−3),u,v′,d[k])

ωψr−2 r−1(a
(1),...,a(r−3),u′,v′,d[k])

= biasψr−2 r−1. �

Proof of Proposition 4.4. It suffices to prove the claim in the case i = 1
and j = k. We start by expanding (4.3)

ξ 6 E
a(1),...,a(r−1)∈G⊕

E
x1,d1∈G1,...,xk,dk∈Gk

ωψ(a
(1),...,a(r−1),d[k])

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−1)f

(
(x+ d)I , x[k]rI

))
.

By averaging, there is x[k] such that

ξ 6
∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

E
d[k]∈G[k]

( ∏

I⊆[k]

Conjk−|I|
·∆a(1),...,a(r−1)f

(
(x+ d)I , x[k]rI

))

ωψ(a
(1),...,a(r−1),d[k])

∣∣∣∣

=
∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

E
d[k]∈G[k]

( ∏

I⊆[k]

Conjk−|I|
·∆a(2),...,a(r−1)

f
(
(x+ d+ a(1))I , (x+ a(1))[k]rI

)

Conjk−|I|
·∆a(2),...,a(r−1)f

(
(x+ d)I , x[k]rI

))
ωψ(a

(1),...,a(r−1),d[k])
∣∣∣∣
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=
∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

E
d[k]∈G[k]

ωψ(a
(1),...,a(r−1),d[k])

( ∏

I⊆[k−1]

Conjk−1−|I|
·∆a(2),...,a(r−1)

f
(
(x+ d+ a(1))I , (x+ a(1))[k−1]rI ,

k xk + dk + a
(1)
k

))

( ∏

I⊆[k−1]

Conjk−|I|
·∆a(2),...,a(r−1)

f
(
(x+ d+ a(1))I , (x+ a(1))[k−1]rI ,

k xk + a
(1)
k

))

( ∏

I⊆[k−1]

Conjk−|I|
·∆a(2),...,a(r−1)f

(
(x+ d)I , x[k−1]rI ,

k xk + dk
))

( ∏

I⊆[k−1]

Conjk−1−|I|
·∆a(2),...,a(r−1)f

(
(x + d)I , x[k−1]rI ,

k xk
))∣∣∣∣.

Apply Cauchy–Schwarz inequality to obtain

ξ2 6 E
a(1),...,a(r−1)∈G⊕

E
d[k−1]∈G[k−1]

∣∣∣∣ E
dk∈Gk

ωψ(a
(1),...,a(r−1),d[k])

( ∏

I⊆[k−1]

Conjk−1−|I|
·∆a(2),...,a(r−1)

f
(
(x+ d+ a(1))I , (x + a(1))[k−1]rI ,

k xk + dk + a
(1)
k

))

( ∏

I⊆[k−1]

Conjk−|I|
·∆a(2),...,a(r−1)f

(
(x+ d)I , x[k−1]rI ,

k xk + dk
))∣∣∣∣

2

= E
a(1),...,a(r−1)∈G⊕

E
d[k−1]∈G[k−1]

E
dk,d′k∈Gk

ωψ(a
(1),...,a(r−1),d[k−1],dk−d

′
k)

( ∏

I⊆[k−1]

Conjk−1−|I|
·∆a(2),...,a(r−1)

f
(
(x+ d+ a(1))I , (x+ a(1))[k−1]rI ,

k xk + dk + a
(1)
k

))

( ∏

I⊆[k−1]

Conjk−|I|
·∆a(2),...,a(r−1)

f
(
(x+ d+ a(1))I , (x+ a(1))[k−1]rI ,

k xk + d′k + a
(1)
k

))

( ∏

I⊆[k−1]

Conjk−|I|
·∆a(2),...,a(r−1)f

(
(x+ d)I , x[k−1]rI ,

k xk + dk
))

( ∏

I⊆[k−1]

Conjk−1−|I|
·∆a(2),...,a(r−1)f

(
(x+ d)I , x[k−1]rI ,

k xk + d′k
))
.
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We now make the following change of variables. We introduce a new variable

zk = xk + dk + d′k + a
(1)
k instead of a

(1)
k . With the new variable, we get inequality

ξ2 6 E
a
(1)

[k−1]
∈G[k−1]

E
a(2),...,a(r−1)∈G⊕

E
d[k−1]∈G[k−1]

(4.8)

E
dk,d′k,zk∈Gk

ωψ
(
(a

(1)

[k−1]
,k zk−dk−d

′
k−xk),a

(2),...,a(r−1),d[k−1],dk−d
′
k

)

( ∏

I⊆[k−1]

Conjk−1−|I|
·∆a(2),...,a(r−1)f

(
(x+ d+ a(1))I , (x+ a(1))[k−1]rI ,

k zk − d′k
))

( ∏

I⊆[k−1]

Conjk−|I|
·∆a(2),...,a(r−1)f

(
(x+ d+ a(1))I , (x+ a(1))[k−1]rI ,

k zk − dk
))

( ∏

I⊆[k−1]

Conjk−|I|
·∆a(2),...,a(r−1)f

(
(x+ d)I , x[k−1]rI ,

k xk + dk
))

( ∏

I⊆[k−1]

Conjk−1−|I|
·∆a(2),...,a(r−1)f

(
(x+ d)I , x[k−1]rI ,

k xk + d′k
))
.

From multilinearity of ψ, we have

ψ
(
(a

(1)
[k−1],

k zk − dk − d′k − xk), a
(2), . . . , a(r−1), d[k−1], dk − d′k

)

= ψ
(
(a

(1)
[k−1],

k zk − xk), a
(2), . . . , a(r−1), d[k−1], dk − d′k

)

− ψ
(
(0[k−1],

k dk), a
(2), . . . , a(r−1), d[k−1], dk − d′k

)

− ψ
(
(0[k−1],

k d′k), a
(2), . . . , a(r−1), d[k−1], dk − d′k

)

= ψ
(
(0[k−1],

k dk), a
(2), . . . , a(r−1), d[k−1], d

′
k

)

− ψ
(
(0[k−1],

k d′k), a
(2), . . . , a(r−1), d[k−1], dk

)

+ ψ
(
(a

(1)
[k−1],

k zk − xk), a
(2), . . . , a(r−1), d[k−1], dk

)

− ψ
(
(a

(1)
[k−1],

k zk − xk), a
(2), . . . , a(r−1), d[k−1], d

′
k

)

− ψ
(
(0[k−1],

k dk), a
(2), . . . , a(r−1), d[k−1], dk

)

+ ψ
(
(0[k−1],

k d′k), a
(2), . . . , a(r−1), d[k−1], d

′
k

)
.

After applying this identity in (4.8), the only terms involving dk and d′k re-
maining are phases of

ψ
(
(0[k−1],

k dk), a
(2), . . . , a(r−1), d[k−1], d

′
k

)
,

ψ
(
(0[k−1],

k d′k), a
(2), . . . , a(r−1), d[k−1], dk

)
.

Apply Gowers–Cauchy–Schwarz inequality (Lemma 2.1) with respect to vari-
ables dk and d′k to deduce
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ξ2 6 E
a
(1)

[k−1]
∈G[k−1]

E
a(2),...,a(r−1)∈G⊕

E
d[k−1]∈G[k−1]

E
zk∈Gk

∥∥∥ωψ
(
(0[k−1],

k dk),a
(2),...,a(r−1),d[k−1],d

′
k

)

ω−ψ
(
(0[k−1],

k d′k),a
(2),...,a(r−1),d[k−1],dk

)∥∥∥
�(dk,d′k)

.

Apply Hölder’s inequality for 4th power to get

ξ8 6 E
a
(1)

[k−1]
∈G[k−1]

E
a(2),...,a(r−1)∈G⊕

E
d[k−1]∈G[k−1]

E
zk,dk,d′k∈Gk

ωψ
(
(0[k−1],

k dk),a
(2),...,a(r−1),d[k−1],d

′
k

)

ω−ψ
(
(0[k−1],

k d′k),a
(2),...,a(r−1),d[k−1],dk

)
,

which is exactly ξ8 6 biasψ′
1k. �

From approximate to exact symmetry. We now prove Proposition 4.5
which allows us to deduce exact symmetry properties.

Proof of Proposition 4.5. Let i1, . . . , ir−1 ∈ [k] be arbitrary indices. We
define further map ψi[r−1]

: Gi1 ×Gi2 × · · · ×Gir−1 ×G1 ×G2 × · · · ×Gk → Fp by

ψi[r−1]
(b1, . . . ,br−1, x1, . . . , xk)

= ψ
(
(0[k]r{i1},

i1 b1), . . . , (0[k]r{ir−1},
ir−1 br−1), x1, . . . , xk

)
.

Since ψ is a multilinear form, so is ψi[r−1]
for any choice of indices i[r−1]. These

new maps are related to ψ via the following identity

ψ(a(1), . . . , a(r−1), x1, . . . , xk) =
∑

i1,...,ir−1∈[k]

ψi[r−1]
(a

(1)
i1
, . . . , a

(r−1)
ir−1

, x1, . . . , xk).

It turns out that the approximate symmetry properties of ψ induce approximate
symmetry properties of the maps ψi[r−1]

. We formulate these properties in the next
couple of claims. We write SymX for the group of permutations of a finite set X .

Claim 4.1. Let i1, . . . , ir−1 ∈ [k] and let σ ∈ Sym[r−1]. Let σ
1◦ ψi[r−1]

: Gi1 ×
· · · ×Gir−1 ×G[k] → Fp be a multilinear form defined by

σ
1◦ ψi[r−1]

(b1, . . . , br−1, x1, . . . , xk) = ψiσ(1) ,...,iσ(r−1)
(bσ(1), . . . , bσ(r−1), x1, . . . , xk).

Then

bias
(
ψi[r−1]

− σ
1◦ ψi[r−1]

)
> ξr2

k+r−1

.

Proof. Let c1 and c2 be two distinct elements of [r−1]. Using (4.6) for indices
c1 and c2 and expanding the definition of ψc1 c2 we get

ξ 6 biasψc1 c2 = E
a(1),...,a(r−1)∈G⊕

x[k]∈G[k]

ωψc1 c2 (a
(1),...,a(r−1),x[k])
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= E
a1,...,ar−1∈G

⊕

x[k]∈G[k]

∏

j1,...,jr−1∈[k]

ω
ψj[r−1]

(a1,j1 ,...,ar−1,jr−1
,x[k])

ω
−ψj[r−1]

(a
(1)
j1
,...,a

(c2)
jc1

,...,a
(c1)
jc2

,...,a
(r−1)
jr−1

,x[k]).

Among all forms that appear in the last line of the expression above, the variables

a
(1)
i1
, . . . , a

(r−1)
ir−1

, x1, . . . , xk appear in exactly two, namely

ψi[r−1]

(
a
(1)
i1
, . . . , a

(r−1)
ir−1

, x[k]
)

−ψi[c1−1],ic2 ,i[c1+1,c2−1],ic1 ,i[c2+1,r−1]

(
a
(1)
i1
, . . . , a

(c2)
ic2

, . . . , a
(c1)
ic1

, . . . , a
(r−1)
ir−1

, x[k]
)
.

Writing σ for the transposition that exchanges c1 and c2, we may see that the latter

form equals σ
1◦ ψi[r−1]

(
a
(1)
i1
, . . . , a

(r−1)
ir−1

, x[k]
)
. Using Lemma 2.1, we see that

ξ 6
∥∥ωψi[r−1]

−σ
1
◦ψi[r−1]

∥∥
�r+k−1 =

(
bias(ψi[r−1]

− σ
1◦ ψi[r−1]

)
)2−(r+k−1)

.

Recall that the symmetric group Sym[r−1] is generated by transpositions, and that
we may in fact write any permutation as a composition of at most r− 1 transposi-
tions. By induction on the least length ℓ of a product of transpositions that gives
a permutation σ we prove that

ξℓ2
r+k−1

6 bias
(
ψi[r−1]

− σ
1◦ ψi[r−1]

).

The base case has already been proved. Write σ = τ ◦ σ′ for a transposition τ
and a permutation σ′ that can be written as a product of ℓ− 1 transpositions. By
inductive hypothesis for a slightly different sequence of indices iτ(1), . . . , iτ(r−1) we
have

ξ(ℓ−1)2r+k−1

6 bias
(
ψiτ(1),...,iτ(r−1)

− σ′ 1◦ ψiτ(1),...,iτ(r−1)

)
.

Apply τ to both forms to obtain

ξ(ℓ−1)2r+k−1

6 bias
(
ψiτ(1),...,iτ(r−1)

−σ′1◦ψiτ(1) ,...,iτ(r−1)

)
= bias

(
τ
1◦ψi[r−1]

−σ1◦ψi[r−1]

)
.

An appeal to the base case yields ξ2
r+k−1

6 bias
(
ψi[r−1]

− τ
1◦ ψi[r−1]

)
. Finally,

Lemma 2.7 gives

ξℓ2
r+k−1

6 bias
(
ψi[r−1]

− σ
1◦ ψi[r−1]

)
. �

Claim 4.2. Let i1, . . . , ir−1 ∈ [k]. Extend the sequence by defining ir = 1,
ir+1 = 2, . . . , ik+r−1 = k. Let σ ∈ Sym[k+r−1] be a permutation such that iσ(j) = ij
for all j ∈ [k + r − 1]. We denote the group of such permutations by Sym(i[r−1]).

Define the multilinear form σ
2◦ ψi[r−1]

: Gi1 × · · · ×Gir−1 ×G1 × · · · ×Gk → Fp by

σ
2◦ ψi[r−1]

(y1, . . . , yk+r−1) = ψi[r−1]
(yσ(1), . . . , yσ(k+r−1)).

Then

bias
(
ψi[r−1]

− σ
2◦ ψi[r−1]

)
> ξ3(k+r)2

r+k−1

.
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Proof. Let c1 ∈ [r − 1], c2 ∈ [k, k + r − 1] be two indices such that ic1 = ic2 .
(This actually means that ic2 = c2 − k+1.) To simplify notation, we denote ic1 by
ℓ. Using (4.7) for indices c1 and ℓ and expanding the definition of ψ′

c1 ℓ
we get

ξ 6 biasψ′
c1 ic2

= E
a(1),...,a(c1−1),a(c1+1),...,a(r−1)∈G⊕

x[k]∈G[k],yℓ∈Gℓ

ωψ
′
c1 ℓ(a

(1),...,a(c1−1),yℓ,a
(c1+1),...,a(r−1),x[k])

= E
a(1),...,a(c1−1),

a(c1+1),...,a(r−1)∈G⊕

x[k]∈G[k],yℓ∈Gℓ

∏

j1,...,jc1−1,

jc1+1,...,cr−1∈[k]

ω
ψj1,...,jc1−1,ℓ,jc1+1,...,jr−1

(a
(1)
j1
,...,a

(c1−1)

jc1−1
,yℓ,a

(c1+1)

jc1+1
,...,a

(r−1)
jr−1

,x[k]r{ℓ},
ℓ xℓ)

ω
−ψj1,...,jc1−1,ℓ,jc1+1,...,jr−1

(a
(1)
j1
,...,a

(c1−1)
jc1−1

,xℓ,a
(c1+1)
jc1+1

,...,a
(r−1)
jr−1

,x[k]r{ℓ},
ℓ yℓ)

.

The only forms above that have the variables a
(1)
j1
, . . . , a

(c1−1)
jc1−1

, a
(c1+1)
jc1+1

, . . . , a
(r−1)
jr−1

,

x1, . . . , xk, yℓ appearing occur precisely when j[r−1]r{c1} = i[r−1]r{c1}. Write σ ∈
Sym(i[r−1]) for the transposition that swaps c1 and c2. Lemma 2.1 then gives

ξ2
k+r−1

6 bias
(
ψi[r−1]

− σ
2◦ ψi[r−1]

)
.

The group of permutations Sym(i[r−1]) can be seen as a product of symmetric
groups SymI1 × · · · × SymIk

where Is = {j ∈ [k + r − 1] : ij = s}. Using the fact
that for a fixed element y0 ∈ [m] every permutation in Symm can be written as
a product of at most 3m transpositions of the form (x y0) for x ∈ [m] r {y0},4
the claim follows after a short inductive argument closely resembling the one in
Claim 4.1. �

Finally, define a multinear form ρ : (G⊕)r−1 ×G[k] → Fp by

(4.9) ρ(a(1), . . . , a(r−1), x[k])

=
∑

i1,...,ir−1∈[k]

(
E

σ∈Sym[r−1]

E
τ∈Sym(i[r−1])

τ
2◦ ψi[r−1]

(a
(σ(1))
i1

, . . . , a
(σ(r−1))
ir−1

, x[k])
)
.

Before proceeding further, let us stress that this is the place in the proof where
we use the assumption on the characteristic of the field. The expectation over the
permutations in the expression above has the usual meaning, namely Eσ∈Sym[r−1]

is simply a shorthand for 1
| Sym[r−1] |

∑
σ∈Sym[r−1]

and similarlyEτ∈Sym(i[r−1])
stands

for 1
| Sym(i[r−1])|

∑
τ∈Sym(i[r−1])

. This means that the expression above has a factor

1

| Sym[r−1] |
1

| Sym(i[r−1])|
,

4Notice that we may obtain any transposition (a b) as (a y0)(b y0)(a y0).
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which equals 1
(r−1)!q1!...qk!

, where qs = |{j ∈ [k + r − 1] : ij = s}|. Recall that

ir = 1, ir+1 = 2, . . . , ir+k−1 = k, so we have qs 6 r for each s. Thus, as long as
p > r + 1 we may invert the element (r − 1)!q1! . . . qk! in Fp.

Let us prove that ρ has the desired symmetry properties. First, we show that
ρc1 c2 = 0 for c1, c2 ∈ [r − 1]. Let σ0 ∈ Sym[r−1] be the transposition that swaps c1
and c2. We have

ρ(a(1), . . . , a(c1−1), a(c2), a(c1+1), . . . , a(c2−1), a(c1), a(c2+1), . . . a(r−1), x[k])

=
∑

i1,...,ir−1∈[k]

(
E

σ∈Sym[r−1]

E
τ∈Sym(i[r−1])

τ
2◦ ψi[r−1]

(
a
(σ0◦σ(1))
i1

, . . . , a
(σ0◦σ(r−1))
ir−1

, x[k]
))

=
∑

i1,...,ir−1∈[k]

(
E

σ∈Sym[r−1]

E
τ∈Sym(i[r−1])

τ
2◦ ψi[r−1]

(
a
(σ(1))
i1

, . . . , a
(σ(r−1))
ir−1

, x[k]
))

= ρ(a(1), . . . , a(r−1), x[k]),

as desired.
Secondly, we show that ρ′c ℓ = 0 for c ∈ [r − 1], ℓ ∈ [k]. We have

ρ′c ℓ
(
a(1), . . . , a(c−1), yℓ, a

(c+1), . . . , a(r−1), x1, . . . , xk
)

= ρ
(
a(1), . . . , a(c−1), (0[k]r{ℓ},

ℓ yℓ), a
(c+1), . . . , a(r−1),
x1, . . . , xℓ−1, xℓ, xℓ+1, . . . , xk

)

− ρ
(
a(1), . . . , a(c−1), (0[k]r{ℓ},

ℓ xℓ), a
(c+1), . . . , a(r−1),
x1, . . . , xℓ−1, yℓ, xℓ+1, . . . , xk

)

=
∑

i1,...,ir−1∈[k]

(
E

σ∈Sym[r−1]

E
τ∈Sym(i[r−1])

1(iσ−1(c) = ℓ)

τ
2◦ ψi[r−1]

((
a
(σ(s))
is

)
s∈[r−1]r{σ−1(c)}

, σ
−1(c) yℓ;x[k]r{ℓ},

ℓ xℓ
))

−
∑

i1,...,ir−1∈[k]

(
E

σ∈Sym[r−1]

E
τ∈Sym(i[r−1])

1(iσ−1(c) = ℓ)

τ
2◦ ψi[r−1]

((
a
(σ(s))
is

)
s∈[r−1]r{σ−1(c)}

, σ
−1(c) xℓ;x[k]r{ℓ},

ℓ yℓ
))
.

For σ ∈ Sym[r−1] define a transposition τσ = (σ−1(c) r − 1 + ℓ). Note that when

i−1
σ (c) = ℓ then τσ ∈ Sym(i[r−1]). Hence the expression above can be rewritten as

∑

i1,...,ir−1∈[k]

(
E

σ∈Sym[r−1]

E
τ∈Sym(i[r−1])

1(iσ−1(c) = ℓ)

τ
2◦ ψi[r−1]

((
a
(σ(s))
is

)
s∈[r−1]r{σ−1(c)}

, σ
−1(c) yℓ;x[k]r{ℓ},

ℓ xℓ
))

−
∑

i1,...,ir−1∈[k]

(
E

σ∈Sym[r−1]

E
τ∈Sym(i[r−1])

1(iσ−1(c) = ℓ)
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(τσ ◦ τ) 2◦ ψi[r−1]

((
a
(σ(s))
is

)
s∈[r−1]r{σ−1(c)}

, σ
−1(c) yℓ;x[k]r{ℓ},

ℓ xℓ
))

= 0,

as desired, where in the last line we used the fact that Sym(i[r−1]) is a group.
To finish the proof we need to show that the bias of the difference of the forms

ρ− ψ is large. Fix some indices j1, . . . , jr−1 ∈ [k]. We shall now determine which

forms on the right hand side of (4.9) have all of the variables a
(1)
j1
, . . . , a

(r−1)
jr−1

, x[k].

For i1, . . . , ir−1 and σ in (4.9) we have variables a
(σ(1))
i1

, . . . , a
(σ(r−1))
ir−1

, so we must

have jσ(s) = is for every s ∈ [r − 1]. Therefore, given a permutation σ ∈ Sym[r−1],

the variables a
(1)
j1
, . . . , a

(r−1)
jr−1

, x[k] appear for the sequence is = jσ(s). Fix σ ∈
Sym[r−1] and the corresponding i[r−1].

Claim 4.3. The bias of the map
(
a
(1)
j1
, . . . , a

(r−1)
jr−1

, x[k]
)
7→ ψj[r−1]

(
a
(1)
j1
, . . . , a

(r−1)
jr−1

, x[k]
)

(4.10)

− τ
2◦ ψi[r−1]

(
a
(σ(1))
i1

, . . . , a
(σ(r−1))
ir−1

, x[k]
)

is at least ξ4(k+r)2
r+k−1

.

By Lemma 2.7 it then follows that

bias(ρ− ψ) > ξ4(k+r)k
r−1(k+r−1)!(r−1)!2r+k−1

.

Proof of Claim 4.3. By Claim 4.2, we have that the map

ψi[r−1]

(
a
(σ(1))
i1

, . . . , a
(σ(r−1))
ir−1

, x[k]
)
− τ

2◦ ψi[r−1]

(
a
(σ(1))
i1

, . . . , a
(σ(r−1))
ir−1

, x[k]
)

has bias at least ξ3(k+r)2
r+k−1

. Note that

ψi[r−1]

(
a
(σ(1))
i1

, . . . , a
(σ(r−1))
ir−1

, x[k]
)
= ψjσ(1),...,jσ(r−1)

(
a
(σ(1))
jσ(1)

, . . . , a
(σ(r−1))
jσ(r−1)

, x[k]
)

= σ
1◦ ψj[r−1]

(
a
(1)
j1
, . . . , a

(r−1)
jr−1

, x[k]
)
.

By Claim 4.1, we have the bound

bias
(
ψj[r−1]

− σ
1◦ ψj[r−1]

)
> ξr2

k+r−1

.

Using Lemma 2.7, we at last conclude that the bias of the map in (4.10) is at least

ξ4(k+r)2
r+k−1

. �

Having proved Claim 4.3, the proof of Proposition 4.5 is also complete. �

Partially symmetric multlinear forms. In this subsection, we describe the
multilinear forms which have the (exact) symmetry properties in Proposition 4.5.
We view each Gj as F

nj
p . Thus, when xj ∈ Gj , we have its further coordinates

xj,c for c ∈ [nj ]. This further leads to coordinates of x ∈ G⊕ denoted by xj,c
for j ∈ [k], c ∈ [nj ]. Let us define Pk,r to be the set of polynomials of degree at
most k + r − 1 on G⊕, where the monomials xd1,c1 · · ·xdk+r−1,ck+r−1

are required
to have every i ∈ [k] present among d1, . . . , dk+r−1. It turns out that derivatives of
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polynomials in Pk,r are the essentially the only source of the partially symmetric
multilinear forms of interest.

Proposition 4.6. Assume that p > r + 1. Let ψ : (G⊕)r−1 × G[k] → Fp be a
multilinear form such that

(i) the maps ψij defined by (4.4) are all zero, and
(ii) the maps ψ′

ij defined by (4.5) are all zero.

Then there exist polynomials P ∈ Pk,r and Q such that for all a(1), . . . , a(r−1) ∈ G⊕

and x[k] ∈ G[k] we have

ψ(a(1), . . . , a(r−1), x1, . . . , xk) = ∆a(1),...,a(r−1)P (x[k])

+Q(a(1), a(2), . . . , a(r−1), x1, . . . , xk)

and for each monomial m appearing in Q there is i ∈ [k] such that no variable xic
appears in m.

(Recall the additive derivative notation is defined by ∆hF (x) = F (x + h) −
F (x).)

Proof. Let M be the set of triples (d, c, c′) where d = d[r−1] is a sequence
of elements in [k], c = c[r−1] is a sequence such that ci ∈ [ndi ] and c′ = c′[k] is a

sequence such that c′j ∈ [nj ]. Since ψ is a multilinear form, there are coefficients
λd,c,c′ ∈ Fp for triples of sequences (d, c, c′) ∈ M such that

ψ
(
a(1), . . . , a(r−1), x1, . . . , xk

)
=

∑

(d,c,c′)∈M

λd,c,c′ a
(1)
d1,c1

· · · a(r−1)
dr−1,cr−1

x1,c′1 · · ·xk,c′k .

We shall use the symmetry properties of ψ to conclude equalities between some of
the coefficients λd,c,c′.

Claim 4.4. Let (d, c, c′), (f, e, e′) ∈ M be two triples such that

(d1, c1), . . . , (dr−1, cr−1), (1, c
′
1), . . . , (k, c

′
k),

(f1, e1), . . . , (fr−1, er−1), (1, e
′
1), . . . , (k, e

′
k)

are the same sequence up to reordering. Then λd,c,c′ = λf,e,e′ .

Proof. We first prove that λd,c,c′ = λf,e,e′ when c′ = e′. This is equivalent
to (d1, c1), . . . , (dr−1, cr−1) and (f1, e1), . . . , (fr−1, er−1) being the same up to re-
ordering, so there is a permutation π ∈ Sym[r−1] such that (fi, ei) = (dπ(i), cπ(i))

for each i ∈ [r− 1], i.e., f = d ◦ π, e = c ◦ π. The facts that (d ◦ σ, c ◦ σ, c′) ∈ M for
every σ ∈ Sym[r−1] and that Sym[r−1] is generated by transpositions allow us to
assume that π is itself a transposition. Without loss of generality π swaps 1 and 2.
Using property (i) for coordinates 1 and 2, we see that

∑

(d̃,c̃,c̃′)∈M

λd̃,c̃,c̃′ a
(1)

d̃1,c̃1
a
(2)

d̃2,c̃2
a
(3)

d̃3,c̃3
· · · a(r−1)

d̃r−1,c̃r−1
x1,c̃′1 · · ·xk,c̃′k

= ψ(a(1), a(2), a(3), . . . , a(r−1), x1, . . . , xk)

= ψ(a(2), a(1), a(3), . . . , a(r−1), x1, . . . , xk)
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=
∑

(d̃,c̃,c̃′)∈M

λd̃,c̃,c̃′ a
(2)

d̃1,c̃1
a
(1)

d̃2,c̃2
a
(3)

d̃3,c̃3
· · · a(r−1)

d̃r−1,c̃r−1
x1,c̃′1 · · ·xk,c̃′k

= L
∑

(d̃,c̃,c̃′)∈M

λd̃◦π,c̃◦π,c′ a
(1)

d̃1,c̃1
a
(2)

d̃2,c̃2
a
(3)

d̃3,c̃3
· · · a(r−1)

d̃r−1,c̃r−1
x1,c̃′1 · · ·xk,c̃′k ,

which gives λd◦π,c◦π,c′ = λd,c,c′, as desired.
Now we consider the case when c′ and e′ need not be equal. Assume first

that c′1 6= e′1, but c
′
2 = e′2, . . . , c

′
k = e′k. The first part of the proof allows us to

reorder (d, c) and (f, e) so without loss of generality we have d1 = · · · = dl =
1 6= dl+1, . . . , dr−1 and f1 = · · · = fl′ = 1 6= fl′+1, . . . , fr−1. Additionally, by
further reordering, we may assume that c1 = e′1. By hypothesis, we have l = l′

and the sequences (c1, . . . , cl, c
′
1) and (e1, . . . , el, e

′
1) are the same, up to reordering.

Reordering further if necessary, we may assume that c2 = e2, . . . , cl = el. Now use
property (ii) to see that

∑

(d̃,c̃,c̃′)∈M

λd̃,c̃,c̃′ 1(d̃1 = 1)uc̃1a
(2)

d̃2,c̃2
· · · a(r−1)

d̃r−1,c̃r−1
vc̃′1x2,c̃′2 · · ·xk,c̃′k

= ψ
(
(0[2,k],

1 u), a(2), . . . , a(r−1), v, x2, . . . , xk
)

= ψ
(
(0[2,k],

1 v), a(2), . . . , a(r−1), u, x2, . . . , xk
)

=
∑

(d̃,c̃,c̃′)∈M

λd̃,c̃,c̃′ 1(d̃1 = 1) vc̃1a
(2)

d̃2,c̃2
· · ·a(r−1)

d̃r−1,c̃r−1
uc̃′1x2,c̃′2 · · ·xk,c̃′k

=
∑

(d̃,c̃,c̃′)∈M

λd̃,(c̃′1,c̃[2,r−1]),(c̃1,c̃
′
[2,k]

) 1(d̃1 = 1)uc̃1a
(2)

d̃2,c̃2
· · · a(r−1)

d̃r−1,c̃r−1
vc̃′1x2,c̃′2 · · ·xk,c̃′k ,

which in particular gives that λd,c,c′ = λf,e,e′ for the triples (d, c, c′) and (f, e, e′)
above.

Finally, consider the general case. By induction on ℓ ∈ [0, k] we show that there
is a triple (s(ℓ), t(ℓ), u(ℓ)) ∈ M such that (d1, c1), . . . , (dr−1, cr−1), (1, c

′
1), . . . , (k, c

′
k)

and (s
(ℓ)
1 , t

(ℓ)
1 ), . . . , (s

(ℓ)
r−1, t

(ℓ)
r−1), (1, u

(ℓ)
1 ), . . . , (k, u

(ℓ)
k ) are the same up to reordering

and that u
(ℓ)
1 = e′1, . . . , u

(ℓ)
ℓ = e′ℓ, u

(ℓ)
ℓ+1 = c′ℓ+1, . . . , u

(ℓ)
k = c′k. For the base case

ℓ = 0, we take the triple (d, c, c′). Assume now that we have constructed the triple
(s(ℓ), t(ℓ), u(ℓ)) for some ℓ < k. If e′ℓ+1 = c′ℓ+1, we may take s(ℓ+1) = s(ℓ), t(ℓ+1) = t(ℓ)

and u(ℓ+1) = u(ℓ). Thus assume that e′ℓ+1 6= c′ℓ+1. Since (ℓ+1, e′ℓ+1) 6= (ℓ+1, u
(ℓ)
ℓ+1)

and the sequences (f1, e1), . . . , (k, e
′
k) and (s

(ℓ)
1 , t

(ℓ)
1 ), . . . , (k, u

(ℓ)
k ) are the same up

to reordering we have some i0 ∈ [r− 1] such that (ℓ+1, e′ℓ+1) = (s
(ℓ)
i0
, t

(ℓ)
i0

). Now set

s(ℓ+1) = s(ℓ), t
(ℓ+1)
j = t

(ℓ)
j for j 6= i0 and t

(ℓ+1)
i0

= c′ℓ+1 (recall that u(ℓ+1) is already

specified) to complete the induction step.
Using the triples we have just constructed and the work above, we have

λd,c,c′ = λs(0),t(0),u(0) = · · · = λs(k),t(k),u(k) = λf,e,e′ . �
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For each triple (d, c, c′) ∈ M define mon(d, c, c′) to be the sequence (d1, c1), . . . ,
(dr−1, cr−1), (1, c

′
1), . . . , (k, c

′
k) sorted in lexicographic order. Note that the con-

dition in Claim 4.4 about resulting sequences being same up to reordering can
be expressed as mon(d, c, c′) = mon(f, e, e′). Let Mon be the set of all images

mon(d, c, c′) when (d, c, c′) ranges over M. We denote elements of Mon as (d̃, c̃)

which stands for the sequence
(
(d̃1, c̃1), . . . , (d̃k+r−1, c̃k+r−1)

)
. Let s be the number

of different pairs that appear in this sequence, and let v1, . . . , vs be their number
of appearances. Note that vi 6 r. Define λ̃d̃,c̃ for (d̃, c̃) ∈ Mon as

λ̃d̃,c̃ =

( s∏

i=1

vi!

)−1

λd,c,c′

for arbitrary (d, c, c′) ∈ M such that mon(d, c, c′) = (d̃, c̃). Claim 4.4 tells us that
this is well defined. This is the place in the proof where we use the assumption
that p > r + 1 in order to be able to invert the terms vi!.

We now define the polynomial P (x[k]) as
∑

(d̃,c̃)∈Mon

λ̃d̃,c̃xd̃1,c̃1 · · ·xd̃k+r−1,c̃k+r−1
.

Note also that P ∈ Pk,r as every pair (d̃, c̃) ∈ Mon has the property that

all elements in [k] are present among d̃1, . . . , d̃r+k−1. It remains to prove that for
every monomialm present in ψ

(
a(1), . . . , a(r−1), x[k]

)
−∆a(1),...,a(r−1)P (x[k]) there is

i ∈ [k] such that no variable xic for some c appears in m. To that end, we prove the
following slightly more general claim that allows us to understand how derivatives
affect monomials.

Claim 4.5. Let m(x[k]) = xd1,c1 · · ·xds,cs be a monomial of degree s. Let

a(1), . . . , a(t) ∈ G⊕. Then

∆a(1),...,a(t)m(x[k]) =
∑

i : [t]−֒→[s]

a
(1)
ci(1),di(1)

a
(2)
ci(2),di(2)

· · · a(t)ci(t),di(t)
( ∏

j∈[s]rIm i

xcj ,dj

)

+Q
(
a(1), a(2), . . . , a(t), x[k]

)
,

where the sum ranges over all injective maps i : [t] → [s] and Q is a polynomial of

degree at most s whose monomials have at least t+ 1 variables of the form a
(i)
j,ℓ.

Proof. Note that it suffices to prove the claim for t 6 s. Indeed, supposing
that the claim holds for t = s, we see that ∆a(1),...,a(s)m(x[k]) is of degree zero in xij
variables, and is therefore independent of x[k]. Thus, further discrete derivatives
give zero function. We proceed to prove the claim by induction on t 6 s.

The base case is t = 1 for which we see that

∆a(1)m(x[k]) =
(
xd1,c1 + a

(1)
d1,c1

)
· · ·

(
xds,cs + a

(1)
ds,cs

)
− xd1,c1 · · ·xds,cs

=
∑

∅6=I⊆[s]

(∏

i∈I

a
(1)
di,ci

)( ∏

i∈[s]rI

xdi,ci

)
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=
∑

i∈[s]

(
a
(1)
ci,di

∏

j∈[s]r{i}

xcj ,dj

)
+

∑

I⊆[s]
|I|>2

(∏

i∈I

a
(1)
di,ci

)( ∏

i∈[s]rI

xdi,ci

)
,(4.11)

which has the desired form.
Suppose now that the claim holds for some t ∈ [s − 1]. By the induction

hypothesis we have

∆a(1),...,a(t)m(x[k]) =
∑

i : [t]−֒→[s]

a
(1)
ci(1),di(1)

a
(2)
ci(2),di(2)

· · · a(t)ci(t),di(t)
( ∏

j∈[s]rIm i

xcj ,dj

)

+Q
(
a(1), a(2), . . . , a(t), x[k]

)
,

where Q is a polynomial of degree s whose monomials have at least t+ 1 variables

of the form a
(i)
j,ℓ, thus having x-degree at most s− t− 1. Apply further derivative

with difference ar+1

∆a(1),...,a(t+1)m(x[k])

= ∆a(1),...,a(t)m
(
x1 + a

(t+1)
1 , . . . , xk + a

(t+1)
k

)
−∆a(1),...,a(t)m(x1, . . . , xk)

=
∑

i : [t]−֒→[s]

a
(1)
ci(1),di(1)

a
(2)
ci(2),di(2)

· · ·

a
(t)
ci(t),di(t)

( ∏

j∈[s]rIm i

(
xcj ,dj + a

(t+1)
cj ,dj

)
−

∏

j∈[s]rIm i

xcj ,dj

)

+Q
(
a(1), a(2), . . . , a(t), x1 + a

(t+1)
1 , . . . , xk + a

(t+1)
k

)

−Q
(
a(1), a(2), . . . , a(t), x1, . . . , xk

)
.

As in the calculation (4.11), the only terms that have x-degree at least s− t− 1 in
∏

j∈[s]rIm i

(
xcj ,dj + a

(t+1)
cj,dj

)
−

∏

j∈[s]rIm i

xcj ,dj

are exactly

a
(t+1)
ci′ ,di′

∏

j∈[s]rIm i
j 6=i′

xcj ,dj

for fixed i′ ∈ [s]r Im i. Furthermore, the polynomial

Q
(
a(1), a(2), . . . , a(t), x1+ a

(t+1)
1 , . . . , xk+ a

(t+1)
k

)
−Q

(
a(1), a(2), . . . , a(t), x1, . . . , xk

)

has no monomials of x-degree at least s − t − 1. This follows from the fact that
Q(a(1), a(2), . . . , a(t), x1, . . . , xk) has no monomial of x-degree at least s− t and the

calculation (4.11). Therefore, there exists a polynomial Q̃(a(1), a(2), . . . , a(t+1), x[k])
of degree at most s whose monomials have x-degree strictly less than s− t− 1 and

∆a(1),...,a(t+1)m(x[k])

=
∑

i : [t]−֒→[s]

a
(1)
ci(1),di(1)

a
(2)
ci(2),di(2)

· · ·a(t)ci(t),di(t)
∑

i′∈[s]rIm i

a
(t+1)
ci′ ,di′

∏

j∈[s]rIm i
j 6=i′

xcj ,dj
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+ Q̃
(
a(1), a(2), . . . , a(t+1), x[k]

)

=
∑

i : [t+1]−֒→[s]

a
(1)
di(1),ci(1)

a
(2)
di(2),ci(2)

· · ·a(t+1)
di(t+1),ci(t+1)

∏

j∈[s]rIm i

xdj ,cj

+ Q̃
(
a(1), a(2), . . . , a(t+1), x[k]

)
,

completing the proof. �

Using Claim 4.5 and the definition of P we see that

ψ
(
a(1), . . . , a(r−1), x[k]

)
−∆a(1),...,a(r−1)P (x[k])(4.12)

=
∑

(d,c,c′)∈M

λd,c,c′ a
(1)
d1,c1

· · · a(r−1)
dr−1,cr−1

x1,c′1 · · ·xk,c′k

−
∑

(d̃,c̃)∈Mon

λ̃d̃,c̃

∑

i : [r−1]−֒→[k+r−1]

a
(1)

d̃i(1),c̃i(1)
a
(2)

d̃i(2),c̃i(2)
· · ·

a
(r−1)

d̃i(r−1),c̃i(r−1)

∏

j∈[k+r−1]rIm i

xd̃j ,c̃j

−Q
(
a(1), . . . , a(r−1), x[k]

)
,

where Q is a polynomial of degree at most k + r − 1 whose monomials have x-
degree at most k − 1. Let M̃ be the set of all pairs

(
(d̃, c̃), i

)
where (d̃, c̃) ∈ Mon

and i : [r − 1] −֒→ [k + r − 1] such that {d̃j : j ∈ [k + r − 1] r Im i} = [k]. Note

that the pairs
(
(d̃, c̃), i

)
/∈ M̃ in (4.12) give rise to monomials that do not have

none of the variables xi0,1, . . . , xi0,ni0
appearing for some i0 (namely i0 /∈ {d̃j : j ∈

[k + r − 1]r Im i}). Therefore, it suffices to prove
∑

(d,c,c′)∈M

λd,c,c′ a
(1)
d1,c1

· · · a(r−1)
dr−1,cr−1

x1,c′1 · · ·xk,c′k(4.13)

=
∑

((d̃,c̃),i)∈M̃

λ̃d̃,c̃a
(1)

d̃i(1),c̃i(1)
a
(2)

d̃i(2),c̃i(2)
· · ·a(r−1)

d̃i(r−1),c̃i(r−1)

∏

j∈[k+r−1]rIm i

xd̃j ,c̃j .

Firstly, observe that the monomial

a
(1)

d̃i(1),c̃i(1)
a
(2)

d̃i(2),c̃i(2)
· · ·a(r−1)

d̃i(r−1),c̃i(r−1)

∏

j∈[k+r−1]rIm i

xd̃j ,c̃j

where
(
(d̃, c̃), i

)
∈ M̃ equals the monomial a

(1)
f1,e1

· · ·a(r−1)
fr−1,er−1

x1,e′1 · · ·xk,e′k for some

(f, e, e′) ∈ M. Namely, simply put fj = d̃i(j) and ej = ẽi(j) for j ∈ [r − 1] and
e′1, . . . , e

′
k to be the ordering c̃σ(1), . . . , c̃σ(k) where σ : [k] → [k + r − 1] r Im i is

chosen so that d̃σ(j) = j. Now fix any (f, e, e′) ∈ M and focus on the monomial

a
(1)
f1,e1

· · · a(r−1)
fr−1,er−1

x1,e′1 · · ·xk,e′k . On the left-hand side of the equality (4.13) this

monomial has λf,e,e′ as its coefficient. Let I be the set of all
(
(d̃, c̃), i

)
∈ M̃ such

that we have the equality of the monomials

a
(1)
f1,e1

· · · a(r−1)
fr−1,er−1

x1,e′1 · · ·xk,e′k
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= a
(1)

d̃i(1),c̃i(1)
a
(2)

d̃i(2),c̃i(2)
· · ·a(r−1)

d̃i(r−1),c̃i(r−1)

∏

j∈[k+r−1]rIm i

xd̃j ,c̃j .

In particular, we see that the sequences (f1, e1), . . . , (fr−1, er−1), (1, e
′
1), . . . , (k, e

′
k)

and (d̃1, c̃1), . . . , (d̃k+r−1, c̃k+r−1) are the same after a possible reordering, thus

(d̃, c̃) = mon(f, e, e′), meaning that (d̃, c̃) is uniquely determined by (f, e, e′). Hence,
the coefficient of the considered monomial on the right-hand-side of the equal-
ity (4.13) is precisely λ̃mon(f,e,e′) · |I|, and |I| is the number of injective maps

i : [r − 1] → [k + r − 1] such that (d̃i(j), c̃i(j)) = (fj, ej).
Misuse the notation and write fr−1+j = j and er−1+j = e′j for j ∈ [k]. Observe

that we may uniquely extend the injection i to a bijection i : [k+r−1] → [k+r−1]

such that (d̃i(j), c̃i(j)) = (fj , ej) holds for all j ∈ [k + r − 1]. In the opposite

direction, every such bijection i has the same properties as the initial injection i
after restricting i|[r−1]. We conclude that |I| is in fact the number of such bijections

i. It is not hard to see that this number is exactly v1! · · · vs! where s is the number of
distinct elements of the sequence (d̃1, c̃1), . . . , (d̃k+r−1, c̃k+r−1) and vi is the number

of times ith value appears in the sequence. By definition of λ̃d̃,c̃, we have the equality
of the coefficients on both sides, which completes the proof. �

Concluding the proof. Finally, in this subsection we return to (4.2) and use
the facts about approximately symmetric multilinear forms, we established in the
previous subsections to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let f : G⊕ → D be a function such that

‖f‖
U

(
G1,G2,...,Gk,G⊕×r

) > c.

By Proposition 4.2 there exists a multilinear form ψ : G⊕ × · · · ×G⊕

︸ ︷︷ ︸r−1 × G1 ×
· · · ×Gk → Fp such that

(4.14)
∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

b1∈G1,...,bk∈Gk

x∈G⊕

·∆a(1),...,a(r−1) ·∆b1,...,bkf(x)ω
ψ(a(1),...,a(r−1),b1,...,bk)

∣∣∣∣ > c1

for some c1 >
(
exp(Ok,r(1))(Ok,r,p(c

−1))
)−1

. By Propositions 4.3, 4.4 and 4.5 we

may find another multilinear form ρ : (G⊕)r−1 ×G[k] → Fp such that

(4.15) bias(ψ − ρ) > c
Ok,r(1)
1

and if ρij and ρ′ij are the multilinear forms defined by (4.4) and by (4.5) for ρ
instead of ψ, then ρij = 0 and ρ′ij = 0. Applying Proposition 4.6 to ρ we obtain

polynomials P ∈ Pk,r and Q such that for all a1, . . . , ar−1 ∈ G⊕ and x[k] ∈ G[k] we
have

(4.16) ρ(a1, . . . , ar−1, x[k]) = ∆a1,...,ar−1P (x[k]) +Q(a1, a2, . . . , ar−1, x[k])

and for each monomial m appearing in Q there is i ∈ [k] such that no variable xic
appears in m.
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We now use Gowers–Cauchy–Schwarz inequality (Lemma 2.1) to replace ψ by

ρ in (4.14). Firstly apply Theorem 2.1 to find an integer m 6 Ok,r(log
Ok,r(1) c−1

1 ),
subsets Ii ⊂ [r − 1], Ji ⊂ [k] and multilinear forms βi : (G

⊕)Ii × GJi → Fp and

γi : (G
⊕)[r−1]rIi ×G[k]rJi

→ Fp for i ∈ [m] such that

ψ
(
a(1), . . . , a(r−1), x1, . . . , xk

)
− ρ

(
a(1), . . . , a(r−1), x1, . . . , xk

)

=
∑

i∈[m]

βi
(
a(Ii), xJi

)
γi
(
a([r−1]rIi), x[k]rJi

)

and 0 < |Ii|+ |Ji| < k + r − 1.
Algebraic manipulation in (4.14) yields

c1 6 E
a(1),...,a(r−1)∈G⊕

∥∥
·∆a(1),...,a(r−1)fω

ψ
a(1),...,a(r−1)

∥∥2k
�k

= E
a(1),...,a(r−1)∈G⊕

d1,x1∈G1,...,xk,dk∈Gk

ωψ(a
([r−1]),d[k])

·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(x[k])

= E
a(1),...,a(r−1)∈G⊕

d1,x1∈G1,...,xk,dk∈Gk

ωρ(a
([r−1]),d[k])+

∑
i∈[m] βi(a

(Ii),xJi
)γi(a

([r−1]rIi),x[k]rJi
)

·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(x[k])

=
∑

λ,µ∈Fm
p

E
a1,...,ar−1∈G

⊕

d1,x1∈G1,...,xk,dk∈Gk

ωρ(a[r−1],d[k])+λ·µ

( ∏

i∈[m]

1

(
βi
(
a(Ii), xJi

)
= λi

)
1

(
γi
(
a([r−1]rIi), x[k]rJi

)
= µi

))

·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(x[k])

= p−2m
∑

λ,λ′,µ′,µ∈Fm
p

E
a(1),...,a(r−1)∈G⊕

d1,x1∈G1,...,xk,dk∈Gk

ωρ(a
([r−1]),d[k])+λ·µ

( ∏

i∈[m]

ωλ
′
iβi(a

(Ii),xJi
)−λ′

iλi ωµ
′
iγi(a

([r−1]rIi),x[k]rJi
)−µ′

iµi

)

·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(x[k]).

By averaging, we may find x[k] ∈ G⊕ and λ, λ′, µ, µ′ ∈ Fmp such that

c1p
−2m

6

∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

d1∈G1,...,dk∈Gk

ωρ(a
([r−1]),d[k])

( ∏

i∈[m]

ωλ
′
iβi(a

(Ii),xJi
)ωµ

′
iγi(a

([r−1]rIi),x[k]rJi
)
)

·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(x[k])

∣∣∣∣
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=
∣∣∣∣ E
a(1),...,a(r−1)∈G⊕

d1∈G1,...,dk∈Gk

ωρ(a
([r−1]),d[k])

( ∏

i∈[m]

ωλ
′
iβi(a

(Ii),xJi
)ωµ

′
iγi(a

([r−1]rIi),x[k]rJi
)
)

∏

I⊆[r−1]

∏

J⊆[k]

Conjk+r−1−|I|−|J| f
(
x1 +

∑

i∈I

a
(i)
1 + 1(1 ∈ J)d1, . . . ,

xk +
∑

i∈I

a
(i)
k + 1(k ∈ J)dk

)∣∣∣∣.

We view this expression as an average of values of products of functions in variables
a(1), . . . , a(r−1), d1, . . . , dk. The only terms that depend on all of these variables are

ωρ(a
([r−1]),d[k]) and

f
(
x1 +

∑

i∈[r−1]

a
(i)
1 + d1, . . . , xk +

∑

i∈[r−1]

a
(i)
k + dk

)
.

By Lemma 2.1 we conclude that

(c1p
−2m)2

k+r−1

6 E
a(1),...,a(r−1)∈G⊕

d1∈G1,...,dk∈Gk

E
b1,...,br−1∈G

⊕

e1∈G1,...,ek∈Gk

( ∏

I⊂[r−1]

∏

J⊂[k]

ω(−1)k+r−1−|I|−|J|ρ(a(I),b([r−1]rI),dJ ,e[k]rJ )

Conjk+r−1−|I|−|J| f
(
x1 +

∑

i∈I

a
(i)
1 +

∑

i∈[r−1]rI

b
(i)
1 + e1 + 1(1 ∈ J)(d1 − e1), . . . ,

xk +
∑

i∈I

a
(i)
k +

∑

i∈[r−1]rI

b
(i)
k + ek + 1(k ∈ J)(dk − ek)

))

= E
a(1),...,a(r−1)∈G⊕

d1∈G1,...,dk∈Gk

E
b(1),...,b(r−1)∈G⊕

e1∈G1,...,ek∈Gk

ωρ(a
(1)−b(1),...,a(r−1)−b(r−1),d1−e1,...,dk−ek)

·∆a(1)−b(1),...,a(r−1)−b(r−1),(0[2,k],1 d1−e1),...,(0[k−1],k dk−ek)

f
(
x1 +

∑

i∈[r−1]

b
(i)
1 + e1, . . . , xk +

∑

i∈[r−1]

b
(i)
k + ek

)

= E
a(1),...,a(r−1)∈G⊕

d1,y1∈G1,...,dk,yk∈Gk

ωρ(a
(1),...,a(r−1),d1,...,dk)

·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(y1, . . . , yk),

where we made a change of variables in the last line. Write c2 = (c1p
−2m)2

k+r−1

.
Using the identity (4.16) we conclude that (below we again use x1, . . . , xk as dummy
variables as the values we previously fixed have no further role in the proof)

c2 6 E
a(1),...,a(r−1)∈G⊕

d1,y1∈G1,...,dk,yk∈Gk

ωρ(a
(1),...,a(r−1),d1,...,dk)
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·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(y1, . . . , yk)

= E
a(1),...,a(r−1)∈G⊕

x1,y1∈G1,...,xk,yk∈Gk

( ∏

I⊂[k]

ω(−1)k−|I|ρ(a(1),...,a(r−1),xI ,y[k]rI)

Conjk−|I|
·∆a(1),...,a(r−1)f(xI , y[k]rI)

)

= E
a(1),...,a(r−1)∈G⊕

x1,y1∈G1,...,xk,yk∈Gk

( ∏

I⊂[k]

ω
(−1)k−|I|∆

a(1),...,a(r−1)P (xI ,y[k]rI)

ω(−1)k−|I|Q(a(1),a(2),...,a(r−1),xI ,y[k]rI)

Conjk−|I|
·∆a(1),...,a(r−1)f(xI , y[k]rI)

)
.

We view terms in the expression above as functions in x1, . . . , xk, treating y1, . . . ,
yk, a

(1), . . . , a(r−1) as fixed. Recall that for each monomial m appearing in Q
there is i ∈ [k] such that no variable xic appears in m. Thus, we may write
Q(a(1), . . . , a(r−1), x1, . . . , xk) =

∑
i∈[k]Qi(a

(1), . . . , a(r−1), x[k]r{i}) for some fur-

ther polynomials Qi, i ∈ [k]. After expanding Q like this in the expression above,
the only terms that depend on all variables x1, . . . , xk are

ω
∆

a(1),...,a(r−1)P (x[k]) and ·∆a(1),...,a(r−1)f(x[k]).

Apply Lemma 2.1 for all choices of a([r−1]) and y[k] to get

c2
k

2 6 E
a(1),...,a(r−1)∈G⊕

d1,x1∈G1,...,dk,xk∈Gk

ω
∆

a(1),...,a(r−1),(0[2,k],
1 d1),...,(0[k−1],

k dk)
P (x[k])

·∆a(1),...,a(r−1),(0[2,k],1 d1),...,(0[k−1],k dk)
f(x[k])

=
∥∥f̃

∥∥2k+r−1

U(G1,G2,...,Gk,G⊕×r−1)
,

where we set f̃(x[k]) = ωP (x[k])f(x[k]). We may now apply inductive hypothesis to

find a further polynomial P̃ of degree at most k+r−2 and functions gi : G[k]r{i} →
D for i ∈ [k] such that

c3 6 E
x[k]∈G⊕

f̃(x[k])ω
P̃ (x[k])

( ∏

i∈[k]

gi(x[k]r{i})
)

= E
x[k]∈G⊕

f(x[k])ω
(P+P̃ )(x[k])

( ∏

i∈[k]

gi(x[k]r{i})
)
,

where

c3 >
(
exp(Ok,r(1))(Ok,r,p(c

−1
2 ))

)−1
>

(
exp(Ok,r(1))(Ok,r,p(c

−1))
)−1

.

Since P+P̃ is a polynomial of degree at most k+r−1 the proof is now complete. �

5. Properties of large multilinear spectrum

In this section, we prove some properties of the large multilinear spectrum.
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Close forms. We begin the work by proving the following lemma which tells
us that if a multilinear form α′ is close to a form α which belongs to the ε-large mul-
tilinear spectrum of some function f , then α′ also belongs to the ε′-large multilinear
spectrum of f , for a somewhat smaller parameter ε′. This lemma is motivated by
the first step of the proof of Theorem 1.2. Using the notation of that proof, in that
step we use the property (4.15) to replace the map ψ whose sliced functions we
know are in the large multilinear spectrum of ·∆a(1),...,a(r−1)f , by the map ρ, which
differs from ψ by a map of small rank. Unfortunately, for technical reasons, we may
not apply the lemma below directly in the proof of Theorem 1.2, but it captures
the essence of that step.

Lemma 5.1. Let f : G[k] → D be a function. Suppose that α and α′ are two

multilinear forms on G[k] such that bias(α − α′) > c and α ∈ Specml
ε (f). Then

α′ ∈ Specml
ε′ (f) for ε

′ = εp−O((logp c
−1)O(1)).

We remark that ε is affected only very slightly, i.e., ε′ is linear in ε rather than
decaying polynomially or faster.

Proof. By Theorem 2.1, there are a positive integer m 6 O
(
(logp c

−1)O(1)
)
,

subsets ∅ 6= Ii ( [k] and multilinear forms βi : GIi → Fp and γi : G[k]rIi → Fp for
i ∈ [m] such that

α′(x[k]) = α(x[k]) +
∑

i∈[m]

βi(xIi)γi(x[k]rIi ).

From the assumption that α ∈ Specml
ε (f) and algebraic manipulation, we obtain

ε2
k

6
∥∥fωα

∥∥2k
�k = E

x[k],y[k]

∏

J⊆[k]

Conjk−|J| f(xJ , y[k]rJ)ω
(−1)k−|J|α(xJ ,y[k]rJ)

= E
x[k],y[k]

∏

J⊆[k]

Conjk−|J| f(xJ , y[k]rJ)ω
(−1)k−|J|α′(xJ ,y[k]rJ)

ω(−1)k−|J|(
∑

i∈[m] βi(xIi∩J ,yIirJ )γi(xJrIi
,y[k]r(Ii∪J)))

=
∑

λ,µ∈F
P([k])×[m]
p

E
x[k],y[k]

∏

J⊆[k]

Conjk−|J| f(xJ , y[k]rJ)ω
(−1)k−|J|α′(xJ ,y[k]rJ)

ω(−1)k−|J| ∑
i∈[m] λJ,iµJ,i

1

(
(∀i ∈ [m])βi(xIi∩J , yIirJ) = λJ,i

)

1

(
(∀i ∈ [m])γi(xJrIi , y[k]r(Ii∪J)) = µJ,i

)

= p−2k+1m
∑

λ,µ,ν,τ∈F
P([k])×[m]
p

E
x[k],y[k]

∏

J⊆[k]

Conjk−|J| f(xJ , y[k]rJ)

ω(−1)k−|J|α′(xJ ,y[k]rJ ) ω(−1)k−|J| ∑
i∈[m] λJ,iµJ,i

ω(−1)k−|J|νJ,i(βi(xIi∩J ,yIirJ )−λJ,i)

ω(−1)k−|J|τJ,i(γi(xJrIi
,y[k]r(Ii∪J))−µJ,i).
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By averaging, we may find λ, µ, ν, τ ∈ F
P([k])×[m]
p such that

p−2k+1mε2
k

6

∣∣∣∣ E
x[k],y[k]

∏

J⊆[k]

Conjk−|J| f(xJ , y[k]rJ)ω
(−1)k−|J|α′(xJ ,y[k]rJ)(5.1)

ω(−1)k−|J|νJ,i(βi(xIi∩J ,yIirJ )−λJ,i)

ω(−1)k−|J|τJ,i(γi(xJrIi
,y[k]r(Ii∪J))−µJ,i)

∣∣∣∣.

For each J ⊆ [k], let fJ : G[k] → D be the function defined by

fJ(v[k]) = f(v[k])ω
α′(v[k])ωνJ,i(βi(vIi )−λJ,i) ωτJ,i(γi(v[k]rIi

)−µJ,i).

The inequality (5.1) then becomes

p−2k+1mε2
k

6

∣∣∣∣ E
x[k],y[k]

∏

J⊆[k]

Conjk−|J| fJ(xJ , y[k]rJ )
∣∣∣∣

which can be bounded from above by
∏
J⊆[k] ‖fJ‖�k using Lemma 2.1. Finally,

observe that in fact ‖fJ‖�k = ‖fωα′‖�k for each J ⊆ [k], so we actually obtain

‖fωα′‖�k > p−2mε, as desired. �

Bounding the large multilinear spectrum. A basic yet fundamental fact
about the large spectrum of a function of a single variable is that it is necessarily
small, which is easily proved via Parseval’s identity. However, as we have seen
already in Lemma 5.1, in the case of the large multilinear spectrum, the situation
is more complicated as the large multilinear spectrum is approximately closed under
translating the forms by further forms of large bias. Still, it turns out that we can
recover the result for single variable if we treat the forms whose difference has large
bias as the same. In other words, if we pick many elements from Specml

ε (f) then
some two are almost identical.

Theorem 5.1. Let k ∈ N. For any given ε > 0, set b(ε) =
(

ε
1000

)22k+2

and

n(ε) = ⌈10ε−2k+1⌉. Let f : G[k] → D be a function. Let µ1, . . . , µn ∈ Specml
ε (f) be

multilinear forms such that bias(µi − µj) 6 b(ε) for every i 6= j. Then n < n(ε).

The proof is very similar to the usual one based on Parseval’s identity. We
write S = {z ∈ C : |z| = 1} for the unit circle.

Proof. Suppose, for the sake of contradiction, that n = n(ε). Expanding the
definition of box norms yields

∣∣∣∣ E
x[k],y[k]

∏

I⊂[k]

Conjk−|I| f(xI , y[k]r)ω
(−1)k−|I|µi(xI ,y[k]rI)

∣∣∣∣ > ε2
k

.

By averaging we may find y[k] ∈ G[k] such that
∣∣∣∣E
x[k]

∏

I⊂[k]

Conjk−|I| f(xI , y[k]r)ω
(−1)k−|I|µi(xI ,y[k]rI)

∣∣∣∣ > ε2
k

.



CERTAIN DIRECTIONAL UNIFORMITY NORMS 49

We may rewrite this expression as
∣∣∣∣E
x[k]

f(x[k])ω
µi(x[k])v

(i)
1 (x[2,k]) · · · v(i)k (x[k−1])

∣∣∣∣ > ε2
k

for some functions v
(i)
1 , . . . , v

(i)
k where v

(i)
j : G[k]r{j} → D. Using Lemma 2.2 we get

functions u
(i)
1 , . . . , u

(i)
k taking values on the unit circle S such that
∣∣∣∣E
x[k]

f(x[k])ω
µi(x[k])

∏

j∈[k]

u
(i)
j (x[k]r{j})

∣∣∣∣ > ε2
k

.

Write si(x[k]) = ωµi(x[k])
∏
j∈[k] u

(i)
j (x[k]r{j}) and let 〈 ·, ·〉 be the usual inner prod-

uct on G[k]. Observe that

〈si, si〉 =E
x[k]

∏

j∈[k]

∣∣u(i)j (x[k]r{j})
∣∣2 = 1

and, using Corollary 2.1, for i 6= j

|〈si, sj〉| =
∣∣∣∣E
x[k]

ωµi(x[k])−µj(x[k])
∏

ℓ∈[k]

(
u
(i)
ℓ (x[k]r{ℓ})u

(j)
ℓ (x[k]r{ℓ})

)∣∣∣∣

6 ‖ωµi−µj‖
�2k = bias(µi − µj)

2−k

6 b(ε)2
−k

.

Set ci = 〈f, si〉 and set e = f − ∑
i∈[n] cisi. Even though we no longer have a

Fourier decomposition, we shall think of quantities ci as large Fourier coefficients
and of e as the error term coming from the small Fourier coefficients. Note that

|〈e, si〉| =
∣∣∣∣
〈
f −

∑

j∈[n]

cjsj , si

〉∣∣∣∣ 6
∑

j∈[n]r{i}

|〈si, sj〉| 6 nb(ε)2
−k

.

Using the identity f =
∑

i∈[n] cisi + e we get

1 > 〈f, f〉 =
∑

i∈[n]

|ci|2 + 〈e, e〉+
∑

i,j∈[n]
i6=j

cicj〈si, sj〉+
∑

i∈[n]

(
ci〈e, si〉+ ci〈si, e〉

)

>
∑

i∈[n]

|ci|2 −
∑

i,j∈[n]
i6=j

|〈si, sj〉| − 2
∑

i∈[n]

|〈e, si〉|

> nε2
k+1 − 3n2b(ε)2

−k

.

Recall that we assumed n = n(ε) = ⌈10ε−2k+1⌉. Thus, we have

1 > 10− 3
(
10ε−2k+1

+ 1
)2
b(ε)2

−k

> 10− 6− 600ε−2k+2

b(ε)2
−k

.

Since b(ε) =
(

ε
1000

)22k+2

, we have a contradiction. �

Using Theorem 2.1 we deduce the following result.
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Theorem 5.2. Let f : G[k] → D be a function. Let µ1, . . . , µn ∈ Specml
ε (f) be

multilinear forms for some n > 20ε−2k+1

. Then there are distinct indices i, j ∈ [n]
such that

prank(µi − µj) 6 Ok(log
Ok(1)
p ε−1).

Chang’s theorem for the large multilinear spectrum. Well-known the-
orem of Chang [8] states that the large spectrum contains rich additive structure.
For a multilinear variant of Chang’s theorem we need to be somewhat more careful
as tightness in inequalities is crucial. Let α = Ex |f(x)|. We have to assume the
explicit inequalities

∣∣∣∣E
x[k]

f(x[k])ω
µi(x[k])

∏

j∈[k]

u
(i)
j (x[k]r{j})

∣∣∣∣ > εα

instead of just Specml
αε(f) because of the slight inefficiencies arising from the appli-

cation of Gowers–Cauchy–Schwarz inequality for box norms.

Theorem 5.3. There is an absolute constant C0 such that following holds.
Suppose that f : G[k] → D is a function and write α = Ex |f(x)|. Set n(ε, α) =

C0ε
−2 logα−1 and b(ε, α) = 3−2k

(
ε2α2

n(ε,α)

)2k
.

Let µ1, . . . , µn be multilinear forms and let u
(i)
j : G[k]r{j} → D be functions for

i ∈ [n], j ∈ [k], such that
∣∣∣∣E
x[k]

f(x[k])ω
µi(x[k])

∏

j∈[k]

u
(i)
j (x[k]r{j})

∣∣∣∣ > εα

holds for all i ∈ [n] and bias
(∑

i∈[n] λiµi
)
6 b(ε) holds for every λ ∈ Fnp r {0}.

Then n < n(ε).

Again, one may use Theorem 2.1 to turn the bias bound into a bound on the
partition rank.

Proof. We begin this proof just like the proof of Theorem 5.1. For the sake
of contradiction, we assume that n = n(ε). Misusing the notation and using

Lemma 2.2, we may assume that u
(i)
j takes values in S for all i ∈ [n], j ∈ [k].

Write si(x[k]) = ωµi(x[k])
∏
j∈[k] u

(i)
j (x[k]r{j}). Rest of the proof mimics the original

proof of Chang. Let ci = 〈f, si〉 and define an auxiliary function g : G[k] → C by

g(x[k]) =
1

C

∑

i∈[n]

cisi(x[k]),

where C ∈ R>0 was chosen so that Ex[k]
|g(x[k])|2 = 1. Thus,

C2 =E
x[k]

∣∣∣∣
∑

i∈[n]

cisi(x[k])
∣∣∣∣
2

=
∑

i∈[n]

|ci|2E
x[k]

|si(x[k])|2 +
∑

i,j∈[n]
i6=j

cicj〈si, sj〉
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=
∑

i∈[n]

|ci|2 +
∑

i,j∈[n]
i6=j

cicj〈si, sj〉.

As in the previous proof, we have that |〈si, sj〉| 6 b(ε)2
−k

for i 6= j, so we deduce
∣∣∣∣C

2 −
∑

i∈[n]

|ci|2
∣∣∣∣ 6 n2b(ε)2

−k

.

From our choices of n(ε) and b(ε) we conclude that

(5.2)
1√
2

√∑

i∈[n]

|ci|2 6 C 6 2

√∑

i∈[n]

|ci|2.

We have the following lower bound for 〈g, f〉

|〈g, f〉| =
∣∣∣∣
1

C

∑

i∈[n]

ci〈si, f〉
∣∣∣∣ =

1

C

∑

i∈[n]

|ci|2 >
1

2

√∑

i∈[n]

|ci|2 >
1

2

√
nεα.(5.3)

On the other hand, for the upper bound we use Hőlder’s inequality with exponents
l and m to be chosen later

(5.4) |〈g, f〉| 6 ‖g‖Lm‖f‖Ll 6 α1/l‖g‖Lm = α1−1/m
(
E
x[k]

|g(x[k])|m
)1/m

.

We now prove a variant of Rudin’s inequality [31] for dissociated sets. The proof
is a straightforward adaptation of the proof in [36].

Claim 5.1. Let σ > 0 and θ ∈ S be given. Then

E
x[k]

[
exp

(
σRe

∑

i∈[n]

θci
C
si(x[k])

)]
6 2eσ

2

.

Proof. We use the following elementary inequality from the proof of Theorem
4.33 in [36] etu 6 cosh(u)+t sinh(u) which holds for all u > 0 and t ∈ [−1, 1]. Write
θci = |ci|νi for a suitable νi ∈ S. Consequently

exp
(
σRe

θci
C
si(x[k])

)
6 cosh

(
σ
|ci|
C

)
+

1

2
νisi(x[k]) sinh

(
σ
|ci|
C

)

+
1

2
νisi(x[k]) sinh

(
σ
|ci|
C

)

holds for each i ∈ [n]. Using this inequality, we see that

E
x[k]

[
exp

(
σRe

∑

i∈[n]

θci
C
si(x[k])

)]
=E

x[k]

[ ∏

i∈[n]

exp
(
σRe

θci
C
si(x[k])

)]
(5.5)

6E
x[k]

[ ∏

i∈[n]

(
cosh

(
σ
|ci|
C

)
+

1

2
νisi(x[k]) sinh

(
σ
|ci|
C

)

+
1

2
νisi(x[k]) sinh

(
σ
|ci|
C

))]
.
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The product appearing above is a product of n sums of three terms, so expansion
results in 3n terms in total, each being of the form

E
x[k]

( ∏

i∈I1

cosh
(
σ
|ci|
C

))( ∏

i∈I2

1

2
νisi(x[k]) sinh

(
σ
|ci|
C

))

( ∏

i∈I3

1

2
νisi(x[k]) sinh

(
σ
|ci|
C

))

for some partition [n] = I1 ∪ I2 ∪ I3. In the case when I2 ∪ I3 6= ∅, we may bound
as follows

∣∣∣∣E
x[k]

( ∏

i∈I1

cosh
(
σ
|ci|
C

))( ∏

i∈I2

1

2
νisi(x[k]) sinh

(
σ
|ci|
C

))

( ∏

i∈I3

1

2
νisi(x[k]) sinh

(
σ
|ci|
C

))∣∣∣∣

6 2−|I2|−|I3|
( ∏

i∈I1

cosh
(
σ
|ci|
C

) ∏

i∈I2∪I3

sinh
(
σ
|ci|
C

))∣∣∣∣E
x[k]

∏

i∈I2

si(x[k])
∏

i∈I3

si(x[k])
∣∣∣∣

= 2−|I2|−|I3|
( ∏

i∈I1

cosh
(
σ
|ci|
C

) ∏

i∈I2∪I3

sinh
(
σ
|ci|
C

))

∣∣∣∣E
x[k]

ω
∑

i∈I2
µi(x[k])−

∑
i∈I3

µi(x[k])

∏

i∈I2

∏

j∈[k]

u
(i)
j (x[k]r{j})

∏

i∈I3

∏

j∈[k]

u
(i)
j (x[k]r{j})

∣∣∣∣

6 2−|I2|−|I3|
( ∏

i∈[k]

cosh
(
σ
|ci|
C

))
bias

(∑

i∈I2

µi(x[k])−
∑

i∈I3

µi(x[k])
)2−k

6

( ∏

i∈[k]

cosh
(
σ
|ci|
C

))
b(ε)2

−k

.

On the other hand, when I1 = [k], we get the constant term
∏
i∈[k] cosh

(
σ |ci|
C

)
.

Therefore, going back to (5.5) we obtain

E
x[k]

[
exp

(
σRe

∑

i∈[n]

θci
C
si(x[k])

)]
6 2

∏

i∈[k]

cosh
(
σ
|ci|
C

)

6 2
∏

i∈[k]

exp
(
σ2 |ci|2

2C2

)
= 2 exp

(
σ2

∑

i∈[n]

|ci|2
2C2

)

6 2 exp(σ2),

where we used the left inequality in (5.2) in the last line. �
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Let σ > 0 to be chosen later. Recall that g(x[k]) = 1
C

∑
i∈[n] cisi(x[k]). For

λ > 0, we get from the claim above for angles θℓ = e2πiℓ/6 for ℓ ∈ [6]

1

|G[k]|
∣∣∣
{
x[k] ∈ G[k] : |g(x[k])| > λ

}∣∣∣ 6 1

|G[k]|
∑

ℓ∈[6]

∣∣∣
{
x[k] ∈ G[k] : Re θℓg(x[k]) >

1

2
λ
}∣∣∣

6
∑

ℓ∈[6]

exp(−σλ/2)E
x[k]

exp(σRe θℓg(x[k])) 6 12 exp(σ2 − σλ/2).

Pick σ = λ/4 to get

1

|G[k]|
∣∣∣∣
{
x[k] ∈ G[k] : |g(x[k])| > λ

}∣∣∣∣ 6 12 exp(−λ2/16).

Finally, we estimate ‖g‖Lm

E
x[k]

|g(x[k])|m =E
x[k]

m

∫ |g(x[k])|

0

λm−1dλ =E
x[k]

m

∫ 1

0

λm−1
1(λ 6 |g(x[k])|)dλ

= m

∫ 1

0

λm−1
(
E
x[k]

1(λ 6 |g(x[k])|)
)
dλ

6 2m

∫ 1

0

λm−1 exp(−λ2/16)dλ

6 mD(Dm)m/2,

where D > 1 is an absolute constant independent of other parameters in this
proof. Thus ‖g‖Lm 6

√
DeD

√
m. Combining inequalities (5.3) and (5.4) and

squaring we get n 6 4De2Dε−2mα−2/m. We put m = logα−1 to obtain n 6

4De2D+2ε−2 logα−1 which is a contradiction provided C0 > 4De2D+2. �

Cubical convolutions and the large multilinear spectrum. The last
property of the large multilinear spectrum that we prove here is the fact that the
large multilinear spectrum is sufficient for the approximation of cubical convolutions
(in the sense of Theorem 1.3), as remarked in the introduction.

Proposition 5.1. Let fI : G1×· · ·×Gk → D be a function for each subset I ⊆
[k]. Let ε > 0. Then, there are a quantity ξ >

(
exp(Ok(1))

(
Ok,p(ε

−1)
))−1

, a posi-

tive integer m 6 exp(Ok(1))
(
Ok,p(ε

−1)
)
, multilinear forms α1, . . . , αm ∈ Specml

ξ (f)

and constants c1, . . . , cm ∈ D such that
∥∥�f· −

∑
i∈[m] ciω

αi
∥∥
L2 6 ε.

Proof. Let C,D > 1 be the implicit constants in the conclusion of Lemma 5.1

such that the final bound is actually ε′ = εp−C((logp c
−1)D).

Apply Theorem 1.3 with approximation parameter ε/2. We obtain an integer
m 6 exp(Ok(1))

(
Ok,p(ε

−1)
)
, multiaffine forms α1, . . . , αm : G1 × · · · ×Gk → Fp and

a function c : Fmp → D such that
∥∥∥∥�f· −

∑

λ∈Fm
p

c(λ)1(α = λ)
∥∥∥∥
L2

6 ε/2.
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We may rewrite
∑

λ∈Fm
p

c(λ)1(α = λ) = p−m
∑

λ,µ∈Fm
p

c(λ)ωµ·(α−λ).

For µ ∈ Fmp we write

sµ = p−m
( ∑

λ∈Fm
p

c(λ)ω−λ·µ
)
ωµ·α

which equals c′µω
µ·α for some c′µ ∈ D. Thus, the approximation above can be

expressed as

(5.6)
∥∥∥∥�f· −

∑

µ∈Fm
p

sµ

∥∥∥∥
L2

6 ε/2.

Set

ξi =
(
p−C(2m+3+logp ε

−1)Dp−2km ε
2k+1

82k

)i

for i = 0, 1, . . . , pm. We now perform an iterative procedure in which after i steps
we obtain a subset Si 6 Fmp of size i with the property that µ · α ∈ Specml

ξi (f) for
each µ ∈ Si, until the procedure terminates. The condition for termination is that

∥∥∥∥�f· −
∑

µ∈Si

sµ

∥∥∥∥
L2

6 ε.

Note that if it does not terminate earlier, the procedure will stop after (pm)th step,
due to (5.6). Initially, we set S0 = {0}.

Suppose therefore that the procedure does not terminate after ith step. Then
we have

ε2

4
>

∥∥∥∥�f· −
∑

µ∈Fm
p

sµ

∥∥∥∥
2

L2

=
∥∥∥∥
(
�f· −

∑

µ∈Si

sµ

)
−
( ∑

µ∈Fm
p

sµ −
∑

µ∈Si

sµ

)∥∥∥∥
2

L2

=
∥∥∥∥�f· −

∑

µ∈Si

sµ

∥∥∥∥
2

L2

+
∥∥∥∥

∑

µ∈Fm
p

sµ −
∑

µ∈Si

sµ

∥∥∥∥
2

L2

−
〈
�f· −

∑

µ∈Si

sµ,
∑

µ∈Fm
p rSi

sµ

〉
−
〈
�

∑

µ∈Fm
p rSi

sµ, f· −
∑

µ∈Si

sµ

〉

> ε2 −
〈
�f· −

∑

µ∈Si

sµ,
∑

µ∈Fm
p rSi

sµ

〉
−
〈
�

∑

µ∈Fm
p rSi

sµ, f· −
∑

µ∈Si

sµ

〉
.

From this inequality we conclude that either |〈f·, sµ〉| > p−m ε2

8 for some µ /∈ Si

or |〈sλ, sµ〉| > p−2mε2

8 , for some λ ∈ Si, µ /∈ Si.
The former possibility implies

p−m
ε2

8
6 |〈f·, sµ〉| =

∣∣∣∣E
x[k]

f·(x[k])ω
µ·α(x[k])

∣∣∣∣
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6E
a[k]

∣∣∣∣E
x[k]

( ∏

I⊆[k]

Conjk−|I| f((a+ x)I , a[k]rI)
)
ωµ·α(x[k])

∣∣∣∣.

By Lemma 2.1 for variables x[k] we get µ · α ∈ Specml
η (f), where η = p−2km ε2

k+1

82k
.

The latter possibility implies that

bias
(
(λ− µ) · α

)
=E

x[k]

ω(λ−µ)·α(x[k]) =
∣∣〈sλ, sµ〉

∣∣ > p−2m ε
2

8
,

which, combined with the fact that λ · α ∈ Specml
ξi (f), by Lemma 5.1 implies that

µ · α ∈ Specml
η (f) for η = ξip

−C(2m+3+logp ε
−1)D .

Thus, in either case, we conclude that µ · α ∈ Specml
η (f) for

η = ξip
−C(2m+3+logp ε

−1)Dp−2km ε
2k+1

82k
= ξi+1.

We may therefore set Si+1 = Si ∪ {µ}.
Finally, after the procedure has terminated, note that

∥∥∥∥�f· −
∑

µ∈Si

c′µω
µ·α

∥∥∥∥
L2

=
∥∥∥∥�f· −

∑

µ∈Si

sµ

∥∥∥∥
L2

6 ε,

which is the desired approximation. �
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